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ABSTRACT

This report presents the findings of an analytical study regarding the propagation of exper-
imental errors during seismic performance testing of structural systems by an on-line
computer-control (pseudodynamic) method. Numerical methods for suppressing the error-
propagation effects are propesed and investigated, so that reliable experimental results can be

obtained.

The pseudodynamic method is a relatively new experimental technique which can simu-
late quasi-statically the seismic response of large scale structural models using a computer-
controlled actuator system and a numerical integration algorithm. This method uses step-by-
step numerical integration to solve the equations of motion for a structural system with the
nonlinear structural restoring forces directly measured from the test specimen during an experi-
ment; and the mass and damping properties of the structure are modelled using idealized
analytical assumptions. In each step of a test, errors in restoring force measurements are intro-
duced into the numerical computations. Due to the large number of integration steps involved
in a single test, the cumulative errors can be significant even though the actual experimental

feedback errors within each step are relatively small.

This study looks into the possible sources and the characteristics of experimental feedback
errors in pseudcedynamic testing, and presents a general analytical technique to study the error-
propagation behavior of step-by-step integration algorithms. The error-propagation characteris-
tics of three explicit algorithms recommended for pseudodyanmic testing are investigated.
Equations are aiso formulated to estimate the upper cumulative error bounds for both single-
and multiple-degree-of-freedom linear elastic tests. In addition, error propagation in inelastic

testing is examined and compared with the linear elastic results.

The results of this study indicate that certain systematic experimental errors are most
detrimental to pseudodynamic testing, particularly to multiple-degree-of-freedom tests.
Significant energy effects are induced by these errors, and the higher frequency modes of a test

specimen can be erroneously excited. Based on these findings, two numerical methods are






proposed to compensate for these error effects and to suppress the spurious growth of higher
frequency responses. It is shown that reliable pseudodynamic test results can be obtained if ade-
quate experimental equipment and technique, and appropriate humerical methods for mitigating
error-propagation effects are used. Guidelines for achieving reliable pseudodynamic test resulis

are also discussed in this report.
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CHAPTER 1
INTROBUCTICN

1.1. The Pseudodynsmic Method

For economic reasons, structures are usually designed to deform inelastically when sub-
jected to severe earthquake excitations. However, a well-designed structure should remain
stable and be capable of dissipating substantial energy during rare and unusually intense earth-
quakes. To improve existing building code provisions based on this design philosophy, the ine-
lastic seismic performance of structural systems and components should be well understood.
This knowledge can be best accumulated through experimental testing. Experimental data can
also provide useful information for developing realistic analytical models for predicting the ine-

lastic behavior of structures.

Most available experimental methods for seismic performance testing suffer from limita-
tions of one type or another [1]. Recently, it has been suggested that an on-line computer-
control (or pseudodynamic) method might be used to achieve the realism of shaking table test-
ing with the economy and versatility of the conventional guasi-static approach. The pseudo-
dynamic method is similar to conventional quasi-static tests except that the displacements
imposed on a structure are determined by a computer during a test. The computation of the
displacements depends on the dynamic characteristics of the structure and the progressive dam-

age it suffers during the testing process.

In seismic response analysis, a structural system can be idealized by a discrete-paramete:
model in which all the system mass is iumped at a finite number of nodal points. The equations
of motion of a discrete-parameter structural model are expressed by a family of second-order
ordinary differential equations. The basic function of the pseudodynamic method is to solve
these governing equations of motion by means of step-by-step numerical integration during the
test. This method is, therefore, similar in concept to general dynamic-analysis computer pro-
grams. However, instead of using idealized mathematical models of structural components to

obtain the linear or nonlinear force-deformation properties (stiffness) of a structure, the
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pseudodynamic method uses direct experimental feedback. Displacement computations carried
out during a test using direct numerical integration are based on the experimental feedback as.
well as numerically prescribed damping and inertia properties for the structure and a specified
ground motion record. Consequently, dynamic effects are fully accounted for in the resulting
displacement history. The displacements computed in each step are imposed on the test struc-
ture quasi-statically through hydraulic actuators. This is immediately followed by data acquisi-
tion; and the computation is repeated in the next step. As a result of this step-by-step pro-
cedure, the dynamic response of a structure to a digitized excitation record can be realistically
simulated and monitored over a prolonged time span. A typical pseudodynamic test scheme is

illustrated in Fig. 1.1.

1.2. Previous Research and Limitations

The pscudodynamic method was initiatéd in Japan at the Institute of Industrial Science of
the University of Tokyo and the Building Research Institute (BRI) of the Ministry of Construc-
tion [2-5]. Extensive experimental tests were carried out by Japanese researchers using the
pseudodynamic method, from single-degree-of-freedom (SDOF) steel columns 3] to two- and
three-story steel and reinforced concrete structures [S]. Test results correlated closely with
analytical predictions. However, sighificant control problems were experienced in the testing of
a seven-story reinforced concrete structure at B'RI under the U.S.-Japan Cooperative Research
Program [6]. The failure of the method in that multiple-degree-of-freedom (MDOF) stiff struc-
ture was attributed to inadequate instrumentation and the sensitivity of the system to small

displacement-control errors.

Besides the above mentioned problem, the pseudodynamic method has not been fully
verified. Modelling assumptions used in establishing the equations of motion may not realisti-
cally reflect the actual dynamic characteristics of a structure. For example, idealized lumped-
mass and viscous-damping assumptions characterizing a test specimen are not realistic for a

structure which has uniformly distributed mass and compiex damping mechanisms. In addition,
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since load is applied with a much slower rate in pseudodynamic testing than in an actual seisniic
response, strain-rate effects may be significant in some cases. The concentration of load appii-
cation through hydraulic actuators can induce large local deformations or premature local
failures in a structure. Approximations used in step-by-step iniegration procedures also intro-
duce numerical errors. More significantly, various experimental errors may exist. These can
seripusly affect test reliability, and lead to numerical instability because of error-propagation
characteristics of numerical integration algorithms. Some of these problems were addressed and
studied recently by researchers at the University of California, Berkeley {7] and the University
of Michigan, Ann Arbor [8,9]. The results of these studies comfirmed the theoretical feasibii-
ity of the pseudodynamic method. However, the reliability and accuracy of the method still

have to be verified through further analytical and experimental researches,

1.3. Numerical Formulation

As pseudodynamic results are obtained by solving the equations of motion for a struciural
system using step-by-step numerical integration, a typical numerical algorithm will be outlined
in this section. Due to the experimental nature of the pseudodynamic procedure [1,10], explicit
numerical algorithms are usually employed. The reasons for this wili become clear in the fol-
lowing formulation. An explicit algorithm is one in which the displacement solution in an
integration step is assumed to be a function of previous step solutions only. Otherwise, the
algorithm is implicit. One of the most widely used explicit algorithms is the central difference

method, currently used in pseudodynamic testing in Japan.

In a step-by-step integration process, dynamic equilibrium of a MDOF structural system is

enforced oniv at discrete time intervals:

ma,-+cv,-+r,=f,- (11)

in which m and ¢ are the mass and viscous-damping matrices of the structural system; a,, v,,

and 1, are the acceleration, velocity, and restoring force vectors at time /A7, and f, is the
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external excitation force vector. In this report, vector amd matrix quantities are always
. represented by boldfaced variables, as in the above equation. The integration time step Af is
the interval at which response is computed. However, equilibrium is usually not satisfied
between any two consecutive steps, i and (i+1). In the central difference method, velocity and
displacement are approximated by the difference equations:

di+l - di-l

S —diy 1.2
Vi 7 A1 (1.2

L 2d, +d,
' AP

where d,_;, d,, and d,,; are the displacements in three consecutive steps. By substituting Eq.

(1.2) into Eq. (1.1}, we can solve for the displacement response in each step as

At

dj+] = —2—0—111] d,—} +2md,] (13)

-1
m + % c] [Atl f —-r)+

Therefore, the numerical solution is only an approximation. In spite of this, the method is of

sufficient accuracy if the step size At is small enough [1,12].

In a pseudodynamic test, the restoring force of the structure, r;, is measured in each step,
rather than computed from a mathematical model as in conventional dynamic analysis. Assum-
ing that mass is [umped at each degree of freedom of the structure, we have a diagonal mass
matrix m. With this information and a suitably selected damping matrix ¢, the displacement
response can be easily calcuiated by means of Eq. (1.3). Thus, the pseudodynamic method is a

rational approach with both theoretical and numerical bases.

Although the cen‘tral difference method has desirable numerical properties (stability and
accuracy), its applicability in pseudodynamic testing is still not justified. It is not known
whether the numerical algorithm will remain stable and accurate under experimental conditions
where errors are numercus. The reliability of this algorithm is only proved for purely analytical

applications. However, experimental errors can be many times greater than any error that is
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introduced by numerical operations in a digital computer. Therefore, the effects of experimen-
tal 2rrors have to be investigated. To be more specific, the feedback of I; is subjected to ervors
because computed displacements can never be exactly imposed on a structure. The degr:2 of
discrepancy depends on the accuracy of displacement controlling devices. Experience in Japan
favars the use of the computed rather than the measured displacements in Eq. (1.3), while res-
toring forces can only be obtained experimentally. Wo rational explanation is yet available to
suppo‘.rvt this choice. In any case, the errors in r, have a significant consequence. In addition,
the testing of a stiff MDOF system presents a serious problem, because the force feedback in
this kind of system is very sensitive to small displacement discrepancies [6}. All these prob-

lems will be studied in the rest of this report.

1.4. Error Propagation Effect

The adverse effect of experimental errors in pseudodynamic testing can be visualized with
the heip of some intuitive considerations. Errors are introduced in each step of the loading
process during a pseudodynamic test. As will be examined in more detail in the next chapter,
these errors may be caused by noises in electronic instruments, loss of significance in analog to
digital conversions, the resolution and accuracy limitations of measurement and control instru-
ments, and so on. The magnitudes of these errors depend on the instruments wsed, the ranges
for which the measurement instruments are calibrated, the features of the electronic system,
and the overall design of the experiment. These errors will persist no matter how good the
instruments are, and how well the experiment is performed, although a careful setup and gocd

instrumentation can greatly reduce their magnitudes.

in a pseudodynamic test, the displacement history of a structure advances in a discrete,
incremental manner through direct numerical integration. An actual test may involve hundreds
or theusands of numerical time steps. The dispiacement increment in gach step depends on the
feedback from the previous ones. Therefore, the errors introduced at each of these steps have a

cumulative effect and are carried over to subsequent computations. Consequently, even though
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a test is so designed that these errors are relatively small within each step, the result can still be

unreliable because of cumulation or propagation of errors.

1.5. Objectives and Scope

The main objective of this report is to study the propagation characteristics of experimen-
tal errors in pseudodynamic testing, and to investigate possible improvement methods, Various
numerical algorithms are compared in terms of their error-propagation behaviors. These algo-
rithms include the basic central difference method, the summed form of the central difference
method, and the Newmark explicit method, which have been recommended for pseudodynamic
festing in previous studies [7,8,10]. The work reported here offers a better insight into the
problems of the pseudodynamic test method, and reveals some useful guidelines for more reli-

able and successful testing. The goals of this study can be summarized as:

(3] identifying the sources and effects of different error types, such that they can be

avoided or minimized in future experiments;

(i) identifying more desirabie numerical algorithms and implementation schemes to minim-

ize the experimental error-propagation effects;

(iii)  deriving analytical methods for predicting cumulative error bounds, such that error

tolerance limits and the reliability of test results can be assessed,

Giv) analyzing additional preblems in MDOF testing, and developing methods of improving

stability and accuracy under adverse experimental conditions;

(v) assessing the reliability of testing inelastic structures, which is the main application of

the pseudodynamic method, and establishing criteria to ensure good test results,

In this report, we will not consider other inaccuracies, such as those caused by improperly
prescribed dynamic characteristics of a test specimen, and the approximations used in the
numerical algorithms. These problems have been examined in previous studies [1], and they

are assumed to be not existing here. The design of a stable and accurate displacement-control
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systemn, which is investigated by other researchers [9], is beyond the scope of this study. ticw-
ever, the adverse error-propagation effects of the displacement-control errors are included as

part of the above objectives.

The contents of this report are arranged in the following order. In Chapter 2, we first dis-
cuss the sources and types of experimental errors as well as their physical effects. Furthermore,
consistent mathematical expressions of these errors are established to serve as the basis for sub-
sequent mathematical developments. In Chapter 3, equations governing error propagation in the
step-by-step numerical algorithms are derived for the case of linear elastic SDOF systemns, and
comparisons are made among the different numerical methods. In Chapter 4, upper bounds of
curnulative displacement errors are established, and the effects of integration step size and of
different error types on error propagation are studied. In Chapter 5, the error analysis is
exiented tc MDOF systems. Additional problems are identified and suggestions are provided for
MDOF testing. In Chapter 6, we investigate error propagation in inelastic sysierns by means of
numerical simulations and parametric studies. In Chapter 7, two numerical methods are pro-
posed to compensaie for the experimental error effects, and to improve the stability and accu-
racy of MDOF testing. Finally, general conclusions are drawn in Chapter 8, regarding error
propagation, experimental precautions, error checking and compensation procedures, and the

reliability of the pseudodynamic method.
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CHAPTER 2
EXPERIMENTAL ERRORS

2.1, Classification and General Expressions

Errors are inevitable in every experiment, no matter how carefully it is designed and per-
formed. Experimental results are usually acceptable if errors introduced during experiments are
reasonably small. In a pseudodynamic test, however, experimental feedback is used in the
step-by-step numerical integration. Errors introduced in any step are carried over to subsequent
computations. Consequently, the instantaneous numerical result in any step depends on the
accuracy of the feedback from every previous step during an experiment. Due to this cumula-
tive effect and the large number of computation steps involved, a test result may diverge
significantly from the correct result as an experiment proceeds, even though errors introduced
within a step are relatively small. The rate of error propagation in an experiment depends on
the numerical scheme used and the nature of these errors. Therefore, before going into detailed
analytical evaluation of the error-propagation problem, it is helpful to identify the sources as
well as the nature of the errors which may be introduced into pseudodynamic experiments, and

to formulate them in consistent mathematical expressions,

The errors discussed herein will be restricted to those introduced in the experimental
environment. Errors of other sources are assumed to be insignificant and will not be con-
sidered in this study; these include numerical errors of integration algorithms and errors in the

idealization of test specimens.

In each step of a displacement increment in a pseudodynamic test, errors can be intro-
duced during the control and feedback processes as shown in Fig. 2.1. The displacement com-
puted in any step i, d;, may not be accurately imposed on the structure due to displacement
control errors e. In addition, the actually imposed displacement and the restoring force
developed by the structure may be incorrrectly measured and returned to the computer with

€ITors ¢

e
i

and e/", respectively. These control and measurement errors amount to the total feed-

back errors introduced in each step. The error amplification effect can be observed from the
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fact that incorrect displacements will resuit in erroneous restoring-force feedback, anc thit
errors in restoring forces will lead to incorrect displacements being computed and imposed in

the next step.

Experimental errors come from many sources. The control errors can be caused by: (i)
inaccurate calibration of displacement transducers wsed in the closed-loop feedback system,
which controls hydraulic actuators; (ii) resolution limits imposed by the analog-to-digital (A/D)
conversion of control signals transferred by microprocessors; (ifi) movement or deformation of
specimen’s supports; and {iv) lack of hydraulic actuator sensitivity to keep up the speed of dis-
placement change. Similarly, the measurement errors can be caused by: (i) inaccurate measure-
ment transducers; (ii) the A/D conversion of data transferred; (iii) electrical noises; and (iv)
frictional forces in system connections. Consequently, the actual displacement- and force-
feedback values are likely to deviate from the oriéinally computed and expected quantities. All

of these will be discussed in greater detail in the following section.

The control and feedback values in a MDOF pseudodynamic test can be related by the

general expressions as

ao
I
)

~

I, = ?' =+ e; (2,2)

where d, is the specified displacement vector determined by numerical computation in step /,
and T; is the restoring force that would be exerted by the test structure if d; were imposed. The
actual feedback values of these quantities are ﬁ, and x“',; with feedback errors e/ and e/, respec-
tively. According to the definitions in Fig. 2.1, each of the error terms, e’ and e/, consists of

two contributing components:
e," = e'dr + e[(im (23)

elr =Kk efcl(' + elrm (24)
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in which k is the elastic stiffness matrix of the structure.

As is the case with most experimental errors, e/ and e/ may consist of systematic and ran-
dom parts. Systematic errors are those in which a regular pattern of occurrence can be
identified. They are usually caused by peréistent inaccuracy in instrumentation and experimental
setup. The following discussions will show that these errors always tend to oscillate at the
response frequency of the test structure during pseudodynamic experiments, and that they have
a significant influence on experimental results. Fortunately, these errors can often be avoided
or reduced to insignificant levels with careful instrumentation and test design. Random errors

are more difficult to predict or control.

2.2. Systematic Errors

We will show in later chapters that systematic errors can impose a severe error-
propagation problem on pseudodynamic testing. Some of these errors cause numerical instabil-
ity in pseudodynamic tests. For this reason, several possible sources of the errors and their
accompanying physical phenomena are discussed here. The physical phenomena illustrated will
help to explain the analytical results presented later and to identify other systematic errors

which might be present under various experimental conditions.

Systematic errors are usually due to inherent limitations of experimental equipment or
persistent instrumental inaccuracies resulting from improper usage. Digital microprocessors,
which are used to collect and transfer data during pseudodynamic experiments, can only store
numbers with finite precisions; values smaller than their resolution limits are lost. No struc-
tural supports are perfectly rigid or fixed; therefore, structural deformation is usually influenced
by support movement or deformation under applied’ load. In addition, restoring-force feedback
is always affected by friction in the physical connections of a test structure to actuators and sup-
port apparatus. Significant systematic errors may also result from improper experimental tech-
niques, such as mis-calibrations of control and measurement devices, and inadequate adjust-

ment of servo controllers for the hydraulic actuators. However, most of these systematic errors
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can be avoided or significantly reduced by an appropriate understanding of instrument liasiiu-

tions, a proper selection of test apparatus, and careful instrumentation.

These errors are usually well-defined and reproducible, so that some definite physical
effects on experimental resuits can be observed. For simplicity, some of these effecis will te
described and illustrated here with a linear elastic SDOF model. Similar phenomena can be

observed, however, in general MDOF systems.

In the foilowing discussions, we assume that only cne source of errors exists at a time.
Furthermore, the discussions are based on a typical pseudodynamic displacement-control loop,

as shown in Fig. 2.2. According to that, displacement is imposed in an incremental manner;
Ad'=d —d (2.5)

and it is converted into a voltage signal before arriving at the acruator controller, which is
responsible for the control of actuator disptacement. If no experimental errors enter the control
loop, then d._, is equal to d,_;, and Ad, becomes Ad,. In Fig. 2.2, C,, C,, and C; are the cali-
bration factors for measurement and control devices. The SPAN adjustment option in the con-
troller can scale down the voltage excitation received by the controller. The SPAN is always

equal to or less than one, and C, should be equal to C; x SPAN under normal circumstances.
(i} Transducer Calibration Errors

Linear potentiometers (displacement transducers) are used to monitor structural displace-
ments imposed by hydraulic actuators during pseudodynamic testing. The restoring forces
developed by the structure are measured with load cells (load transducers) mounted on the
actuators. The dispiacement and force variations are indicated by the corresponding voliage
changes in the transducers. Therefore, the transducers need to be calibrated in order to convert
the output voltage into appropriate physical units {(e.g. inches, kips). The calibration factors for
the transducers, C, {force units/volt} or C, (displ. units/volt), are usually obtained by a least
square linear fit through a number of scattered points experimentally acquired for relating phy-

sical values to measured voltage.
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The deviation of these points from the least square fit in a typical calibration depends on:
. the qualities of the instruments and supporting electronics; the precision used in installing the
instruments; and the care taken in designing their attachments. Generally, most displacement
and force transducers will exhibit a limited degree of nonlinearity. This error can be minimized
by using high quality instruments, and by proper calibration. For example, calibration of trans-
ducers over the expected range of test response rather than over their entire useful range can
substantially reduce the apparent nonlinearity of the instruments. In addition, by using time-
stable signal conditioners, line voltage regulators, and careful temperature compensation (where

needed), the desired transducer accuracy can usually be obtained.

The calibrations of the tranéducers are very susceptible to errors due in part to the lack of
calibrated standards and to improper techniques. It is common to find instruments accurate to
within 0.1%, while it may be difficult to calibrate them in place to within 1.0%. To illustrate the
consequences of calibration errors, we will consider a simple case where the instruments and
supporting apparatus are sufficiently accurate to give a linear relationship between input and
output values. However, the coefficients C, and C, are inaccurately obtained, with small errors

+8C, and £8C,, respectively.

By using the displacement control loop shown in Fig. 2.2 and the erroneous calibration
factors to do voltage conversions, we can model the resulting control and measurement errors

as

th din
ef=—eg"M= & — ¢, (2.6)
Cd
(Y EC’ k g
R

such that the total feedback errors are

el =0 (2.7)
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e/ =it —

C Cy

8C,  8C;) -
r= |+ + k d,

In deriving the above expressions, as shown in Appendix A, all the 8C,/C, and 8C,/C, 2rms
with exponential orders greater than or equal to 2 are neglected. Furthermore, according to the
fact that the specified displacement d, and the measured force 7 consiitute the force-
displacement relationship perceived in numerical computations, we define an effective secant

stiffness, &, for the structure as

1

IE P = F, (28)
In this case,
. 5C, 5C,
= R
k [1 + c * k (2.9)

We can also note that d, is equal to c}, here.

From Eq. (2.7), we observe that the variation of the errors ¢/ is either in-phase or 180
degrees out-of-phase with the computed displacement response d; depending on the sign of the
total relative calibration errors. Eq. (2.9) indicates that mis-calibrations of the transducers can
change the effective stiffness of a test specimen, and that the actual experimental result will
correspond to the apparent stiffness k (see Fig. 2.3). This condition can be improved by a

careful calibration procedure such that 8C, and §C, will be relatively small.

However, we must also realize that recorded responses can still be in error due to trans-
ducer installation, even though the calibrations are accurate. In some types of load cells, errors
can be induced by misalignment, which may introduce bending. If the misalignment is substan-
tial or if the structure undergoes large deformations, the measured force may significantly differ
from the component in the assumed direction of loading. These force errors can usually be
corrected or minimized by careful design of the test setup. Displacement measurements can

also suffer from misalignment problems and large deformation effects. In addition, certain
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types of transducers {or means of attaching transducers to structures) produce hysteresis or
~ other types of nonlinearity under displacement reversal. Again such errors in displacement can

be minimized by careful desigh of the test apparatus.
(ii) Actuator Displacement Calibration Errors

Since displacements are measured in terms of voltage by the transducers, the displace-
ment values computed by a computer must be converted into volts before being sent to the
actuator controller. This conversion requires an actuator displacement-calibration factor C;
(actuator displ./volt). This factor may or may not be equal to the potentiometer calibration C,,
depending on how the controller modifies the incoming signal, i.e. the SPAN adjustment. In
any case, it should be equal to C, x SPAN (see Fig. 2.2). Otherwise, errors will occur in the
displacement control loop due to the inconsistency between the actuator and the displacement
transducer calibrations, We now consider the case where only the actuator is mis-calibrated,
and the transducer calibration is accurate. Assuming that C; is off by £8C,, and that displace-

ment is imposed in an incremental manner, we have the control and measurement errors as

eidm =
. 3C -
e,"" = + .C__jf Ad, (210)
e’_!'IH = 0
Consequently, the total feedback errors are
8C, -
, 38C; -
el =+ C k Ad,

S

See derivations in Appendix A. Similarly, the effective stiffness (as defined in Eq. (2.8))

becomes



Eq. (2.11) shows that the errors vary either in-phase or 180 degrees out-of-phase wiii. the
incremental displacement (or approximately the velocity response), depending on the. sign of
dC,. The effective stiffness shown by Eq. (2.12) indicates that the apparent force-displacement
relationship is not linear, and exira energy is either dissipated from or added into the response
motion, depending on the sign of 8C;. These are illustrated in Fig. 2.4, This type of error can
be easily observed during experiments by monitoring e, which should be extremely small and
compleiely random in the absence of systematic errors. The magnitude of these errors depends
on how the actuator displacement is calibrated. If it is done with the actual physical motion of
the actuator, then the calibration factor is likely to be influenced by the overshoeting or
lagging-behind behavior of the actuator motion, which will be discussed later. Most often, it is
better to compute C; directly from ;. Sometimes, a trial-and-error approach is required to
achieve the best calibration result.

{iii) Friction

Friction exists in most of the moving components of a pseudodynamic system, such as
clevises which connect a test structure to hydraulic actuators and the base support, or the con-
tact surfaces between the structure and its supporting apparatus. Friction can influence the res-
toring forces developed by structural deformations. Therefore, the forces measured by load cells
are usually different from the actual restoring forces of a structure. If the frictional force in a

SDQOF system is assumed to be constant, then the force measurement errors can be mod:lled ss

|

&

i f (213)

o
I

B

in which f represents a constant magnitude. Consequently, the total feedback errors become

Ad,
€i.= g = — = (214\
|Ad]



In this case, the effective stiffness is

1

(2.15)

x=r

I

>

+
3.5|&.,
Dil [~

These error effects are sketched in Fig. 2.5. The errors e/ due to a constant friction form a
rectangular wave approximately in-phase with the velocity response, and have an energy-
dissipation effect. Friction also exists in other structural connections, such as in the member
joints. In that case, the friction contributes to realistic Coulomb damping in structural

responses, and should not be considered as erroneous.
(iv) Analog to Digital Conversion of Electrical Signals

Floating-point displacement values evaluated by a computer are output in the form of
digital voltage signals, which are converted by a programmable digital-to-analog (D/A) con-
verter into analog voltage signals finally received by an actuator controller. Similarly, the ana-
log voltages measured from displacement and load transducers are converted into a digital form
by an A/D converter in the data acquisition system before being returned to the computer. In
these A/D conversions, the fractional parts are either fruncated, or rounded-off to the nearest
digit. Most D/A or A/D converters have microprocessors that handle 8 to 16 bit words. If a
D/A converter uses 12 bit words, then displacements can only be imposed in increments of
1/2048 (2/2'%) times the maximum displacement for which the system is calibrated. While this
is a rather small fractional error, the relative error can become significant when the specimen’s
displacements are small or when the displacement used to calibrate the system is substantially
larger than the maximum displacement to be actually imposed. Assuming that the A/D conver-
sions are carried out by truncation, and that the absolute values truncated in the control and
feedback processes are t*, ™, and 1, corresponding to those in displacement control, dis-
placement measurement, and force measurement, respectively, we then have

Ad
|ad;|

de . pdm df.HI — glc
e = I ~ i
|di— |
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d; o
eidm — — tz’dm ,t (.ﬁlﬁz;
ld.|
F
e;’r!l = — t{_fm —
7
according to the incremental displacement approach. The resulting feedback errors are
d; Ad, d
e e @17
|di—i] |ad,| id |
el =k f-dmj [ I de i T Fi
! i— ~ ! - i A
|d,‘._1| |Ad;| |ri|

The signs of displacement control errors are determined by AE,/ lAE, |, while those of measure-

ment errors are determined by d,/|d,| and #/{#/. The magnitudes of these truncation errors

are fimited by

d
i Lol
dc( Idmax] (2 18)
t’ 2:1—] :
"< ——';j;f;'

where n and m are the numbers of bits in a word used in the D/A and A/D converters

respectively; and .., and rp,, are the maximum displacement and force calibrated for.

If t#" and ¢ are negligibly small, then the error expressions can be simplified to

Ad,
e = — 1 a7 (2.19)
ell =— t/a‘c Acii
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and the effective stiffness becomes

. 1 Ad
. [1. A4

— (2.20)
d, |Ad|

Egs. (2.19) and (2.20) are sketched in Fig. 2.6. Energy is added into response motion in
this case. In general, this type of errors can be detected by monitoring e’. If rounding-off is
used instead of truncation, the maximum magnitudes of these errors are reduced by half. More
importantly, the errors become random and the error-propagation effect is greatly reduced, as

will be shown later.
(v) Support Movement

In the case of a cantilever structure subjected to a horizontal base excitation, lateral dis-
placements imposed should be measured relative to a vertical reference line through the base of
the structure. Experimentally, that may not be easy to do because of possible deformations or
movements at the supports of the structure and of the reference frame. In a realistic sense, no
support is perfectly rigid or fixed. This imperfection can prevent correct displacements to be
imposed, and can subsequently alter the restoring-force feedback. Sometimes it is advanta-
geous to monitor and control structural displacement relative to a stationary reference point
instead of measuring the actuator piston movement internally. If this is the case, then the
movement of the actuator support frame will not affect imposed displacements. However, such
arrangements may adversely affect the stability of the hydraulic control system. The movement
or deformation of a structural base support will tend to reduce the actual relative displacement
imposed. For example, considering an idealized slip movement of the base support in the
direction of load application, we can mode! the resuiting displacement control and measurement

€ITors as

efi=—d, — (2.21)
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The second equation is due to the fact that the displacement transducer will appear as ¥ ¢4
corract structural displacement had been applied. The constant 4, is the amount of slip, which

is assumed {o occur only at load reversal. Consequently, the feedback errors are

ef =0 (2.22)

and the effective stifiness is

-0

E)

I

-

!
NS

} k (2.23)

o

Egs. €2.22) and (2.23) are sketched in Fig. 2.7. We see that the effective stiffness is discontinu-
ous at load reversal. No energy effect is observed. However, energy-dissipating hysteresis can
happen if the base slip occurs gradually during the loading process. This is more likely to hap-
pen in reality, In addition, support deformation can increase the apparent flexibility of a struc-

ture without any energy effect, as long as this deformation remains elastic.
(vi) Inconsistent Actuator Motion

Hydraulic actuators may either react too slowly or be too sensitive to a voltage change
during a displacement increment, depending on the gain control and the servovalve capacity.
The gain centrol determines the system’s speed to respond to a voltage change (either from the
command signal or from a correction due to an error between the command and feedback sig-
nals). The maximum response speed is limited by the capacity of the servovalve, If the gain is
low or the speed required is above the capacity of the servovalve, the hydraulic actuator will
respond insensitively and fall behind the command signal. On the other hand, if the gain is too
high, the actuator will overshoot and oscillate. If consistent overshooting or lagging-behind per-
sists in a test, the effective force-displacement relationship will result in energy-dissipation or

energy-addition type of hysteretic curves (see Fig. 2.8). Again, the errors in these cases can te
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observed by monitoring e, which will show some systematic behavior if this situation occurs.
g ¢ Y

2.3. Random Errors

Random errors, like systematic errofs, result from many causes. Random electrical noise
in wires and electronic systems may slightly alter the electrical signals transferred during a test.
Random rounding-off or truncation in the A/D conversion of electrical signals provides addi-
tional random errors. Furthermore, lagging-behind or overshooting of the actuator motion, as
discussed before, may not be consistent from step to step. Instead, they may appear as random
alternations. The supports of displacement transducers may not be secure enough, so that the
transducer readings can be contaminated by some external mechanical disturbances. These are
only a few possible causes. Random errors are so irregular that no specific physical effects can

be anticipated.

2.4. Concluding Remarks

We have reviewed some possible sources of experime_ntal errors as well as their nature
and physical effects. Some idealized systematic errors are modelled in mathematical forms to
reveal their effects on structural response computations. Similar physical phenomena can also
be observed in other systematic errors, which can usually be identified easily. We can observe
from the linear elastic SDOF model that systematic errors tend to be directly in-phase or 180
degrees out-of-phase with structural responses (displacement or velocity). The significance of
such systematic effects can be observed from the stiffness influence or energy-changing hys-
teretic behavior. The response motion of a structure is very sensitive to these persistent
stiffness and energy changing effects. In the case of random errors, no systematic physical

effects can be inferred.

The magnitudes of these errors can be estimated from the properties of the instruments
and electronic systems used, and also from the mechanical design of the experimental setup.

Some errors can cancel one another (e.g. some dissipate energy and some add energy), while
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others can reinforce one another. Most systematic errors can be detected during pseudo-

dynamic experiments by monitoring the displacement-feedback errors e, or by the unusual

energy change in the response motion.
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CHAPTER 3

EVALUATION OF INTEGRATION ALGORITHMS
BASED ON EXPERIMENTAL ERROR PROPAGATION

3.1. Recursive Form of Integration Algo'rithms

To identify the basic error-propagation characteristics in pseudodynamic tests, we begin
our studies with linear elastic SDOF systems. The step-by-step numerical integration algo-
rithms, which are used to solve the equations of motion, will be expressed in a recursive matrix
form. By introducing the experimental feedback errors into this recursive formula, we can
arrive at a general error-propagation equation. This equation vields useful information regarding
the characteristics of error cumulation in the numerical algorithms. Based on that equation,
comparisons will be made among the different numerical methods which have been recom-
mended for pseudodynamic application. This development also serves as a basis for more

extensive error-propagation studies which are presented in the subsequent chapters.

The dynamic equilibrium of a SDOF system at time ¢+ = i At can be written as

ma,-+cv,-+r;=fi (31)

where m is the system mass and c¢ is the viscous damping coefficient; a, and v, are the accelera-
tion and velocity responses at / Af; and r,; is the restoring force developed by system deforma-

tion. In a linear elastic system, we have

r,==Fkd, ' (3.2)

in which & is the elastic stiffness and 4, is the corresponding displacement response. We can
numerically solve Eq. (3.1) during pseudodynamic tests by means of the central difference
method, which is formulated in Eq. (1.3) for general MDOF systems. For a SDOF system, the
central difference method, as well as any other step-by-step integration algorithms, can also be

expressed by a recursive matrix formulation [12,13] as
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X =Dx,=1ry +1 [ (3.3)

in which x; is the solution vector at + = / A¢. The solution vector contains the appropriate dis-
placement, velocity, and/or acceleration terms, i.e. x, = {d,, v, a;, di=jsree... }7. The parame-
ter v is an integer which is equal to either 0 or 1, depending on the specific numerical algorithm
we are considering. Finally, D and I are the characteristic matrix and vector, respectively, of the
specific numerical method. This recursive formula is not as efficient as Eq. (1.3) for numerical

computations, but is convenient for formulating the error-propagation equation.

From Eq. (3.2), we can also express the restoring force in terms of the solution vector x,

as

ri = S X, (3.4)

where S is a row matrix that depends on the contents of x, and the stiffness k. For example, S

is simply {k, 0, 0} if x, = {d,, v;, a;}7. Substituting Eq. (3.4) into Eq. (3.3), we have

X =Ax +Lfy, (3.50)
where
D-18 ifp =0
“la+197'Dp ifr=1 (3.5b)
and

I ifr=20
L=1a+18"1 ifv=1 (3.5¢)

Matrix A is called the amplification matrix. Vector L is the load operator, whereas I is an iden-
tity matrix. The amplification matrix A can be used to determine the stability and accuracy of
an integration algorithm {12,13]. In addition, we will show that A is related to the error-

propagation characteristics of a numerical algorithm as well.
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3.2, Error Cumulation Equation

The significance of experimental errors has been qualitatively discussed in Chapter 2. To
gain a better understanding of the cumulative error growth in pseudodynamic experiments, we
now formulate the error-propagation equation by introducing the feedback errors, e and e/,
discussed in Sec. 2.1 into Eq. (3.3), the recursive formulation of integration algorithms. From

the force-feedback errors ¢/, we define a new term:

ell= k! ¢! (3.6)

which is the amount of displacement error equivalent to ¢/. Using this new error term, we can
compare the propagations of displacement- and force-feedback errors more conveniently. Con-

sequently, we can rewrite the control and feedback relationships in Egs. (2.1) and (2.2) as
5’,- = E’, + e,‘d (37)

Fo=k (d + e 3.8)

Before introducing the error terms into the recursive formula, we have to transform Eqgs.

(3.7) and (3.8) into a vector form compatible with the definition of x,. They become
ﬁ,’ = i-,‘ + e,d (3.9)

F=S (X +e9 (3.10)

in which X; is the computed solution vector which contains c?,; &, is the vector that contains the
corresponding measured quantity d; and e and e/ are the error vectors with elements e/ and
e/ in locations corresponding to that of 3, in X, and with zero values elsewhere. Now, assum-
ing that both displacement- and force-feedback values are used in the computation of structural
response during a pseudodynamic test, we replace x; and r,., in Eq. (3.3) by %, and 7.,,
respectively. As a result, the computed solution is no longer the true numerical solution. To

indicate that, we also replace x,,; in Eq. (3.3) by X,,,, assuming that x,,, represents the true
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numerical solution without the influence of experimental errors. Finally, by substituting Egs.

{3.9) and (3.10) into Eq. (3.3), we have

if-H =D (il + e!d) —-18 (it+v + eiriv) +1fiv (3.11)

Following the subtraction of Eq. (3.3) from Eq. (3.11), we have

€. =A¢ +Be/—LSe/, (3.12a)
where
e =X —X (3.12b)
D ify=0
B=14A ifu=i (3.12¢)

Therefore, €, is defined as the total cumulative error in the computed solution X,. Correspond-

ingly, there exisis a cumulative displacement error:
e, =d —d, (3.13)

which is an element of e,.

By recursive substitutions of €;’s in Eq. (3.12a) and assuming that &;_, equals zero (i.e.

no errors in the first step), cumulative errors can be expressed as

.H N
=Y A Be/— Y A"'LSed, (3.14)

i=l—vp i=l-v

The first term on the right hand side of the equation is the cumulative error due to

displacement-feedback errors and the second term is due to force-feedback errors.

Note that if the computed solution X, is used instead of the measured quantity %, in the

numerical computations, then we simply have
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1 ‘
g=— 3 A" LSel, (3.15)

j=1—p

Eq. (3.14) is the matrix form of the error-propagation equation. The total cumulative errors
can be calculated if the error vectors e and e/ are known. However, this equation is not very
informative. The computation involved to obtain €, is tedious. Therefore, we will further sim-

plify Eq. (3.14) in the following section.

3.3. Cumulative Displacement Errors

Before acquiring a more useful equation of cumulative displacement errors from Eq.

(3.14), we shall review the following mathematical relations.

If 4 matrix A has dimensions N x N and N distinct eigenvalues, Aj, Ay, As,...., and Ay,

then there exists a diagonal matrix J such that

J' = q,-l A" @ (3.16)

in which ® = (¢, ¢,,...., 11 and J = diag (A}, Ay,...., Ay}, and ¢, is an eigenvector of A,
cortesponding to the eigenvalue A;. This similarity transformation is the property of an eigen-

value problem. Hence, for any N-dimensional vector y, which is defined as
Yo = A’ Yo (317)
where A satisfies the condition in Eq. (3.16}, we can have the expression:

Yni = €1 R]” + C;2 Azn + ... + Cin )t;\,/ (318)

in which y,, is the j th element of Yui and ¢y, ¢2,....., and ¢y are constants determined by the
eigenvectors of A and the initial vector y,.

If £, is equal to zero in Eq. (3.5a), the recursive formula represents the free-vibration
response of a SDOF system, Furthermore, by letting i+1 equal to » and performing recursive

substitutions, we can transform Eq. (3.5a) into exactly the same form as Eq. (3.17). Therefore,
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we can conclude that Eq. (3.18) should represent the numerical solution of a free-vibration

response.

As will be seen in the next section when specific numerical algorithms are discussed, the
amplification matrix A is usually a 2 X 2 or 3 X 3 matrix. From Eq. (3.18), it is apparent that a
numerical algorithm can produce a bounded oscillatory free-vibration response if two of the
eigenvalues, A, and A,, are complex conjugates and |A;] < IM,zl < 1 (if A; exists at all). These
are the stability conditions which can be met if wA¢ is within a certain range; where o is the
natural frequency of the structural system and is equal to ~/k/m . Assuming that these condi-

tions are satisfied, we can represent A and A, by

Aa=A + i B=el"tx00 (3.19)

where / = +/—1. In this expression, the following relations are implied:

< In (42 + BY
-4 T2 3.20
3 o5 (3.20a)
- B
Q1 = arctan —Aj] (3.20b)
It is further defined that
—_0
w = A (3.20c)
By substituting Eqs. (3.19) and (3.20c) into Eq. (3.18) and assuming N = 3, we have
Yo = € 558 (¢ cos @A + cjy sin AM) + ;3 Af (3.21)

The parameters in the above equation have some physical interpretations. Since Eq. (3.21) is a
direct consequence of Eq. (3.18) and thus presents a free-vibration response, £ and @ are the
apparent damping ratio and frequency of the response computed by a numerical algorithm. For

this reason, these quantities are called the numerical damping ratio and numerical frequency of a
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dynamic system, in constrast to the real dynamic properties of the system under a closed-form
solution. As a matter of fact, they often serve as indicators of numerical accuracy. The third
eigenvalue, A,, if it exists, is responsible for a spurious numerical solution, which will readily
approach zero as n goes to infinity when [A;] < |A;,] < 1. A more detailed discussion on this
subject can be found in Reference 13. In our case, these results can be applied to the develop-

ment of a simplified error-propagation equation.

Now, returning 1o the problem of error propagation, we apply the previous results into
Eq. (3.14) by expanding it in the form of Eq. (3.21). In the expansion, we will only consider
the cumulative displacement errors ¢, in vector €;,. As a result, we can have the following

expression for cumulative displacement errors:

En+l = 2 ay — ﬁni (3223)

=ty =Ty

in which
a, = e E80D [a0 cos BAL(n—i) + as, sin BAL(n—] + a3 A (3.22b)
B = et b cos AL (n—i) + by, sin @AL(n—i)] + by, A (3.22¢)

The constants a,;, a3, a3, b,;, by, and &3, can be determined by the values of «;, a1y,
@iy is Bis Bavn s 80d B4y, respectively, which, in turn, can be computed from the equa-

tions;

o, =A""Be/ (3.23a)

B.=A""LSel, (3.23b)

Eq. (3.22) is a general equation describing the cumulative displacement errors in an under-
damped dynamic system. However, further simplification of the equation is possible when

specific numerical methods are considered.
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3.4. Error Propagation in the Explicit Numerical Algorithms

Three explicit numerical integration algorithms which are suitable for the pseudodynamic
method will be compared here, based on the error-propagation properties, by using Eq. (3.22).
They are the basic central difference method [10,12] which is currently used in Japan for pseu-
dodynamic testing as discussed in Sec. 1.3, the Newmark explicit method {7,11], and the
summed form of the central difference method [8,14]. These three methods are algebraically
identical to one another. They are transformablé to one another by algebraic manipulations, and
have the same accuracy and stability properties (see Appendix B). However, their error-
propagation characteristics can be different due to the different numerical formulations. In the
following, the numerical formulations of the three explicit methods are illustrated to provide
necessary information for the error studies. For simplicity, viscous damping is.neglected in the

equation of motion.
(i) Basic Central Difference Method

The algorithmic form for pseudodynamic computation is

do=2d — ,1+—Ai- ) (3.24)

and the corresponding recursive form is

hdek s o

(i) Newmark Explicit Method

The algorithmic form for pseudodynamic computation is

diyy=d + At v, + —— g

iy = "l;; (fis1 = riv)) (3.26)
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Vel =V, + % {a; + a,41)

and the corresponding recursive form is

dun| [t ar asy2] 4 0
vart=10 1 A2 Vit + A.t/2m (f,'+1 - ’i+l) (3.27)
Qi 00 0 a 1/”1

(iii) Summed Form of the Central Difference Method

The algorithmic form for pseudodynamic computation is

dH'l = d,' + At Z; (3.28)
Ar
Zis = Z; + ‘m' (fr—H — rig)

and the corresponding recursive form is

disy 1 A Jd 0 ‘
zel 10 1] |z + At/m (fis1 = i) (3.29)

From the recursive formulations above, we can readily identify for each method the
characteristic matrices and vectors described in Egs. (3.3) to (3.5). They are shown in Table
3.1. Although the amplification matrices, A, are different among the three numerical methods,

their eigenvalues are identical. The eigenvalues \,, -are equal to 4 x/ B, with

A=1-—w!ArY/2 and B = V4 — (0’Ar? — 2)2/2. The eigenvalue A; is equal to zero in the
Newmark Explicit method, and it does not exist in the other two. Consequently, the stability
limit of the numerical methods is wAt < 2 (see Appendix B). Furthermore, the numerical
damping ratios € are equal to zero, according to Eq. (3.20). The parameters a,;, a,, &y,, and
by in Eq. (3.22) can be obtained by means of Eq. (3.23), with the characteristic matrices and
vectors in Table 3.1. These parameters are listed in Tabie 3.2. Substituting these parameters

back into Eq. (3.22), we can simply express the cumulative displacement errors for all three
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methods as

it n
Zue1 = C Y efsin (@At(n—i)+¢) + D Y, e/*sin wAt(n—i+1) (3.30)
i=1 =1

where C and D are error amplification factors. The parameters in the above equation are;

(i) In the Basic Central Difference Method,

v3i—4 4

€=""3

_24-1

D B

(331

¢=arctan[ 28 ]

24-1

(i) In the Newmark Explicit & Summed-Form Central Difference Methods,

V2 (1= 4)

C=->—

20—

b B

(3.32)

¢ = — arctan [

1—-4

A sample derivation of Eq. (3.30) for the basic central difference method is shown in Appendix

C.

3.5. Comparisons and Comments

Eq. (3.30) indicates how cumulative displacement errors propagate in the three different
numerical methods. The first term on the right hand side stands for the cumulative errors due

to displacement-feedback errors, and the second term is due to force-feedback errors. By
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observing Egs. (3.31) and (3.32), we can conclude that the Newmark explicit method and the
- summed form of the central difference method have exactly the same error-propagation proper-
ties, while the basic central difference method has a different amplification factor C.
Amplification factor D is the same for éll three methods. Therefore, force-feedback errors

have similar effects in these numerical algorithms.

Some error-propagation characteristics can be revealed by studying the variations of
amplification factors C and D with respect to wAt. From Egs. (3.31) and (3.32), the absolute
values of C and D are plotted against wA¢ in Fig. 3.1 for the three methods. We see that the
basic central difference method is a poor scheme in terms of error propagation, because the
value of |C| approaches infinity as wA¢ goes to zero. This means that cumulative errors can be
extremely large when wA:s is small. However, a small value of wAt is favorable to numerical
stability and accuracy (see Appendix B). Hence, good results are difficult to obtain with the
basic central difference method because it is desirable to have numerical stability and accuracy
on one hand, and small cumulative errors on the other. For the other two methods, this
dilemma does not exist because both |C| and |D| diminish, with |D| at a faster rate, as the

value of wAr decreases.

However, the central difference method can be improved by using the computed displace-
ment d; (rather than the measured displacement d,) in the step-by-step computation. If this is
the case, the error term containing e disappears from Eq. (3.30). This is a significant reduc-
tion of cumulative errors when wA¢ is very smali. The use of the computed displacement may
not be necessary for the other ‘two methods, but it is still desirable to do so. One argument for
proposing the use of the measured displacement is that this can preserve the actual constitutive
property of the test specimen, because any error in displacement control can be offset by the
corresponding error in force measurement. In reality, this is of no significance in the numerical
computations. For example, we can consider the case when displacement control is the sole
source of errors, so that ef = ¢/ = ¢ according to Egs. (2.3), (2.4), and (3.6). By substitut-

ing these errors into Eq. (3.30), we can visualize that significant cancellation can occur only if
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the factors C and D have similar magnitudes and opposite signs. However, according to Fig.
3.1, the magnitude of C is always several times larger than that of D whenever wA¢ is small
(from experience it is preferrable to have w At < 0.5 in order to achieve numerical accuracy,
see Appendix B). Therefore, we can conclude that the use of the measured displacement 3,

has no numerical benefit; instead, it is more likely to aggravate the error-propagation problem.

Moreover, because of the existence of other error sources, the interaction of
displacement- and force-feedback errors is unpredictable. By eliminating one source of inaccu-
racy, i.e. the displacement-feedback errors, we are always at a better position to obtain more
accurate and predictable experimental results. For these reasons, the use of the computed dis-
placement is recommended for all numerical methods discussed here. If this is the case, then
the three methods will have identical error-propagation characteristics, because of the same
amplification factor D. This is assumed in subsequent discussions. However, since the errors

d

e/ are partly contributed by e, one must still ensure that the control system is capable of limit-

ing ef ’s to insignificant levels.

3.6. Numerical Examples

As an illustrative example, a pseudodynamic test is numerically simulated. Some trunca-
tion errors are generated in the simulation using the pseudodynamic testing facilities at Berke-
ley. Besides a mini-computer, the main testing facilities include a 12-bit word programmable
D/A converter for sending analog displacement-control signals to an actuator controller, and a
14-bit word high speed data acquisiﬁon system {A/D converter) for collecting and returning the
displacement and force measurements to the main computer. In this example, we calibrate the
displacement transducer to a maximum range of 0.5 in., such that the D/A converter has a
resolution limit of 0.5/2048 in. Displacement values smaller than that are truncated. The reso-
lution limit of the data acquisition system is 0.5/8192 in. Therefore, truncation errors are

mainly generated by the D/A converter.
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A SDOF model with a period of 0.332 sec is simulated by a computer program to substi-
tute for an actual test specimen. In each step, displacement is computed and sent directly to
the data acquisition system through the D/A converter. Consequently, the displacement value
returned from the data acquisition systexh will be slightly different from the computed one, due
to the truncations and electrical noises occurring in the data transfer. The returned displace-
ment value is then used to compute the restoring force of the specimen with the simulated
stiffness. The computed restoring force and the displacement returned from the data acquisi-
tion system are subsequently uséd to computie the next displacement increment. This process
is similar to a real pseudodynamic test, except that a mathematical model is used instead of a
real specimen. This simulation has the advantage of eliminating other possible sources of
errors which might occur in an actual test. As a result, experimental errors, which will occur

mainly in the A/D conversion of displacement-control signals, can be described as ef = e/¢

With the above simulation model, we can obtain the cumulative errors resulting from the
basic central difference method and the Newmark explicit method, as shown in Figs. 3.2 and
3.3, respectively. In both cases, At is 0.02 sec. Graph (a) of each figure shows the errors e {or
e/¥, which are obtained by subtracting the computed displacement values from the values
returned from the data acquisition system. These errors consist of both random and systematic
components. Graph (b) indicates the total cumulative errors €, which are directly measured
from the difference between the simulation result and the exact numerical solution. Graphs {(c)
and (d) plot the portions of the total cumulative errors due to efand e/ respectively. They are

analytically computed by usiﬁg Eq. (3.30), with the fact that e/ is equal to e/

It is apparent
that the sum of the values in Graphs (c) and (d) is equal to the curve in Graph (b). This
proves the validity of Eq. (3.30), which we mathematically derived. By cpmparing Graph (b)
with Graph (d) in each figure, the advantage of using the computed displacement in the numer-
ical procedure is clearly demonstrated. We can also see that the total cumulative displacement

errors in Fig. 3.2 are larger than those in Fig. 3.3 because of the larger C factor in the basic

central difference method.
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A similar phenomenon is observed in another example with the same o, but a Ar of 0.01
sec. This should give us a better solution if no experimental error exists. The resulis obtained
with the basic central difference and the Newmark explicit methods are plotted in Figs. 3.4 and
3.5, respectively. Graphs (b) and (c) in both figures show larger cumulative errors than the
previous cases. This increase of cumulative error magnitudes can be explained by two facts.
The growth of the amplification factor C with decreasing wA7¢ in the basic central difference
method is one of the reason. The other fact is that doubling the number of integration steps
doubles the number of input errors. This contributes to the larger cumulative errors in the
Newmark explicit metheod, since the value of C declines slightly when wA¢t is reduced. There-
fore, the use of the measured displacement is highly undesirable. The cumulative errors in
Graph (d) of each figure retain approximately the same magnitudes as before. This indicates
that the cumulative errors due to force-feedback errors do not change si -nificantly with step
size. This phenomenon will be explained in the next chapter with an ide lized model of sys-
tematic errors. 1t will aiso be shown that the cumulative errors due to rce-feedback errors

will diminish to zero as wAt decreases it the errors e/ are totally random
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CHAPTER 4

ERROR PROPAGATION CHARACTERISTICS
IN SDOF LINEAR ELASTIC SYSTEMS

4.1. General Cumulative Error Equation

As illustrated in Chapter 3, using the numerically computed displacement d; in the step-
by-step integration can reduce cumulative error growth in pseudodynamic testing. The error-
propagation studies in the following are based on this most desirable computational approach.
Consequently, all three numerical methods discussed previously should have identical error-
propagation properties; thus no specific method needs to be distinguished in our discussions
herein. From Eq. (3.30), the general expression of cumulative displacement errors becomes

"
€1 =D Y el'sin mAt(n—i+1) 4.1)

i=1
in which the value of D can be determined by Eq. (3.31); and w is the numerical natural fre-
quency of a system, as represented by Eq. (3.20b). By returning to the derivation of the above
equation in Chapter 3, a numerical analogy can be observed. Eq. (4.1) is developed from Eq.
(3.12a), the recursive cumulative error equation, without the B e/ term in it. With this term
eliminated, Eq. (3.12a) has exactly the same formulation as Eq. (3.5a), which is a recursive
numerical solution of the equation of motion. .Therefore, the cumulative displacement errors
represented by Eq. (4.1) can be considered as the displacement response of a structure to some
error excitations ¢/ (= S e/%). That becomes obvious if any error in the restoring force #; is
transferred to the right hand side of the equation of motion (Eq. (3.1)). The error term is then

numerically equivalent t¢ a force excitation in addition to f,.

| Since Eq. (3.12a) is ture for any numerical algorithm which can be expressed in terms of
Eq. (3.5a), the above analogy holds for any of the numerical methods we are considering. As a
result, error-propagation characteristics depend more on the dynamic properties of a structural
system than on the numerical method used. Besides that, the error-propagation behavior

should be sensitive to the nature or the frequency content of errors ¢/, as a dynamic response
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is to the frequencies of external excitations.

As mentioned in Chapter 2, two types of experimental errors exist: random and sys-
tematic. Systematic errors always tend to oscillate at the same frequency as the system response.
If a system oscillates at its numerical natural frequency w, a resonance-like effect can be created
in error propagation. Resonance is a phenomenon during which the energy in the response

motion of a system can grow without bound,

To identify the error-propagation characteristics, we now separately consider the different
types of errors. The cumulative error growth due to random errors will first be investigated
from a statistical approach. Systematic errors will be studied using an idealized sinusoidal error
model. In reality, all experimental errors are composed of these idealized forms. Therefore, the
results of these studies provide a realistic picture of error-propagation characteristics in pseudo-

dynamic experiments. In addition, they can be used to assess the reliability of test results.

4.2. Random Errors

In general, a displacement drift and a symmetrical cumulative error growth can be
identified from the results of random errors. The drift effect is usually caused by a constant

offset in the error signals.

4.2.1. Drift Effect

Experimental errors of constant value can produce a displacement drift about the time
axis of a displacement response history. That can be seen when ¢/“ in Eq. (4.1) is replaced by a
constant e.. If this is the case and wA¢ is small, we can obtain from Eq. (4.1) the cumulative

error expression:

€, = 2 e, Csin’ %naAt (4.2
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in which the factor C is specified by Eq. (3.32). The mégnitude of C is approximately equal to
i when wAtf is small, as shown by Fig. 3.1b. This indicates that cumulative errors are only
slightly amplified here (by a factor of 2). Therefore, drift effect is usually negligible when e, is

small. In reality, . can be a constant offset in random signals, such as a non-zero mean.

4.2.2. Statistical Error Bound

Random errors can be described in terms of their statistical properties. It is reasonable to
assume that these properties are invariant with time throughout a test, because they depend
mainly on the test apparatus used. In the following studies, we assume that the random errors
have a mean equal to zero and a standard deviation of §,. We will not lose generality by the
zerpo mean assumption. In general, any random errors are the sum of a random component
which has a zero mean, and a constant which is equal to the total error mean. These two com-
ponents can be treated separately, and their error-propagation behaviors can be superimposed
on each other to give the total effect. That is true as long as the response is linear. The con-
stant error produces a drift effect with a small error amplification factor, as discussed in the
above section.. Therefore, the constant component has no significant influence on the results
presented here. Furthermore, we assume that the errors measured at different time steps of a
single test are completely uncorrelated to one another. These properties lead to the following

eXpressions:

E(e/) =0
E(e/%/ =0 (4.3)
VAR(e/) = §2

in which E(e/9) and VAR(e/”) are the mean {or expectation) and variance of random errors at

step /; and E(e/“e/) is the covariance when the mean is zero.
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From Eq. (4.1) and the zero mean condition, the cumulative errors e,., have a mean
equal to zero also. This leads to the fact that VAR (g, ) is equal to E(27,.,). Using this relation
and the conditions in Eq. {4.3), we have the variance of g, as

VAR(e,,)) = D* S} ¥ sin? wAt(n—i+1) (4.4)
i=1

Since variance is the square of standard deviation, the standard deviation of the cumulative

errors is

s, = Dl s, _\/ﬂ _ sin wAm cjos—wAt(rH-l) 4.5)
2 2 sin wA?

in which the expression under the square root is the summation of the sine square functions in

Eq. (4.4).

Since €,,, is a sum of »n terms as shown in Eq. (4.1), and we are v ally interested in n
being very large, e,,; can be reasonably considered as a normally distri ‘ed random variable
according to the central limit theorem. For a normally distributed randonn  :riable, over 95% of
its values will be within two standard deviations from the mean. There , we can safely esti-

mate the upper cumulative error bound as

|é,e1] € 8.7 (4.6)
where
i o = 1
J=12|D] _\/l’_ _ sin wAm c_os_mAt(nJrL) (4.6b)
2 . 2 sin wA¢

Fig. 4.1 shows the values of J with respect to n at various wAt values. These are the max-
imum magnitudes of cumulative errors expecied due fo a unit standard deviation of random
errors. The figure indicates that as wA¢ increases, the rate of error growth with respect to »

also increases. This rate tends to diminish as n becomes larger. To obtain more meaningful
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information, we have to identify the influence of integration step size, Af, in error propagation,
- while o is constant. Consider, for example, points A and B on the curves which have wAf
equal to 1 and 0.5, respectively, in Fig. 4.1. Assuming that o and ¢, which is the total time of
analysis, are constant, we have At,/Atg - 2, and r = 500 A, or 1000 A¢p. If we go from A to
B, the maximum cumulative error at time ¢, | |n,y, is reduced by approximately 40%. There-

fore, cutting the size of time step is an efficient way to improve accuracy.

More generally, we can show that cumulative errors can always be reduced by decreasing
integration step size, Az, and that the error bound will approach zero in the limit as Az goes to

zero. Letting w and ¢ be constant as before, and substituting ¢/A¢ for »n in Eq. (4.6), we have

_ 1/2
€41 max w’ t At sin @t cos w(t+A?)
‘S— = 4 8 2 3 At2 - (47)
‘ @ 2 [mz-%;f — 1] sin @A¢
w
If At is small, we can obtain from this equation that
Ia:-&-llmax = O(At”z) (48)

This implies that both |, .|m.x and At will approach zero simultaneously.

4.2.3. Example

To check the error-bound estimate in Eq. (4.6), we do a numerical simulation which is
similar to the examples in Sec. 3.6. Instead of using truncation, we use rounding-off in the A/D
conversion of displacement control signals, such that all the control errors will be random, The
results of this simulation are displayed in Fig. 4.2. Fig. 4.2a shows the etrors e measured dur-
ing the simulation. These errors are equal to ¢/ as before. Fig. 4.2b shows the Fourier spec-
trum of the errors. The randomness of the error signals is illustrated by the approximately uni-
form frequency contributions in the spectrum. These errors have a standard deviation of

0.1202 x 1077 in., and a mean of 0.2581 x 10~* in. Therefore, our zero mean assumption is
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vatid. Finally, Fig. 4.2¢ shows the cumulative errors computed by Eq. (4.1} as well as the error

bounds estimated by means of Eq. (4.6). The error-bound estimation is conservative.
4.3, Systematic Errors

4.3.1. Sinuscidal Errors

From Sec. 2.2, we can observe that systematic errors e/ tend to oscillate at the response
frequency of a structure in pseudadynamic testing. A resonance effect can be excited by this
rd

type of errors. To investigate the systematic error effect, we assume that errors e¢/“ can be

represented by a simple sinusoidal function:
e/’ = A, sin dAl (4.9)

in which @ is any arbitrary frequency. By substituting this error form into Eq. (4.1), the cumu-

lative errors become

€,+1 = A, DY sin wAtBi sin wAr(n—i+1) (4,103

=1
in which 8 = @/@. By means of trigonometric transformations, Eq. (4.10} can be written as

sin %BAt(lﬁG‘)n cos %EAI(I—[S)(H—H)
. D (4.11

sin —;—EAt(lJr,G)

A

[
Fiment
S

€4 =

1
2

sin %EAI(I—[}) cos %5At(l+ﬁ)(n+l)

sin %5Ar(1~ﬁ)
This equation can be simplified into the form:

€1 = % A, D |- y sin wAt(n+1) + p sin wAzr(n+1)B] (4.122)
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in which

sin @A

— (4.12b)
cos @A!IfB — cos wA!

sin wAt
cos wAtfB — cos wAt

This equation is similar to a numerical solution of an undamped displacement response of a
structural system subjected to a sinusoidal excitation. As 8 approaches 1, both y and p will go

to infinity. This is the resonance phenomenon.

4.3.2. Resonance Effect and Error Bound

To formulate the resonance phenomenon, we substitute 8 = 1 into Eq. (4.11) and get

&,41=— A, R sin (@Atn—¢) (4.13a)
where
R=li1)|\/n2+2n+l (4.13b)
2 B?
¢ = arctan '1 n A
‘E +n B

This is the equation of resonance response due to sinusoidal errors. Without damping, the
cumulative errors can grow infinitely as » increases. It is, therefore, the maximum error-

propagation effect which systematic errors can induce.

The resonance effect is not merely an idealistic conception. The response of a structure
under earthquake excitations is, very often, dominated by its own natural frequency. Therefore,
systematic errors always tend to have a frequency equal to w. In addition, the natural fre-

quency of a structure can be excited by the systematic errors themselves, even though when
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the structure is not vibrating at that frequency. This is expiained in the next section. For these
reasons, we can expect the resonance effect to cccur whenever input errors are systematic.
Consequently, a reliable cumulative error bound can be obtained from Eq. (4.13) for systematic

€Irors.

]E;rr—Hl S Av R (414)

In Fig. 4.3, the factor R is plotted against » at different wAt¢ values. The curves are
almost straight lines. We can also observe that the rate of cumulative error increase is more
significant here than in the random error case (i.e. R >> J). In addition, from Eqgs. (4.13b)

and (4.14), we find that

|en+llmu.\' _

y Voltt+ 1+ 0(AD (4.15)

1
2

o

This error convergence equation is obtained in a similar way as Eq. (4.8). However, Eq. (4.15)
shows that the cumulative errors due to systematic errors cannot be completely eliminated by
reducing A¢. The cumulative error bound will approach a lower limit of A, m/ 2 as
At becomes very small. Furthermore, reducing Ar cannot significantly improve the accuracy of
a test resuit, because the O (A¢) term is small when compared with the square root term in Eq.
(4.15). In other words, At has a negligible influence on the total cumulative errors. We can
illustrate that by moving from point A to point B in Fig. 4.3, assuming w and r constant. In
doing that, the cumulative errors are reduced by approximately 10% only, while a 40% reduc-
tion is achieved for random errors. This explains the observations from the numerical simula-

tions in Sec. 3.6. Therfore, systematic errors are highly undesirable.
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4.4. General Errors of Mixed Form

4.4.1, Fourier Transformation

In the previous discussions, we assume that errors are either random or of simple har-
monic waveform. However, errors in an actual test are not that idealistic. They may consist of
many different frequency contributions, sﬁch as the natural frequency of a structure and the
frequencies of excitations. In addition, since systematic errors are alweiys mixed with random
errors, the systematic nature of real error signals may not be readily recognizable. In MDOF

systems, the error signals can be even more complicated.

Despite this complexity, resonance phenomenon always dominates error propagation as
long as systematic errors exist. To illustrate this fact, we will look at the problem from a more
general view point. Errors of any form can be represented by a Fourier series. Since each term
of a Fourier series is a simple harmonic function, the total cumulative errors in a test are the
sum of all the simple harmonic contributions. The equations developed in the previous section

for a sinusoidal error form can be individually applied to each of these terms.

We can re-write Eq. (4.12a), which is derived for sinusoidal errors, in the form as

e, =— 4, H sin (@At(n+1)p—0) (4.16a)

where

H=%—|D|\/p2+'yz—2pycosq5

P = arctan [—%] (4.16b)
p—7

d=wAt(n+1) (1-78)

The parameters v and p are defined in Eq. (4.12b). A is the amplification factor of the cumu-
lative errors and it is a function of wA¢, B, and #. In Fig. 44, H is plotted against » with
different 8 values for an arbitrary case of wAr = 0.30. We can see that H is an oscillatory func-

tion of n, and that its period and amplitude increase with increasing 8. As 8 approaches 1, H
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tends to have infinitely large period and amplitude. It becomes the error amplification factor in
the resonance phenomenon, i.e. the factor R in Eq. (4.13b). Fig. 4.4 also suggests that when
the number of integration steps is large, only those sinusoidal errors with 8 close to unity are
significant. The relative significance of other frequency components dies out fast in error pro-

pagation, when compared to that of resonance frequency.

To study the general error-propagation problem in terms of a Fourier series, we consider a

complex error function:

. — . AR,
eyl = cos BAIB;m + i sin BAIB;m = ¢ B 4.17)

where 8, = @;/w and i = ~/—1. From Eq. (4.16), the cumulative errors corresponding to the

complex error function in the above equation are
_ Haat (n+1)—6)
€1 = — H; € oAt / (418)

in which H; and 8; are the values of H and @ in Eq. {4.16) when 8 is equal to 8;.

As a matter of fact, by discrete Fourier transformation, any sequence of error signals con-
sisting of M points, e, et’,......and e[¢_,, can be interpolated by a trigonometric exponential

polynomial [14,15]:

o= 3 o) etuam (4.19)
J=—kK
in which
v=0 , k= Mz‘] if M is odd
v=1 , k=Mz—2 if M is even (4.19b)
Aw= 2@
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and ¢;’s are the Fourier coefficients which can be computed by

= _1_ MS a’ —.'JAwAtm (4 190)
J M 2; " .

Applying the results of Eqs. (4.17) and (4.18) into Eq. (4.19), we can express the cumulative

errors by the series:

h+v
i(wmﬁ-(n‘H)*Bl)
e=— 2 Hg / g

J=—kK

(4.20)

where B, = jAw/w. Since e)! ’s are real, ¢; and c.; must be complex conjugates. Conse-

quently, assuming that M is odd, we can re-write Egs. (4.19) and (4.20) as

erl=cy+2 Z [c;| sin (@ALB;m+;) (4.21)

j=1

and
i k
21 = D o Y sin@At(n—j+1) =2 Y H, |¢;] sin @Ar(n+1)8,—0,+y,)  (4.22)
J=1 =1
where ¢; = arctan (—Relc;)/Imlc;]). Eq. (4.21) shows that any experimental errors can be

represented as the sum of a series of sinusoidal functions and a constant. Consequently, cumu-
lative errors can be represented by a trigonometric series as well, as shown by Eq. {4.22). The
first term on the right hand side of Eq. (4.22) is simply the cumulative errors due to a constant
error cg. It is negligible in most circumstances as discussed in Sec. 4.2.1. From Eq. (4.21), we
can interpret that 2 |¢ | is the amplitude of each contributing sinusoidal error component which
has a frequency of jAw. According to Fig. 4.4, most of the frequency components have negligi-
ble influences on error propagation. By neglecting these components, we can approximate the

cumulative errors as

Cue1 = =23 H, le;| sin (@At (n+1)B,—6,+¢,) (4.23)
K
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in which we only include those frequency components that have 8,’s close to unity. If the
input errors are dominated by the frequency o, then the {¢,|’s should be larger in the neighbor-

hood of @. In that case, only a few frequencies need to be considered in Eq. (4.23).

4.4.2. Implications of Fourier Spectrum

We can now generalize the error-propagation characteristics previously observed. By
means of Fourier transformation, any errors can be represented by a series of trigonometric
functions. For completely random errors, the magnitudes of these functions, [q,]’s, are approxi-
mately uniform in the frequency spectrum (see Fig. 4.2). In addition, the |¢;[’s are relatively
small when compared to the actual magnitude of the errors. Due to this fact, the resulting
cumulative errors will be small, according to Eq. (4.23). We can also observe that cumulative
errors will be dominated by the natural frequency w, because the amplification fgctors H; near

that frequency are relatively large. This is consistent with our observations in Sec. 4.2.

However, in the presence of systematic errors, a large narrow spike will appear at o in an
error spectrum. This means that both the |c¢;{’s and H,’s are large when the 8,s are close to 1.
As a result, the cumulative errors due to systematic errors will be much larger than those due
to random errors, according to Eq. (4.23). Since the spike is narrow, Eq. (4.23) will approxi-

mately give the same error bound as Eq. (4.13), by taking 4, = 2 ¥ |¢;| and H; = R. The
7

existence of this narrow spike in an error spectrum can be explained as follows. Due to the
resonance phenomenon, Eq. (4.23) represents a filter-like action which amplifies those frequen-
cies near @ and suppresses the other frequencies. As a result, cumulative errors tend to be
dominated by the natural frequency @. These cumulative errors will, in turn, enhance the
natural frequency in a structural response whether the response is dominated by that frequency
or not. Since systematic errors tend to follow the structural response frequency, their fre-
guency content will be enhanced with @ as well. Through that interaction, systematic errors
always tend to be dominated by the frequency w. Therefore, resonance is usually the predom-

inant effect in error propagation, as long as sytematic errors exist. This implies that the error
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bound in Eq. (4.14), which assumes resonance condition, is realistic.

4.4.3. Examples

To illustrate the above discussions, we use the same numerical example as in Sec. 4.2.3.
In this case, truncation is used in the A/D conversion of displacement signals to produce sys-
tematic errors. The structural system has an angular frequency o of 18.91 sec ~L. By using At of

=1 according to Eq.

0.02 sec, the corresponding numerical frequency, w, becomes 19.02 sec
(3.20b). Since the maximum displacement calibrated for is 5 in. and a 12-bit progammable

D/ A converter is used, the maximum truncation error expected will be 0.0024 in.

The resulits of the simulation are shown in Fig. 4.5. From Fig. 4.5a, we observe that the
measured errors, e are random, but with a systematic oscillatory trend. A spectral analysis is
performed on these error signals, and the frequency spectrum is shown in Fig. 4.5b. The verti-
cal axis of the spectrum represents the error amplitude, 2 ch], of each frequency component.
Due to systematic truncations, a relatively large spike can be observed in the spectrum at fre-
quency w. Fig. 4.5c shows the resulting cumulative errors. They are significantly larger than
those in Fig. 4.2 (by more than 10 times). The error bounds computed by means of Eq. (4.23)
are also shown in Fig. 4.5c. They are very close to the actual error amplitudes. The error-
bound computation, as shown in Table 4.1, uses only the two major frequency components

indicated in Fig. 4.5b.

In another example, Ar of 0.01 sec is used instead. The numerical frequency @ becomes
18.94 sec ~.. The results are shown in Fig. 4.6. They are similar to those of the previous exam-
ple. By comparing Fig. 4.5 with Fig. 4.6, we can see that reducing A ¢ has no obvious effect on

error propagation at all. This is consistent with our error convergence equation (Eq. (4.15)).

In the above examples, due to the dominance of resonance phenomenon in error propaga-
tion, the error bounds can also be estimated by means of Eq. (4.14). Since the magnitudes of
the above truncation errors are within the range of 0 to 0.0024 in., we can take the mean value

of 0.0012 in. as the error amplitude 4,. Substituting this value into Eq. (4.14), we obtain the
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cumulative error bound for each case. They are also plotted in Figs. 4.5¢ and 4.6c, respectively.

These error estimates are as satisfactory as those based on Fourier spectrum.

4.5, Concluding Remarks

From the above studies, we can see that systematic errors are significantly worse than ran-
dom errors in error propagation. The cumulative error bounds resulting from systematic errors
are comparatively large and they cannot be reduced by decreasing Az. In the case of random
errors, cumulative errors are small and they will diminish as Ar goes to 0. The observations in
this chapter can also be correlated with the energy effects of systematic errors observed in Sec.
2.2. The dynamic response of a structure‘ is very sensitive to energy changes. If systematic
errors of the energy-addition type exist, the response of a structure can grow without limit as
resonance phenomenon. On the other hand, if input errors are energy dissipating, the response
will be rapidly damped as if the structural system had a very high viscous damping. Therefore,
systematic errors should be minimized by all means in pseudodynamic tests, such as replacing
truncation by rounding-off in the A/D conversions of displacement and restoring force signais.

As will be shown later, the energy adding errors are highly disastrous in MDOF testing.

Consequently, special precautions should be paid to the error sources discussed in Sec.
2.2, so that they will not detrimentally affect test results. In general, by knowing w and A, we
can obtain cumulative error bounds using Eq. (4.6) or (4.14). From these, the tolerance limits
of various errors can be set to ensure satisfactory test results; and the reiiability of pseudo-

dynamic testing can be assessed.
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CHAPTER 5

ERROR PROPAGATION CHARACTERISTICS
IN MDOF LINEAR ELASTIC SYSTEMS

5.1. Cumulative Errors in MDOF Systems

As the number of structural degrees of freedom increases, more experimental errors are
introduced into a pseudodynamic test. It is because contro! and measurement errors exist at
each additional degree of freedom. Furthermore, the restoring force developed at each degree
of freedom of a structure is influenced by displacement-control errors at all the others. This
coupling effect can be observed from the off-diagonal elements of a stiffness matrix. The larger
the off-diagonal elements are, the greater will be the extent of couplings. In addition, since the
rate of error propagation is proportional to the wAr value, the higher frequencies of a MDOF
system will induce more significant cumulative errors. All these considerations lead to the con-
clusion that the error-propagation problem is more serious in MDOF systems than in the previ-
ous SDOF case. In this chapter, we will investigate the MDOF problem from a numerical point
of view, using the results developed in Chapters 3 and 4 for SDOF systems. To do that, we
first develop the error-propagation equation in MDOF systems by means of modal superposi-

tion.

5.1.1. Modal Superposition Method

Modal superposition is a useful technique for MDOF analysis. It will be briefly reviewed

here so that it can be applied to the error-propagation studies.

In a MDOF system, the equations of dynamic equilibrium at + = i At can be represented

by the matrix equation:

maj+CVj+rj=f,' (5.1)

where m and ¢ are the mass and damping matrices of the system; and a,, v;, and r; are the

acceleration, velocity, and restoring force vectors due to the external excitation f;. In linear
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elastic systems, the restoring force can be expressed as

r,=kd, (5.2)

in which k is the elastic stiffness matrix, and d, is the displacement vector. From the above
structural properties, we can define the eigenvector ¢, as any vector which satisfies
k¢, =wlme,, where w? is the corresponding eigenvalue. The ¢,,’s and w,,’s can be phy-
sically interpreted as the undamped free-vibration mode shapes and frequencies of a MDOF
structural system. For a N-degree-of-freedom system, we can always have a set of N linearly

independent eigenvectors which satisfy the following orthogonality conditions [16]:
¢i.?;‘ m ¢N = 0 (5A3a)

¢I;’Il- ko,=0 (5.3b)

for m # »n. In addition, with proper assumptions on the damping matrix ¢, the eigenvectors

can also be orthogenal with respect to damping:

dircd, =0 (5.3¢)

From the above orthogonality conditions, the eigenvectors are linearly independent.

Therefore, we can express system responses as linear combinations of the eigenvectors:

N
dl = Z ¢l” Dl”F (504a)
m=}
N .
v, = 2 ¢, Dy, (5.4b)
m=1
N “s | .
a; = z b D, (5.4c)

m=1

By substituting these expressions into Eq. (5.1), and using the conditions in Eq. (5.3), we can

obtain a system of N uncoupled equations of motion:
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Mrr ﬁmi + Cm Dmi + Km Dmi = Eni (55)
for m = 1, 2,......N. These are the modal equilibrium equations, and D, is the modal displace-

ment response in the generalized coordinates. Correspondingly, K,,, M,,, and C,, are the gen-

eralized stiffness, mass, and damping, which can be obtained by

Km = ‘b}z; ko,
Mm = ¢s£ m ¢m (56)
Cm = ¢13: < ¢m

Similarly, the modal restoring force and excitation are represented by
le = ¢IZ: r:' = Km Dmt (57)
F, = ¢i£ f,

From Eq. (5.6), and the definition of the eigenvectors and eigenvalues, we know that w,, is
equal to (K, /M,)"? which is the frequency of the vibration mode m. Consequently, a N-
degree-of-freedom system has N vibration modes with frequencies: w|, ws,....., and wy. Furth-
ermore, according to Eq. (5.4), the dynamic responses of a N-degree-of-freedom system are
linear combinations of the N uncoupled modal responses, which are governed by Eq. (5.5).
The step-by-step numerical integration, which is used to solve Eq. (5.1) in a pseudodynamic
test, can be similarly applied to Eq. (5.5) for each individual mode. Therefore, instead of direct
numerical computation, the solution of Eq. (5.1} can be equivalently obtained by superimpos-

ing the individual modal solutions.
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5.1.2. Cumulative Errors by Medal Superposition

Using the modal superposition method, error-propagation behavior in MDOF systems can
be formulated from the results of SDOF systems. Similar to system responses, the total cumu-
lative errors in MDOF sytems can be considered as a linear combination of all the modal cumu-
lative errors. Consequently, the error-propagation prbbiem here is equivalent to a set of uncou-

pled SDOF cases.

In MDOF systems, the displacement- and force-feedback errors can be represented by
error vectors e and e/, respectively. Similar to Eq. (3.6), we can also define the equivalent dis-
placement error e/“ as k™' e/. To use the modal superposition approach, we must first express

these errors in their corresponding modal forms. According to the development in the previous

section, the modal errors can be obtained by the following transformations:

1
Eﬂ/ =357 1;’1- m ei[{ (583)
w, ¢
Efl;u‘ = ¢':Z ei,' (Sgb)
Effrﬂ = Ki;l E,I‘;,, (5.8¢)

where £, E/., and E/¢ are the corresponding modal forms of e, e/, and e/, respectively. By
substituting £/¢ for ¢/ in Eq. (4.1), we obtain the cumulative error equation for each individual

mode as

Em (n+1) = Dm 2 Eﬁﬁ sin 6,,,At(n-—i+1) (59)

i=1

in which D,, and w,, are the values of D and & when w is equal to w,, in Bq. (3.31). Accord-

ing to Eq. (5.4a), the total cumulative errors in the geometric coordinates can be obtained by

N -
€, = 2 b, E, (n+1) (5.10)
[

=
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By substituting Eq. (5.9) into Eq. (5.10), and using the results of Eqgs. (5.8b) and (5.8¢c), we

have
N o
=3 D, F, 3 esind,A(n—i+1) (5.11a)
m=1 i=1
in which
r
H m k
Fm = ¢ T ¢ (5.11b)
¢IH k ¢I”

This is the equation of cumulative displacement errors in MDOF systems. It is similar to Eq.
(4.1), except that the cumulative error vector here is a linear combination of all the modal con-
tributions. By means of Eq. (5.11), we can study the general error-propagation characteristics

in MDOF testing.
5.2, Random Errors

5.2.1, Preliminary Considerations

To study the propagation of random errors in MDOF testing, a statistical approach similar
to that in Sec. 4.2.2 is used. The statistical properties of the errors e/ are similar to those of
the SDOF case, although some additional assumptions are required to simplify the problem.
The errors have a zero mean at each degree of freedom, and a uniform standard deviation of
S,. In addition, we assume that the errors at each degree of freedom are completely uncorre-
lated to one another, and to those at any other degrees of freedom. These properties can be

mathematically expressed as
E(e/) =0

E(e//e/" ) =0 (5.12)
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E(eird el_rd 7) — SQZ I

for i & j. In the above equations, 0 is a zero vector or matrix, and I is an identity matrix.

For simplicity, we also assume that the structural system considered has a uniform mass

distribution:

m= I (5.13)

where /1 is the mass lumped at each degree of freedom. Furthermore, the eigenvectors of the

system are normalized such that

¢’Z" ¢m =1 (514)

form=1,2,..N.

With thesé assumptions, the cumulative error bound at each degree of freedom can be
individually estimated using the same statistical criterion as before, i.e. the magnitude of cumu-
lative errors is most probably within twice their standard deviation from the mean. The variance
and the standard deviation of cumulative errors at each degree of freedom can be obtained
from Eq. (5.11). To assist matrix operations, we define the following vector notations. For any

arbitrary vector x, which is {x,, x»,...., X,,}’, we define

V= (xi2, x4 AT

2

{x}2={x?, x§,.c, xa}" (5.15)

IX! = {|xl|’ |x2{s-"-, Ixml}T
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5.2.2. Statistical Error Bounds

From Eq. (5.11), we have the product of the cumulative error vector and its transpose as

N N .
EH+] 6nT+I = 2 E Dm Dp Fm (516)

m=1 p=I

L]

n
x|X
i=1

e/ e/ Tsin ®,,At(n—i+1) sin @,At(n—j+1)| F,
j=1
By applying the statistical properties described in Eq. (5.12), we can obtain from Eq. (5.16) a
matrix average:

N N i
E@ %) =52Y Y D,D,F, FY sina,At(n—i+1) sin@,Ar(n—i+1) (5.17)

m=1 p=1 i=1

The above equation can be further simplified to

N L Pl
E(EII+1 El;r+l) = Sez 2 ¢in ¢n1r Dn21 E sin’ E'LnAt(ﬂ_'i"*'l) (518)
m=1 =1
by means of the orthogonality conditions in Eq. (5.3), and the simpifying assumptions in Egs.
(5.13) and (5.14). The diagonal elements of the matrix Efe,., e/5,) are the variances of
cumulative errors at various degrees of freedom of a structure. Using the notations defined in

Eq. (5.15), we can store the variances in a vector {S;}2. Consequently, according to Eq. (5.18),

we have

N 7

S, =5, 3 (#,)2 D2 Y sin® @, A1 (n—i+1) (5.19)
m=1 =1

where each element of S; represents the standard deviation of cumulative errors at each degree

of freedom. Finally, by finding the summation of the sine square functions in the above equa-

tion as in Eq. (4.5), and applying the statistical error bound criterion, we have cumulative error

bounds as



N
[€n+1| < Se z {¢m}2 anr {(5.20a)
m=1
where
inw,At w,,At(n+1
Jm =2 !Dﬁnl £z s 7 _COS_,_m - (n ) (520b)
2 2 sin @, At

5.2.3. Implications of the Error Bounds

Bq. (5.20) is similar to Eq. {4.6), which is derived for SDOF systems, except that it has
multiple modal contributions. Since Eq. (5.20b) is exactly identical to Eq. (4.6b), the values of
J, at various m can be obtained from Fig. 4.1 by taking @ = w,,. From Eq. (5.20), we can
observe that the cumulative error bound at each degree of freedom is a root-sum-square combi-
nation of all the participating modes. The amount of cumulative errors contributed by each
mode depends on the factor J,, and eigenvector ¢,,. In Fig. 4.1, the magnitude of J,, increases
rapidly as w,, At increases. Therefore, the higher the modal frequency is, the greater will be the
contribution to error propagation. On the other hand, the displacement response of a structure
is usually dominated by its fundamental frequency. Due to these facts, cumulative errors can
usually be identified as high frequency noises in MDOF pseudodynamic responses. This is a
highly undesirable phenomenon. According to variation of mode shapes ¢,,, the higher fre-
quency modes may be more significant than the fundamental mode at some degrees of freedom
of a structure. At these degrees of freedom, the high frequency noises may totally overwhelm
the relatively small fundamential frequency responses with large error-amplification factors J,,.
For example, we can consider a cantilever structure, where displacement responses are rela-
tively small ai the lower stories, due to the dominance of the fundamental mode shape. In that
case, the lower-story responses can be easily wiped out by some high frequency errors. There-
fore, the existence of high frequency components is the major limitation to MDOF testing. In

general, the larger the number of degrees of freedom is, the more likely will be the existence of
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high frequency components.

The above observations warn against the idea that the higher-mode effects can be
neglected in pseudodynamic tests, as long as the stability requirement of the iniegration algo-
rithm is satisfied. This conception is generally valid in pure analytical problems, where the
rounding-off errors introduced by floating-point computations in a digital computer are
extremely small. In that situation, the approximation errors introduced by numerical integration
are more significant. The adverse effect of the numerical errors on the higher modes is usually
negligible, if the numerical method is stable and the higher mode participations are small.
However, in pscudedynamic testing, experimerital errors are usually so large that the higher

mode excitation becomes the predominant factor in accuracy considerations.

5.3. Influence of Structural Characteristics on Error Propagation

To illustrate the cumulative effects of random errors in MDOF systems, and to see how it
is related to structural characteristics, we will look at two different six-degree-of-freedom struc-
tural systems. One is designed to have a more coupled stiffness matrix than the other. Using

the results in the previous section, we can investigate the problems quantitatively.

5.3.1. K-Braced Steel Frame

A K-braced steel frame, shown in Fig. 3.1a, is first considered here. It is a complete bay
of a six-story steel structure preliminarily proposed for pseudodynamic testing in the U.S.-Japan
Cooperative Research Program. The horizontal and vertical members of the frame are assumed
to be relatively rigid in axial deformation. As a result, the frame has a total of thirty degrees of
freedom, as shown in Fig. 5.1b. Mass is lumped at each story level. Assuming that the structure
is subjected to a horizontal base excitation, we will only consider the six lateral degrees of free-

dom of the frame in a pseudodynamic test.

With the member sizes shown in Fig. 5.1a, the 30 x 30 stiffness matrix of the frame is

first assembled using the direct stiffness method. It is subsequently reduced to a 6 x 6 maltrix,
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for the six lateral degrees of freedom, by means of static condensation. All computations are
carried out with the aid of a computer program [17]. The resulting stiffness matrix is shown in
Table 5.1. The off-diagonal terms of the stiffness matrix are significantly smaliler than the diago-
nal ones. Therefore, only a very limited degree of couplings exists between the story displace-

ments and restoring forces on different levels.

A unit mass is lumped at each story, such that m = 1. By solving the eigenvalue prob-
lem, we obtain all the participating frequencies and mode shapes of the structure. They are
listed in Tables 5.2 and 5.3, respectively. An integration time step A¢ of 0.01 sec is used. As a
result, @ At is 0.078, which is small enough to obtain an accurate numerical result; and wsAz is
within the stability limit.These are ideal conditions from an analytical viewpoint. To consider the
cumulative error growth during pseudodynamic testing, the values of |¢,, J,,| are evaluated at

= 2000 (i.e. + = 20 sec) for all the participitating modes. They are listed in Table 5.4. By
means of Eq. (5.20), the root-sum-square cumulative error effect is compuied and shown in the
last column of the table. From this table, we can see that the higher frequencies have greater
contributions to error propagation, and that the largest cumulative errors will occur at the two
bottom stories, which have error bounds approximately equal to 338,. For an equivalent SDOF
system which has wAr equal to 0.078, the maximum possible error is 4.95,. Compared with

this, the six-degree-of-freedom system has a maximum potential error of more than six times.

5.3.2. Reinforced Concrete Shear-Wall Structure

The second example is a six-story reinforced concrete structure with a shear wall, as
shown in Fig.5.2. It is similar in design to a seven-story structure [6] which was tested at BRI in
Japan. However, as in the case with the steel frame, only the six lateral degrees of freedom are
considered here. The stiffness matrix of the six-story structure, shown in Table 5.5, is obtained
by fixing the lateral displacement at the bottom story of the seven-story structure, the stiffness
of which was experimentally measured at BRI. From Table 5.5, we can observe that the off-

diagonal elements of the stiffness matrix are relatively large. This means that the restoring force
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developed at each story is significantly influenced by the disptacements at the other stories.
The system is, therefore, highly coupled. The mass selected for each story is taken as 3.9 kip
sec’/in, so that the fundamental frequency of this structure will be identical with that of the

steel frame discussed previously.

The frequencies and mode shapes obtained from the structure are shown in Tables 5.6
and 5.7, respectively. The highest frequency of the structure is about 40 times the fundamental
frequency. To achieve numerical stability, integration time step Ar of 0.005 sec is selected. As
a result, w;Ar is 0.039, which is half of the value for the previcus frame; whereas, wgA? is
1.561, which is close to the stability limit. Again, this is adequate for analytical purpose. For
error-propagation studies, the values of |é,, J,,| at n = 4000 (.e. t = 20 sec) are listed in
Table 5.8. The root-sum-square eiffect is shown in the last column of the table. By comparing
these results with Table 5.4, we can observe that the cumulative error bounds here are
significantly larger than those in the steel frame. This is because of the greater higher-mode fre-
quencies of the shear-wall frame. In this case, the maximum error can be 1595,. This means
that if displacement-control errors have a standard deviation of 0.1% of the maximum structural
displacement, the resulting cumulative errors can be as large as 16%. Therefore, the structure

is extremely sensitive to experimental errors.

5.3.3. Comparisons and Comments

Due to the existence of high frequency components, the cumulative errors in the above
structural systems are more significant than those in a SDOF system. By comparing the two
structural examples, we observe that the highly coupled system experiences a more severe

error-propagation problem because of its wider frequency span.

In the above discussions, idealized mass distribution and error properties are assumed.
However, the basic phenomena observed are valid for more general conditions. For example,
since error propagation depends on the frequency composition of a structure, a variation of

mass distribution can affect the rate of cumulative error growth. In the cases where mass
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distributions are not uniform and errors vary among the degrees of freedom, an accurate error-
propagation behavior can be modelled by means of direct simulation using Eq. (5.11). In any
case, to achieve the best pseudodynamic result, errors at all degrees of freedom of a system
should be minimized. According to Eq. (5.11), errors at any degree of freedom can affect the

overall reliability of test results.

§5.4. Systematic Errors
/

As observed in SDOF systems, systematic errors tend to oscillate at the natural frequency
of a structure, However, a MDOF system has numerous frequency components. To investigate
this problem from a more general aspect, we express the errors e/ in terms of a trigonometric
exponential series by Fourier transformation, as in Sec. 4.4. This series is identical to the one in
Eq. (4.19), which is for SDOF systems, except that the Forurier coefficients are now in a vector
form, i.e.

k+v ;
eff=3 ¢;eliter (5.21a)
J=—k

in which the Fourier coefficient vectors are

M1
¢ = T eff Tl (5.21b)
=0

By substituting Eq. (5.21a) into Eq. (5.11), and expressing the cumulative errors due to each

frequency component in terms of Eq. (4.18), we have

N k=+v . . —4.
6n+] = Z Fm 2 I{jm c_j e’(wmA’ﬁJM(l-'-l) GJM) (522)
=} Jj=—k
in which 8, is equal to jAw/®,; and ), and 6, are the values of A and @ defined by Eq.

(4.16b), corresponding to the vibration mode m and excitation frequency jAw. Eq. (5.22) is

clearly analogous to Eq. (4.20), the cumulative error equation for SDOF systems, except that it
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is a linear combination of all the modal cumulative errors. Therefore, the development here is
parallel to that of Sec. 4.4. By transforming the exponential series in Bq. (5.22) into an
appropriate sinusoidal series, as in Eq. (4.22), and knowing that the error signals are dominated

by the natural frequencies, we can approximate the cumulative errors as

N

EM-{-] = El an A/n Rm sin (5mAm+§m) (523)

in which R,, is the error-amplification factor defined by Eq. {4.13) for mode m; Z,, is a phase
shift which depends on the modal frequency and the phase differences of input errors; and

A,=23 [c.,- |, where the j’s are those for which the 8 m'$ are close to unity. This is reason-
J

able because the H,,’s approach the R,’s, and the sine functions overlap one another as the

B,»’s go to 1. The values of R, at various @, A¢ can be obtained from Fig. 4.3.

From Eq. (5.23), the cumulative error bounds can be conservatively estimated as

€, < ﬁl |Fo. Ay Ryl (5.24)
o

This may be an over-conservative estimation because all the peak errors usually do not occur
simultaneously. However, when the natural frequencies of a structure cluster together, the sine
functions in Eq. (5.23) will be only slightly off-phased. In that case, Eq. (5.24) gives a good
estimate of the maximum cumulative errors. On the other hand, if the frequencies are wide
apart, the R, ’s will be much greater for the higher frequencies, according to Fig. 4.3. Under
that condition, two possible cases exist. First, if the errors are energy dissipating, then the
higher frequency modes, which have low participations in the actual vibration response, will be
readily damped out, without significant adverse effects on the overall accuracy. Consequently,
only a few lower frequency modes need to be considered in Eq. {4.24). The inclusion of the
higher frequency effects will be over-conservative. Second, if the errors are of the energy-
addition type, then the high frequency components will dominate error propagation because of

the large R, ’s. In that case, Bq. (5.24) is satisfactory because the lower frequencies have
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negligible influences here. Therefore, energy-adding systematic errors are highly undesirable.
As in the random error situation, the accuracy of test results is severely limited by the higher
frequencies present in the system. Furthermore, when errors are systematic, error propagation

cannot be suppressed by reducing A:.

5.5. Numerical Simulations

To illustrate the previous discussions, simulations similar to those in the SDOF case are
performed. The structural model used here has two degrees of freedom with mass lumped at
each story level. The system properties are shown in Fig. 5.3a. It has a fundamental fre-

!, and a second mode frequency, w,, of 72.54 sec . This wide fre-

quency, w|, of 10.90 sec™
quency gap provides an appropriate example to illustrate potential error-propagation problems in
MDOF systems. With A7 equal to 0.02 sec, the corresponding numerical frequencies, w; and
w5, are 10.92 and 81.16 sec™', respectively. The value of w,A¢ is 0.218, which is sufficiently
small to compute an accurate first mode response; while w,A? is within the stability limit. Using
this integration step, the structural response to the El Centro 1940 (NS), 0.02g excitation is
obtained. The displacement histories of both degrees of freedom are shown in Fig. 5.3b. They
are the exact numerical solutions without experimental errors, The time histories indicate that
the response is dominated by the fundamental frequency. Consequently, the A¢ chosen is ade-

quate for this analytical purpose, where the numerical accuracy of the higher mode response is

not important,

In the simulations here, a 12-bit programmable D/A converter is used to transfer dis-
placement control signals. Displacement is calibrated to a 5 in. range for each degree of free-
dom. However, the actual displacements shown in Fig. 5.3 will never exceed 0.5 in. This will

produce relatively significant A/D conversion errors.

In the first simulation, rounding-off is used in the A/D conversion, such that displace-
ment control errors generated are totally random in nature. They are shown in Fig, 5.4, The

resulting displacement response and cumulative errors are displayed in Fig. 5.5. The cumulative
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errors are extremely noisy. We can see that the second mode has a significant contribution to
the cumulative errors because of the relatively large J; factor. The cumulative errors at the
second degree of freedom are larger than those at the first, although the actual displacement
response at the latter is smaller. This is attributed to the variation of mode shapes, as discussed
in Sec. 5.2.3. Using the measured standard deviation S, of 0.00161 in., we can compute the
error bounds by means of Eq. (5.20). The computed values are close to the actual cumulative
error amplitudes, as shown in Fig. 5.5b. By comparing these results with those of the SDOF
simulation in Fig. 4.2, we can observe the increased cumulative error growth in this two-

degree-of-freedom system.

In the second simulation, truncation is used instead of rounding-off. As a result, sys-
tematic errors of the energy-addition type are generated. These signals, together with their
Fourier spectra, are shown in Fig. 5.6. From the Fourier spectra, it is clear that the second
mode frequency dominates the error signals. This is because the second mode effect in the
cumulative errors grows so rapidly that it overwhelms the first mode displacement response,
and arouses the resonance effect. This second mode excitation induces a severe error-
propagation problem as shown in Fig. 5.7a. The response at the second degree of freedom is
completely wiped out by the higher frequency errors. Fig. 5.7b illustrates the cumulative errors
which are dominated by the higher frequency. Since both Ay and R, are negligibly small, only
the second mode effect needs to be considered in estimating the error bounds. By estimating
A, from the Fourier spectra, we can compute the error bounds with Eq. (5.24). The results
obtained are extremely accurate, as shown in Fig. 5.7b. This example illustrates a very unstable

condition where a high frequency component is concurrent with energy-addition errors.
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5.6. Force, Velocity, and Acceleration Errors

Up to this point, all the attention has been directed to the accuracy of displacement
response in pseudodynamic testing. However, restoring forces developed by a structure are
equally important and critical to the survival of the structure. In addition, velocity and
acceleration responses may also be considered by some researchers. These quantities have the
same order of accuracy as displacement response in SDOF testing. In MDOF tests, the experi-
mental resuits of these quantities can be totally misleading, even though the displacement

response is reasonably accurate. This is due to the existence of high frequency components.

In considering the accuracy of restoring forces, we can compute the cumulative force

errors from

el =ke,, (5.25)
By substituting Eq. (5.10) into this equation, and knowing that k ¢,, = w2 m ¢,,, we have

CHEES T AN (5.26)
m=

The comparison of the above equation with Eq. (5.10) indicates that cumulative force errors are
more significantly dominated by the higher modes than cumulative displacement errors, due to
the w2 factors. Therefore, restoring forces have more severe error propagation in pseudo-
dynamic testing, especially when an extremely high frequency is present. This will be illustrated
by an example in Chapter 7 (see Fig. 7.3). Because of this fact, unrealistically large forces can
be developed in a structure during pseudodynamic experiments; and the structure may suffer

premature yielding or failure.

Similarly, velocity and acceleration responses have more significant higher frequency
errors than displacement response. In these cases, modal contributions will be amplified by fac-
tors of w,, and w2, respectively. Thus, acceleration suffers the same order of inacurracy as res-

toring forces.
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5.7. Summary

Because of the higher mode effect, cumulative errors can grow rapidly in MDOF systems.
In the cases where errors are random, or systematic with an energy-addition effect, the highest
structural frequency is always the dominaﬁng factor in error propagation. Consequently, highly
coupled, stiff structures which have relatively wide frequency spans can experience a severe
error-propagation problem. The systematic errors which dissipate energy are less undesirable,
because they rapidly damp away insignificant higher mode responses, and moderately affect the
lower frequency modes. Therefore, the removal or suppression of high frequency components
is highly recommended for MDOF testing. The methods to achieve that include the use of
high frequency filters and frequency proportional numerical damping. The latter will be dis-

cussed in Chapter 7.
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CHAPTER 6
ERROR PROPAGATION IN INELASTIC SYSTEMS

6.1. Introduction

In the previous chapters, analytical methods were developed to predict the growth of
cumulative errors in pseudodynamic testing of linear elastic systems. However, as inelastic
deformations occur, the error-propagation characteristics will change because of the variation
of structural stiffness in the inelastic range. Consequently, the results previously obtained for
linear elastic systems will no longer be applicable. In this chapter, we extend our investigation
of error propagation to inelastic systems. The inelastic error-propagation behavior will be for-
mulated using an idealized SDOF elasto-plastic model. With the supplement of numerical simu-
lations, the idealized model will be used to identify the basic error-propagation mechanisms in
inelastic systems. Furthermore, parametric studies by means of numerical experiments are car-
ried out to gain a more thorough understanding of cumulative error growth in inelastic systems
under various conditions. By comparing the results of these studies with those of linear elastic
systems, some criteria for assessing the reliability of the pseudodynamic method in testing ine-

lastic structures will be established.

6.2. SDOF Elasto-Plastic Systems

In the subsequent studies, a SDOF elasto-plastic model, shown in Fig. 6.1, will be used.
This model is an idealized representation of general inelastic material behavior. As we will see
in the following simulations, the error-propagation behavior in inelastic systems depends on
various factors, such as the characteristics and magnitudes of external excitations, the inelastic
deformations developed, and the dynamic properties of a structure. Therefore, the exact error-
propagation behavior will vary from case to case. For this reason, only qualitative evaluations
and relative comparisons of the simulation results are possible. An elasto-plastic model well

suits these objectives.
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6.2.1. Cumulative Error Equation

The equation for cumulative displacement errors in elasto-plastic systems can be
developed from Eq. (3.3), the recursive step-by-step integration formulation, as in linear elastic
systems. For the elasto-plastic case, r,, is the inelastic restoring force, which can be modelled

as

r,=k (d —d) (6.1a)

or

r, = S (x,' - X,’) (6.1b)

in which & is the linear stiffness of the elastic region; d/ is the residual displacement in step /,
as shown in Fig. 6.1; and x/ is a residual vector which contains d/. By substituting Eg. (6.1b)

into Eq. (3.3}, and introducing the error terms as in Sec. 3.2, we can obtain
EH—I = A E,’ + B e,d - L S (e['i,, - ifl.h, + X,-'},,) (62)

in which ¢/{, is the equivalent displacement error defined by Eq. (3.6) with the linear elastic
stiffness k; and vector X/,, contains the computed residual displacement d/,, under the
influence of experimental errors, while x/., is the exact residual vector. Finally, by going
through the same procedure as in Chapter 3, and by taking out the displacement-feedback error

term, we can get the cumulative error equation:
€ppl = Ef;-{»l + EIJI+I (6.3a)
in which

ee =D Z e/ sin wAt(n—i+1) (6.3b)
i=1

g, =DY (d - d)sin wAr(n—i+1) (6.3¢)

i=1
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Eq. (6.3b) has the identical form as Eq. (3.30), which is the cumulative error equation for
linear elastic systems. Therefore, the term e,,, can be considered as the elastic cumulative
error component. The additional error term €., is due to inelastic or residual deformations, as
indicated by the expression (d — 47} in Eq. (6.3c). In a similar way, the numerical formulation

of inelastic displacement response can be decomposed into two components:

dn+1 = df(1)+1 + d)f;+1 (643)
irt which

) 1
i1 =— D Y dsin wAt(n—i+1) (6.4b)
=1

The d¢., term is the linear elastic displacement component which would be the total response
if a structure remained elastic, while d’,; is the additional inelastic displacement component
due to structural yielding. By analogy, the inelastic component can be numerically conceived as
a displacement response induced by a series of impulse loadings. These fictitious loadings result
from the sudden stiffness change at the moment of yielding. Therefore, the inelastic com-
poneni contains displacement drifts which we can often observe from inelastic structural

responses. Similar observation can be made from the inelastic cumulative error component.

Egs. (6.3) and (6.4) are the "linearized" equations of error propagation and displacement
response, respectively, for an elasto-plastic system. The values of D and w are based on the
linear elastic stiffness of the system. As a result, we can identify and compare the inelastic

mechanisms in error propagation.

6.2.2. Equivalent Displacement Errors

In the above cumulative error equation, the equivalent displacement errors e/ and other
parameters are defined in terms of the linear elastic stiffness. Therefore, according to Egs.

{2.4) and (3.6), the equivalent displacement errors in inelastic systems are
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e/!= -I;—C’— e + lk e/ (6.5)
in which k, is the tangent stiffness. In an elasto-plastic model, k, is equal to zero during pro-
gressive yielding, and to the linear elastic‘ stiffness during loading or unloading. As a result, the
e/! s in elasto-plastic systems are always smaller than or equal to those in linear elastic cases,
for the same magnitudes of errors e/ and ¢/”. For this reason, the conclusions of the foliowing
studies, using simulated force-measurement errors ¢/”, can be conservatively extended to cover

other forms of errors.
6.3. Numerical Simulations using the Elasto-Plastic Model

6.3.1. System Description and Numerical Results

The error-propagation mechanisms in elasto-plastic systems can be investigated by means
of numerical simulations, In the following simulations, we use a SDOF elasto-plastic model
which has a linear elastic stiffness of 3.702 kips/in. and a mass of 0.01035 kip sec’/in. Thus,
the system has an initial period of @ = 18.91 sec !. The yield strength r, is 0.36 kip. The El
Centro 1940 (NS) accelerogram with a peak acceleration of 0.1g is used to develop reasonable
inelastic deformations in the system. To study the error-propagation behavior, we introduce
force-measurement errors into the simulations. These errors are modelled by
Ad,
|ad,|

el=¢l"=¢

(6.6)

which means that if e is positive, the errors are of the energy-dissipation type. We select ¢ to
be positive and be 10% of r,.
An integration step of 0.02 sec is used in the numerical computations. The results are

illustrated in Fig. 6.2. The first graph in the figure shows the displacement response histories

with and without errors. The energy-dissipation effect of the errors can be observed from the
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reduced amplitudes of the erroneous response. The second graph illustrates the decomposed
cumulative error components as formulated by Eq. (6.3). The elastic component ey, which is
represented by a solid line, is similar to the error-propagation behavior observed from linear
elastic systems. It has a symmetrical oscillatory growth. The inelastic component €., is about
180 degrees out-of-phase with e/,,. It offsets e’., during early cycles, and drifts away from
the time axis at later ones. This contributes to the drift phenomenon in the total cumulative
errors, which are shown by the last graph of Fig. 6.2. A comparison of the inelastic displace-
ment component d;,, and the inelastic error component &,,, is shown by the first graph of
Fig. 6.3. These inelastic components have similar behaviors. They tend to drift away from the
time axis with different magnitudes. The corresponding residual displacement o/ and residual

error (d — 67;') are shown in the second graph.

For the purpose of comparison, a linear elastic simulation is performed with the same
elastic period and force errors as the previous one. The results are shown by Fig. 6.4. The
cumulative errors g,,; observed here are much greater than those in Fig. 6.2. The system
response is drastically damped by the energy-dissipating errors. Although ef¢; in the previous
case has the same formulation as e,,; in the linear elastic system, the magnitude of e,

observed is smaller.

The last simulation is performed with inelastic deformations and a peak ground accelera-
tion of 0.15¢. This increased excitation level produces a very different inelastic response history
as illustrated in Fig. 6.5. However, the error-propagation behavior is similar to the previous
results. The inelastic component e/, tends to offset &, at some places, and causes a dis-

placement drift at others.

6.3.2. Implications Regarding Inelastic Error Propagation

Due to the inelastic component Z’,‘;H , the error-propagation behavior in the elasto-plastic
model is very different from that in linear elastic systems. In the latter, cumulative errors are of

the oscillatory type. They are domtinated by the resonance phenomenon provided that input
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errors are systematic. The linear elastic error propagation does not depend on the magnitude or
characteristics of external excitations; instead, it is a function of A7 and n. On the other hand,
the cumulative errors in elasto-plastic systems produce a drift effect, with a slow oscillatory
growth. The resonance phenomenon in error propagation is suppressed by the frequency
changes during inelastic deformations. The oscillatory growth of cumulative errors is also offset
or damped by an inelastic drift mechanism. Since the 4., and ,,; components are of the
same nature, the estimation of inelastic cumulative error growth would be as difficuit as the
prediction of inelastic structural response. The magnitude of €,.; is dependent on inelastic

deformations developed.

In general pseudodynamic testing, we can expect that cumulative errors will start with an
oscillatory growth in the elastic range. As soon as inelastic deformations occur, the oscillatory
growth of cumulative errors will be suppressed and a displacement drift is produced. If inelastic
deformations are small, error propagation will remain similar to that in linear elastic systems,
ie. g, will dominate. If inelastic deformations are severe, the less predictable .., com-
ponent will dominate. Therefore, error propagation in inelastic systems varies under different

conditions.

6.4. Parametric Studies of Error Propagation

To identify the basic error-propagation characteristics in inelastic systems, we study a
series of error spectra for various parameters using the SDOF elasto-plastic model. From the
simulations in the previous section, we observe that error-propagation behavior varies with the
fevel of inelastic deformations, The maximum inelastic deformation developed in a SDOF sys-
tem can be expressed by a dimensionless quantity u,, which is called the displacement ductility
and is defined as the ratio of the maximum displacement developed over the yield displace-
ment, i.e. wy; = dmu/ d,. If an elasto-plastic structure is subjected to a ground excitation, the
displacement ductility u, developed can be determined in terms of a dimensionless coefficient

n [18]. This coefficient is a measure of structural resistance to the intensity of a specific ground
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excitation, and is defined as

Ty

m {a, }ax

n= 6.7)
in which {ag}max is the peak ground acceleration of the record. In general, the smaller the value
of m is, the larger will be the displacement ductility. For this reason, various values of 5 will be
included in each error spectrum to study the influence of @, in error propagation. Each spec-
trum has a period range of 0.1 to 1.0 sec at 0.1 sec intervals. The errors e/ used to generate
the spectra are again modelled by Eq. (6.6)., The error magnitude e/k in each spectrum is
specified as a fraction of the yield displacement 4,. In addition, the maximum cumulative
errors obtained in the following studies are normalized to dimensionless gquantities. Conse-
quently, the results presented here indicate general characteristics of the elasto-plastic model

under certain specific excitation records,

6.4.1. Error Ratio Spectra

A scries of error ratio spectra is generated using 135 seconds of the El Centro 1940 (NS)
record with zero damping. The magnitudes of the earthquake are determined by the selected 1
values, which are 0.9, 0.8, 0.6, 0.4 and 0.3, respectively. These will vield a wide range of dis-
placement ductilities. The results are shown in Fig. 6.6. The error ratio is defined here as the
ratio of the maximum cumulative error developed in an inelastic simulation over the maximum
error expected for the corresponding linear elastic system of the same period. The maximum
expected error is computed by means of Eq. (4.14). The magnitudes of the input errors e/ are
0.001d,, 0.014d,, 0.05d, and 0.1d,, respectively. Integration time step A¢ of 0.02 sec is used
throughout the computations. From Fig. 6.6, we can observe that the maximum cumulative
errors in elasto-plastic systems are, in most cases, less than those expected for the correspond-
ing linear elastic systems. This is probably due to the suppression of resonance effect in error
propagation by inelastic deformations, A general trend can be observed from the spectra here,

The larger m values tend to have smaller error ratios. This indicates that cuntulative errors tend
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to be larger when higher displacement ductilities are developed. At period equal to 0.1 sec and
7 equal to 0.3, the error ratios observed are large, occasionally exceeding 1. This is due to the
extremely large displacement ductilities developed at that period. Furthermore, the error ratios
tend to be smaller in spectra which have larger magnitudes of ¢/°. This means that cumulative
errors in elasto-plastic systems do not increase as fast as those in linear elastic systems as the

magnitude of input errors increases.

6.4.2. Relative Error Spectra

The accuracy of a pseudodynamic test does not depend on the magnitude of cumulative
errors alone. It also depends on the displacement ductility developed. Therefore, we are more
concerned with the relative magnitudes of cumulative errors, rather than the absolute values,
To find the influence of displacement ductility on the accuracy of pseudodynamic results, rela-
tive error spectra are generated using the same excitation record as before. They are shown in
Fig. 6.7. The relative error is defined as the ratio of the maximum cumulative error over the
maximum displacement response developed in a system, By comparing Fig. 6.7 to Fig. 6.6, we
note that although relatively large error ratios are produced at the 0.1 sec period, the
corresponding relative errors are small. This can be explained by the large displacement ductili-
ties at 0.1 sec period. The general trend observed from Fig. 6.7 is that the smaller the value of
m is, the smaller will be the relative error. Therefore, pseudodynamic results will be more accu-
rate if larger ductilities are developed in a system. This is a reasonable phenomenon because
the energy effects produced by systematic errors become less significant as inelastic hysteretic

energy dissipation increases.

. 6.4.3. Error Spectra under Various Conditions
To check whether the previous results are consistent, error spectra generated under vari-
ous conditions are shown in Fig, 6.8. The magnitude of the input errors is 0.014d, for all spectra.

The integration time step is reduced to 0.01 sec. In the first row of Fig. 6.8, the error ratio and
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relative error spectra are generated with the El Centro 1940 record. The second row contains
the spectra produced by the Miyagi Oki 1978 ground acceleration record. Finally, the spectra in
the third row are again generated by the El Centro ground motion, but with an energy-addition
type of e/“.

Although the distributions and magnitudes of the spectral values differ under various con-
ditions, the basic characteristics remain the same. The Miyagi Oki record shows larger error
ratios than the El Centro record, but most of the values still remain under 1. Brror ratios always
tend to be larger at higher displacement ductility levels, and the reverse is true for relative
errors. In addition, the change of At does not significantly affect the spectral values. This is the

characteristic observed from systematic errors in linear elastic systems.

6.4.4. Commentary

In general, error-propagation characteristics of elasto-plastic systems vary under different
conditions, such as the ground excitations used and the displacement ductility developed. How-
ever, several basic characteristics remain unchanged. Cumulative errors in inelastic models are
usually smaller than those in linear elastic systems. However, cumulative errors will grow as
displacement ductilities increase; and they may exceed those in linear elastic systems when
extremely high ductilities are developed. In any case, they are usually relatively small when
compared to the maximum displacement response developed, as long as the input errors are
reasonably small, Most often, the larger the displacement ductility is, the smaller is the relative
error and the fnore accurate is the result. In addition, the magnitude of cumulative errors in
linear elastic systems is proportional to the size of input errors, while cumulative errors are less
sensitive to input errors in the inelastic model. Finally, we can conclude that the development
of inelastic deformation may or may not increase the magnitudes of cumulative errors, depend-
ing on the inelastic deformation developed. In any case, inelastic deformation is not detrimen-
tal to pseudodynamic testing, since any increase in cumulative errors is usually offset by a

greater increase in inelastic displacement.
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6.5. Reliability Criteria in Inelastic Pseudodynamic Testing

From the parametric studies, we observe that cumulative error growth in inelastic systems
is less predictable than that in linear elastic cases. To assess the reliability of inelastic pseudo-
dynamic testing, we summarize the resuits of the parametric studies in a more revealing form,
and compare them with linear elastic error propagation. To do that, some of the relative errors
obtained in the previous section are normalized and plotted against displacement ductilities in
Fig. 6.9. They are normalized with respect to an elastic criterion, which is defined here as the
ratio of the maximum cumulative errors expected for the corresponding linear elastic system to
the yield displacement d,. Consequently, a normalized relative error can also be written as
(error ratio)/u,, according to the previous definitions. The elastic criterion is a measure of the
accuracy of a pseudodynamic testing if a structure deforms up to its elastic limit. It can be
obtained from the results of Chapter 4. | By this normalization, the reliability criteria of inelastic

testing can be established with respect to those of linear elastic tests.

From the scattered data points in Fig, 6.9, we can observe that the normalized relative
errors are approximately inve_rsely proportional to the ductility level. Therefore, a pseudo-
dynamic test is generally more accurate if a higher displacement ductility is developed. For
comparison purpose, 1/u, is plotted against w, as a solid line in the same figure. This curve
indicates the corresponding reduction of relative errors if a structure remained elastic at dis-
placements beyond d,. It is, therefore, the curve of normalized relative errors for linear elastic
systems. Within the ductility range of 40, we can see from the figure that most of the points
from the inelastic simulations lie below the solid curve. Only at large ductility leveis (beyond
10}, are a few points slightly above the curve. As a resuit, Fig. 6.9 confirms that inelastic pseu-
dodynamic testing is usually more accurate than linear elastic tests. Furthermore, an inelastic
pseudodynamic test can be reasonably accurate, even though the accuracy within the elastic

limit is poor.

Under the absence of more reliable information, the curve in Fig. 6.9 can serve as a con-

servative assessment of the accuracy of inelastic testing. For example, if a ductility of 20 is



-77 -

expected from a pseudodynamic test, the curve indicates that the normalized relative error will
be approximately 0.05. If the tolerance limit of cumulative errors is set to be 10% of the max-
imum displacement, then the maximum cumulative error within the elastic range should be less
than 2d,. In general, the yield displacement d, and the ductility u, are difficult to define in
realistic inelastic systems, especially when a system has muitiple degrees of freedom. However,
according to the above discussions, we can use the error-propagation criteria for linear elastic
systems to assess the reliability of inelastic testing. These criteria may become unconservative

only if severe inelastic deformations take place.
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CHAPTER 7

ERROR COMPENSATION AND NOISE REMOVAL METHODS
FOR PSEUDODYNAMIC TESTING

7.1. Introduction

Experimental errors in pseudodynamic testing have been discussed in Chapter 2 of this
report. From the error-propagation studies, we observe that the errors which are most detri-
mental to pseudodynamic testing are of the systematic nature. The problems of these systematic
errors can be summarized as: (i) causing an erroneous apparent stiffness of a test structure, e.g.
by mis-calibration of measurement transducers; (ii) inputting extra energy into response
motions, e.g. due to truncation errors in the A/D conversions; or (iii) dissipating energy from

structural responses, e.g. due to frictional forces.

In reality, the elastic stiffness of a structure may vary from case to case, even though
exactly the same material and member sizes are used for fabrication. Stiffness can be influenced
by many factors, such as types of member connections used, imperfect geometric
configurations, and base support conditions, especially. For this reason, the actual stiffness of a
structure often differs from the analytically predicted stiffness. Under normal circumstances,
this discrepancy is substantially greater than the influence of experimental errors. Therefore,
the problem in (i) is usually insignificant, and can be neglected. Furthermore, since the fre-
quencies of a structure can always be manipulated through the assumed mass distribution in a
pseudodynamic test, a small stiffness error introduced under experimental conditions can be

easily compensated for in most cases.

The energy changes due to experimental errors are manifested in a form of force-
deformation hysteresis. These energy effects can be of significant influence on pseudodynamic
results. For example, large frictional forces in a system or systematic overshooting of displace-
ments can induce unduly large damping effect on response motions. On the other hand, energy
addition by systematic truncation errors or undershooting of displacements will excite spurious

high frequency modes, which cause stability problems in pseudodynamic testing of MDOF
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systems. In the worst case, both phenomena can co-exist, such that the higher frequency modes
grow rapidly, while the more realistic fundamental mode is damped out. These energy effects
are most undesirable, and can be cited as the major problems from previous experience. Pseu-
dodynamic results will not be reliable if these energy changing errors are not eliminated or

properly compensated for.

In this chapter, two numerical methods are proposed to solve the above problems. The
first method uses equivalent hysteretic energy compensation, which can cancel out the energy
changes introduced by systematic errors. This method, assuming a constant magnitude force
correction at each degree of freedom, is especially efficient for correcting force measurement
errors, such as those due to friction. The second method is a modified Newmark explicit algo-
rithm which has an adjustable numerical damping. By using this modified integration algorithm,
the higher mode effect can be damped out without significant influence on the lower modes.
These two methods can be used simultaneuosly to achieve a stable and reliable pseudodynamic

test result.

7.2. Equivalent Hysteretic Energy Compensation

As mentioned in Chapter 2, systematic errors often introduce energy adding or dissipating
hystereses into the force-deformation relations of linear elastic SDOF systems. These hystereses
can be easily measured in most SDOF experiments. They can be numerically compensated for
by correcting the restoring force feedback, as shown in Fig. 7.1, Similar phenomenon exists in
MDOF systems. However, due to the couplings among the structural degrees of freedom, the
hysteretic energy behavior is difficult to measure. It involves N? inter-relations in a N-degree-
of-freedom system. Under this condition, numerical compensation is difficult. Since the higher
modes are more sensitive to errors, an inadequate correction may aggravate the problem. To
compensate for the erroneous energy effects in MDOF systems, and to avoid the difficulties
mentioned above, an iterative correction process which uses an equivalent hysteretic energy

concept is developed here.
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7.2.1. Theoretical Basis

To reduce the complexity of the error compensation problem, we asSume that force-
feedback errors at each degree of freedom are of constant magnitude throughout a pseudo-
dynamic test. The signs of these errors are determined by the direction of force variation. In
this way, we can approximately simulate the energy changing hysteretic behavior caused by sys-
tematic errors. Using these assumptions, the equations of undamped motion of a linear elastic

MDOF system can be represented as
. ok
md+kd+[e{—|_—'—]-f 7.1)
r;

in which the last term on the left hand side is a vector of force-feedback errors; &' is a constant
magnitude error at degree of freedom /; and 7, is the corresponding rate of force variation.
Therefore, the & term is positive if it is energy dissipating, and negative otherwise. Applying
the conservation of energy principle to Eq. (7.1), we obtain
1 s .1 b P .
—dde+—did+de[é,’_—']dr=defdt (7.2)
2 2 ¢ Iffl 0
in which the first term on the left hand side is the kinetic energy of the system, the second
term is the strain energy stored, and the third is the work done by the force errors. The sum of

these three terms is equal to the total energy input by the external force f, If a system is excited

by a horizontal base acceleration, then
t * I L]
Jd ta=—~[d"m{1)a dr (7.3)
0 0

where a, is the base acceleration, and {1} is a unit vector with all elements equal to 1, By
transforming Eq. (7.2) into a system of modal energy equations, we can obtain the error & at
each degree of freedom of a system. To do this, we substitute Eq. (5.4) into Egs. {7.2) and

(7.3), and utilize the orthogonality conditions of the eigenvectors. Consequently, we obtain
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N
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2 T Ysr i."
K, D2 +fD 'y [ I;i[]dt (7.4)

N t

-~ 3% [ D¢ m{l)aa

m=1 0
for a N-degree-of-freedom system. The quantities M,, and K,, are the generalized mass and
stiffness for mode m, as defined by Eq. (5.6). The above equation implies that the sum of the
energy in all participating modes is conserved. Since energy can be neither gained nor lost at

each mode in a closed system, Eq. (7.4) can be equivalently expressed as a system of N equa-

tions:

1 2, 1 2 r -ri -— Y,
2MD+2KD+fD¢ o .{Dm¢mm{l}agdt (1.5
for m =1, 2,....., N. These equations, enforcing the conservation of energy at each mode, can

be further transformed to

1 2, 1 y (
EMmD,3+—2-KmD,%+2¢m,» fD T"'l-dt fD,VagdthSm,m, (1.6)
je=1 T jo=1

form=1, 2,....., N. The quantity ¢,, is the / th element of the eigenvector &,,, and m; is the

mass at degree of freedom /. Consequently, the & ’s can be found by solving the system of

linear equations:

A& =D (7.72)

where matrix A has elements represented by

-, f D, }r (1.70)
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and vector b has elements:

1 2 1 r - N
by == My D}~ = Kn D2~ [ Dpa, dt 3 ¢ m, (7.7¢)
2 2 0 =1

Therefore, if force errors in a pseudodynamic system are of the idealized form, they can be

easily computed by obtaining A and b from a trial pseudodynamic test.

7.2.2. Application

-4

Errors in real experiments are more irregular than what we have assumed. The & ’s
found from the equivalent energy approach are constant magnitude force errors, which have the
same amount of energy effect as the actual experimental errors. These equivalent energy errors
can serve for two useful purposes. They can be used as error indices for pseudodynamic resuits.
In addition, they represent the amount of compensation required to correct the force-feedback
values. If the actual errors in a pseudodynamic system are of the idealized form as in Eq.
(7.1), then all the erroneous energy effects can be eliminated by adding an error compensation
vector of — {&/ #/|#|} to the restoring force feedback. Unfortunately, this is usually not the
case. Displacement control errors may vary with displacement levels. Force errors will vary
accordingly, with contribution from every other degree of freedom of a system. Under these
circumstances, a single compensation may not lead us to a correct result, and an iterative
correction is recommended. The ¢ ’s found at each iterative trial can be accumulated to the
efror compensation vector until they become satisfactorily small. The convergence of the iiera-
tive correction cannot be formally proved here, but conceptually it should approach a better
result after every trial. The closer the actual errors to the idealized form are, the less number
of iterations will be needed. For this reason, this method is especially useful for correcting

force-measurement errors, such as those due to frictional forces, which are approximately con-

stant throughout a test.
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7.2.3. Examples

To illustrate the walidity of the energy compensation method, it is applied to a two-
degree-of-freedom simulation. This system has the same properties as the one used in Sec. 5.5.
The fundamental frequency w; is 10.92 sec™, and w, is 81.16 sec™, such that the second mode
is very sensitive to experimental errors. The correct response of the system, when subjected to
the El Centro 1940 (NS), 0.02¢ ground acceleration, is shown in Fig. 7.2. The integration step
used is 0.01 sec. From the figure, we can observe no obvious second mode participation in the
displacement response. However, the force history contains a moderate amount of second mode

effect.

To simulate a bad experimental setup, three types of errors are introduced into the sys-
tem. First, constant magnitude frictional forces of 0.002 kip are simulated to influence the
force-feedback values at both degrees of freedom. Secondly, the jack displacements at the first
and second degfces of freedom are deliberately mis-calibrated by 1.5% and 2.0%, respectively,
such that some energy will be dissipated by the inconsistent jack motions. Finally, truncation is
used to convert analog displacement values computed to digital signals; and displacement meas-
urements are calibrated to 0.5 and 5.0 in. ranges for DOF 1 and 2, respectively. Therefore, rela-
tively large truncation errors, which add energy into response motions, will occur at the second
degree of freedom. With these assumptions, the response of the system is numerically com-
puted, and shown in Fig. 7.3. We can see that the second mode is significantly excited in the
displacement and force responses by truncation errors. Furthermore, the force response is
totally overwhelmed by the high frequency noise, such that the maximum force experienced by
the structure becomes ten times greater than what would actually be developed. The resﬁlt is,

therefore, unacceptable.

Subsequently, the equivalent energy method is used to correct the above situation. By
using this method, we achieve a satisfactory result with eight iterative corrections, in each of
which we take five samples of &/ at equal time intervals. The averages of these samples are

added to the cumulative force compensation vector. At the end of corrections, the average
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values of é{ and & are reduced from 0.0072 and -0.0123 kip to 0.0026 and -0.0017 kip, respec-
tively. The correction procedure is shown in Table 7.1. The final resulis are shown in Fig. 7.4,
from which we can observe that most of the high frequency errors are removed, and the correct

response is closely restored.

However, the rate of convergence in this example is slow. We can show that the number
of iterations required depends on the selection of compensation values at cach trial. Due to the
existence of high frequency modes, adding energy into a system has a more drastic effect than
taking energy away from it. With this idea, we can increase the convergence rate in the previ-
ous example, but avoid additional excitation on the second mode at the same time. This is done
in the following way. Instead of taking the averages of five samples as compensation values, we
select the maximum energy-addition errors and the mimimum dissipative errors at each trial.
In this way, the undesirable growth of the second mode is rapidly eliminated, but the energy
dissipation is only gradually compensated for. Using this approach, we can obtain the same
level of accuracy as the previous example with five trials. The rates of these two approaches are

compared in Fig. 7.5.

7.3. Noise Removal by Numerical Damping

Some implicit integration algorithms, like the Newmark family of methods, Wilson’s 6-
method, and Houboult’s method {12], are highly desirable for the analysis of structural systems
which have large numbers of degrees of freedom. Besides the fact that they are unconditionally
stable, they also have a numerical damping property, which can suppress the spurious growth of
higher frequency modes. Hilber’s a-method [13] has the additional advantages that the numeri-
cal dissipation can be controlled by a parameter other than the time step, and that the lower fre-

quency modes are only moderately affected by the dissipative property.
Numerical damping is extremely helpful in pseudodynamic testing for two reasons. First,
it can be conveniently included to model the damping property of a structural system, both in

the elastic and inelastic ranges. Further, since the spurious growth of the higher modes due to
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experimental errors is the main source of system instability, the suppression of the higher fre-
quencies by numerical damping can ensure good experimental results. For these reasons, it is

desirable to use a dissipative explicit integration algorithm in pseudodynamic experiments.

7.3.1. Orthogonal Viscous Damping

In the analysis of linear elastic MDOF systems, damping ratios £, of all vibration modes

can be specified by a damping matrix of the form [16]:

c=mY a [m'k] (7.82)
5

in which the values of a;’s are determined by the equation:

1

2w,

£, = 2;“ ap w3t (7.8b)
This damping matrix has the orthogonality property with the eigenvectors of thg structural sys-
tem, as described by Eq. (5.3c). By means of Eq. (7.8b}), we can select appropriate parameters
a,’s for suppressing the higher frequency responses with severe dampings, while keeping the
lower modes reasonably damped. To illustrate that, we take the two-degree-of-freedom example
with truncation errors in Sec. 5.5 (Fig. 5.7). In this case, damping can be introduced by a

specific form of Eq. (7.8a):

cﬂa0m+a1k (79)

which has #’s equal to 0 and 1, respectively. This is the conventional Rayleigh damping. To
suppress the spurious growth of the second mode, we specify £; and £, to be 0.005 and 1.0,
respectively. The parameters ag and a; are then determined by solving Eq. (7.8b). Using the
same excitation record and numerical procedure as in Sec. 5.5, we perform a simulation with
the Rayleigh damping. The result is shown in Fig. 7.6. By comparing that with Fig. 5.7, we can

see substantial improvement in the simulation results. The high frequency noise is suppressed.
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However, problem arises when a structure becomes nonlinear. Since the orthogonal damp-
ing mﬁtrix depends on the stiffness of a structure, it has to be re-computed as the stiffness
changes. The sensitivity of this damping to the nonlinear stiffness effect is not known, Based
on Eq. (7.8b}, it is clear that the effective damping ratio can vary radically with frequency and,
in some cases, give negative values. In other words, the parameters g,’s determined for a
specific system may not be appropriate for a system with a different stiffness. Since we cannot
directly monitor stiffness changes during pseudodynamic testing, we have a problem of deter-
mining an adequate damping matrix for nonlinear structures. For this reason, an explicit
integration algorithm which has numerical damping is proposed here. The advantage of the
new algorithm lies in the fact that numerical damping ratios are approximately frequency-
proportional. The higher the frequency is, the larger will be the damping. As a resuit, the
damping ratios of the participating modes are automatically re-adjusted by the algorithm as fre-
quencies are changed by nonlinear deformations. Explicit knowledge of the structural stiffness

is no longer necessary.

1.3.2. Dissipative Explicit Algorithm
The new dissipative algorithm proposed here is a modified Newmark explicit method.
Rayleigh damping is incorporated into the algorithm by modifying the equilibrium equation in

the Newmark explicit formulation, such that

ma.+ ozk+-£3m]d,-

(1 +a) k+~AEt—2-m] di1 = fi1 +

A2

d,‘+1 = d,' + At v, + T a;, | (7.10)
Vier = ¥ + ‘%—t la; + a1l

By rearranging the equilibrium equation, we can see that the numerical damping in the

modified algorithm is approximately k- and m- proportional. This is similar to Rayleigh
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damping. By letting both « and p equal to zero, we have the familiar Newmark explicit method,
which has no dissipative property. When only p is equal to zero, we have the explicit a-
dissipation method [13]. When compared with the a-dissipation method, the mass proportional
damping in the modified algorithm provides additional freedom to adjust the distribution of
damping ratios among the vibration modes. The advantage of this will be discussed later in this
section. To obtain larger damping on the higher modes, we have to assume that « is positive
and p is less than or equal to zero. With these assumptions, the algorithm has the following

numerical properties.

Stability. A numerical method is stable if a free-vibration response given by it will not grow
without iimit under any arbitrary initial conditions, The modified integration method is stable

under the following conditions:

(i) Fora > 0andp < 0,

-
)& <otV (I+a)p (1.11a)
o l+a
(ii) Fora =0 and p = 0,
0< Q<2 (7.11b)

in which 2 = wAz. The method is unstable if @ = 0 and p < 0. Eq. (7.11b) is the stability
condition for the Newmark Explicit Method. We will see next that for Q < ~/—p/a, damping
is negative and energy will be added into the response motion. For this reason, the method will

be unstable. The derivation of the stability conditions can be found in Appendix D.

Numerical Damping. Numerical damping of the integration algorithm can be found by means of
Eq. (3.20). Using the information in Appendix D, we obtain the following damping ratio equa-

tion and parameters:

—__ln(l—aﬂz—P) 712
3 '8 (7.12)
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where
Q = arctan [-—]
A=1-(+a) 2 _2
2 2

Q9 p
1+ a) 3 +2

2 ]1/2

From this equation, we know that damping is zero at { = /—p/a. For Q < J—p?a, damping

B-{Qz—

is negative and the solution becomes unstable. Thus, v—p/a is the lower stability bound. By a
proper combination of a and p, we can specify an optimal frequency-damping relationship. See
Fig. 7.7 for an illustration. The figure shows two sample curves governed by Eq. (7.12). Both
curves have v—p/a equal to 0.1, but have « equal to 0.1 and 0.5, respectively. We can see that
damping increases with increasing . In addition, by bringing ~—p/a closer to w;At, we can
have a larger £,/€, ratio. With a larger £,/£, ratio, we can impose more severe dampings on
the higher frequency modes, while leaving the fundamental frequency undamped or slightly

damped.

The other property which may be of interest to the user is the period distortion caused by
the algorithm. As shown in Appendix B, the Newmark explicit method will only have a small
period shrinkage when wA? is smail. At low damping values, the modified algorithm is basically
the same as the Newmark explicit method. The period distortion increases as damping

increases. However, response becomes insignificant when large damping values are used.

7.3.3. Examples
In the first example, we try to further improve the two-degree-of-freedom simulation in
Sec. 7.2.2, using numerical damping. After the equivalent energy compensation, significant

high frequency noise can still be observed in the first few seconds of the force history, as
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shown in Fig. 7.3. This may cause premature yielding or failure of the structure in a real test.
Therefore, in addition to the energy compensation, we impose a large second mode damping to
reduce the noise. By selecting « and p to be 0.4208 and -0.005, respectively, we have v—p/a
equal to w;Af. As a result, £, is O and £, is 15.6%. The result of this simulation is shown in
Fig. 7.8. It indicates further removal of the high frequency noise. However, the displacement
response, which is basically at the fundamental frequency, is reduced also, even though £, is
equal to zero. This can be explained by the fact that the energy compensation in the previcus
example becomes excessive when the response is changed by numerical damping. We have o
re-adjust the force correction vector to improve the result. Numerical damping can slso be
included in the equivalent hysteretic energy compensation, as long as the energy change caused
by the damping is taken into account in the energy equation. This may be a better approach

than doing them separately.

The second example is a two-story shear building which is inelastically deformed. The ine-
lastic inter-siory shear deformation relationships are modelled by the Menegotto-Pinto relation.
The properties of the structure are shown in Fig. 7.9. Under mild deformations (i.e. when the
structure is approximately linear elastic), w; = 11.2 sec™! and w, = 35.7 sec”\. A high fre-
quency noise is introduced into the displacement response by simulated force errors of the
energy-addition type. The comparison of the erroneous response with the correct one is shown
in Fig. 7.10. We see that thé response at the second degree of freedom is severely contaminated
by the high frequency noise. The resulting hysteretic behavior becomes very different from the
actual, as indicated by the lower graphs of Fig. 7.10. Integration step used is 0.02 sec. Finall&,
by letting « and p be 0.4 and -0.016, respectively, we have £, = 0.9% and £; = 13.6%. The
significantly improved result with these damping values is shown in Fig. 7.11. The displace-
ment response observed is slightly larger than the correct response because of the remaining

energy effect of the simulated errors, as the first mode damping is small.
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7.4. Comments

The equivalent hysteretic energy compensation method is designed to correct the sys-
tematic error effects. By this method, energy can be freely taken out from or added into any of
the participating modes until the correct‘structural response is restored. The smaller or more
consistent the errors are, the faster and easier will be the correction. Therefore, this method is
efficient for correcting force-measurement errors which are caused by frictional forces. When
errors are more irregular, compensation performed for one displacement history may not be
adequate for the others. In that case, good judgment and many trials are required to decide

upon the best force correction vector.

Numerical damping introduced into the Newmark explicit method is heipful for suppress-
ing the spurious growth of high frequency responses. It is complementary to the energy com-
pensation method. The number of iterations required in energy compensation may be reduced
if high frequency noises are removed beforehand. However, care should be taken in selecting
v=p/a, which should not exceed wA¢, as w; decreases when a structure becomes nonlinear.
When used with the energy compensation method, the energy dissipation due to numerical

damping should also be included in the energy computation.

By using these correction methods, the error-propagation problems observed in the previ-
ous chapters can be significantly reduced. In addition, pseudodynamic testing of MDOF systems

under adverse experimental conditions becomes more stable and reliable.



-61-

CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

8.1. Summuary

Experimental error propagation in pseudodynamic testing has been thoroughly investi-
gated in this report. The major sources of experimental errors are discussed. The errors are
classified according to the sources, occurrence patterns, and their influences on experimental
results. Three integration methods which were previously recommended for pseudodynamic
testing are studied here in terms of their error-propagation behavior. They are the basic central
difference method, the Newmark explicit method, and the summed form of the central
difference method. Based on the error-propagation behavior, the reliability of the pseudo-
dynamic method in testing linear elastic and inelastic structures is evaluated. The additional
problems in MDOF testing are also identified. Analytical methods are developed for estimating
error bounds in lincar elastic testing. Furthermore, two numerical methods are proposed to
improve experimental resulis and to prevent numerical instability in MDOF testing. They are
the equivalent hystereﬁc energy compensation and the modified Newmark explicit algorithm
which has adjustable numerical damping. The modified algorithm is recommended for all

MDOF pseudodynamic tests.

From the results of this investigation, the characteristics of experimental errors and of

their cumulative growth in pseudodynamic experiments can be summarized as follows:

(1) According to the sources, experimental errors can be classified into three general
categories: (i) displacement-control errors ef, (ii) displacement-measurement errors e™
and (jiii) force-measurement errors ¢/”. These errors amount to the total displacement-
and force-feedback errors, ef and e/, which can be introduced into numerical computa-
tions. Displacement-feedback errors ef can be avoided by using the computed displace-
ment in the numerical aigorithm instead of the measured one. This procedure has been
analytically proved 1o be the more accurate approach for all three numerical algorithms

studied. Force-feedback errors, which are contributed by e* and e/™ are always
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introduced into numerical computations. Therefore, they are totally responsible for the

cumulative error growth in pseudodynamic experiments,

Two types of force-feedback errors can be identified: random and systematic errors. Sys-
tematic errors often result from poor performance of experimental equipment, inadequate
instrumentation, or improper testing technique. They often have persistent energy chang-
ing effects. They can either dissipate energy from or add energy into a response motion,
such that a pseudodynamic response can appear to be significantly damped or have uniim-
ited growth (instability). No physical interpretation can usuaily be associated with random
errors, except that they also cause some undesirable excitations during pseudodynamic

testing.

Under the influence of force-feedback errors, the three numerical methods studied have
identical error-propagation properties. Erfor propagation due to systematic errors is much
more significant than that due to random errors. This is because of a resonance-like
phenomenon associated with systematic errors. Generally, significant cumulative errors
can occur in experimental results even though only relatively small systematic feedback
errors are present. The cumulative growth of random errors can always be minimized by
reducing integration time step At. However, the rate of systematic error growth with

respect to time is not sensitive to Af.

For both random and systematic errors, the rate of cumulative growth with respect to the
number of integration steps depends on wAs. The larger the wA¢ is, the faster will be the
cumulative error growth. Therefore, the higher frequencies of a MDOF structure are
more susceptible to error propagation than the lower frequencies. If systematic errors of
the energy-addition type are present, the high frequeﬁcy modes of a system can be
significantly excited so that numerical computations become unstable, Consequently,
MDOF testing preéents more severe error-propagation problems than SDQF tests. In gen-
eral, the wider the frequency span of a system is, the more severe will be error propaga-

tion.
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(5) Error propagation in inelastic structural testing is studied with a simple elasto-plastic
model. Inelastic deformations of this type do not impose additional problems on pseudo-
dynamic testing. Instead, pseudodynamic results tend to be more accurate in inelastic test-
ing. Accuracy incresses with increasing displacement ductility. Therefore, -the reliability
criteria for linear elastic tests can be conservatively used to assess the accuracy of inelastic

testing, as long as inelastic deformations are within reasonable range.

8.2, Recommendations for Pseudodynamic Testing

Pseudodynamic results can be significantly influenced by the cumulative effects of experi-
mental feedback errors. Overall experimental results can be rendered totally unreliable, and
numerical computations can become unstable if the feedback errors are not properly controlled.
Fortunately, most of the systematic errors can be eliminated or reduced to insignificant levels
by using appropriate instrumentations with proper calibration, reliable test apparatus, and good
experimental technigues. To assess the significance of these errors prior to testing and mitigate
their effects during testing, the following precautions and improvement methods are recom-

mended.

8.2.1. Preliminary System Check

Possible sources of experimental errors must be first identified before any test. Some of
these are discussed in Chapter 2 of this report. Generally, the presence of any significant sys-
tematic errors can he easily detected with some preliminary tests. The following checks can be

carried out to assess the accuracy of the pseudodynamic system:

(1) Force-feedback errors are contributed by both displacement-control errors ¢ and force-
measurement errors ¢/, Most of the displacement-control etrors, especially those of the
energy-addition type, can be observed from the discrepancy between the computed and
the measured displacements. This discrepancy can be monitored during some trial pseu-

dodynamic tests. By computing the Fourier spectrum for the monitored error signals,
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systematic errors can be identified by peaks located at the natural frequencies of the struc-
tural system. The accuracy of displacement control can also be checked by imposing a
series of simple displacement increments with the pseudodynamic control system. Gen-
erally, most of the displacement-control errors and instability sources can be identified

before any major test.

Preliminary pseudodynamic testing within the linear elastic range is always recommended
before any destructive test. Linear elastic pseudodynamic results should closely match
analytical results obtained with appropriate structural models. Significant discrepancy
between the two indicates the presence of experimental errors. It must be noted that poor
experimental results in the elastic range do not always imply poor results in inelastic test-
ing. Relative errors are approximately inversely proportional to structural displacements
developed. The larger the inelastic displacement is, the more accurate will be the result.
If results are accurate within the elastic range, then any further inelastic testing should be

reliable as well, as far as experimental error propagation is concerned.

During preliminary testing, measurement of the equivalent hysteretic energy errors, as
described in Chapter 7, is desirable. It provides quantitative information about error mag-

nitudes and the amount of compensation required to improve the result,

Most experimental inaccuracies can be detected with the above precautions. It should be

noted, however, that a small amount of energy dissipation is usually expected because of local

yielding or frictional damping in a test structure. Prior to any test, all systematic errors should

be reduced as much as possible by adjustment of test equipment, modification of testing tech-

niques, or use of different apparatus if necessary.

8.2.2, Improvement Methods

Experimental error effects which remain after the preliminary checks and corrections can

be compensated for or eliminated by the two numerical methods discussed in Chapter 7:
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(1) The equivalent hysteretic energy compensation can be used to correct persistent energy
modification effects. It is especially recommended for correcting exceedingly large energy
dissipation due to frictional damping. However, erroneous high frequency oscillations can

be suppressed more efficiently by using numerical dissipation.

(2) The spurious growth of the high frequency modes of a MDOF system can be conveniently
suppressed by means of the modified Newmark explicit algorithm, which has numerical
dissipation. The numerical damping can be adjusted in such a way that the high frequency
modes are severely damped, while the lower frequency modes are only moderately

affected.

8.3. Concluding Remarks

Pseudodynamic testing is # feasible experimental method from both theoretical and practi-
cal viewpoints. Reliable pseudodynamic results can be obtained by means of good instrumenta-
tions and appropriate test apparatus, as well as efficient error compensation or removal tech-
niques. From our investigation, we can conclude that the propagation of experimental errors

through numerical computations is a major problem in pseudodynamic testing.

Additional studies of error propagation in MDOF inelastic systems should be done
(though not expected to‘be a problem). Verification tests should also be performed to compare
pseudodynamic test results with shaking iable test results. Furthermore, the efficiency of the
error control methods in actual testing should be evaluated, and other alternatives should be
studied. Therefore, identification of experimental errors in complicated pseudodynamic testing,
improvement of instrumentation techniques, selection of good performance equipments, and

refinements of numerical schemes should be the main objectives of future researches.
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! Basic Newmark Summed-Form
Central Difference Explicit Central Difference
v i 0 1 1
X, (d, d-}” {di, v, a}7 {d, z)"
'
1 Ar A;.
D 2 -1 01 & L A
10 : 0 1
00 0
H|
S {w?m, 0] {w?m, 0, 0} {w?m, 0}
=L faz, o}” {0, &, L}7 {0, a7
1 At AT'z
A [2—(»%;2 —1] SRS Y QS 1 Ar
1 0 Co? Ay —otad —w’At 1—w?Ar?

Table 3.1

Characteristic Matrices and Vectors of the Explicit
Integration Algorithms
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Summed-Form
Basic Central Difference
Central Difference & _
Newmark Explicit
a; 2 ¢ e
az,' 2 A - 1 .d A —-— 1 4
B € B &
by, 2(-4)e" 0
2U-A) 4, 200-4) ,
b i L~ AJAaA Ld rd
. B © 5
Table 3.2

The Paramgtgrs for the Error-Propagation Equations
of the Explicit Integration Algorithms
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. CE Cumulative Error Total
armonic Error Bound b .
No. of B ounad by Cumulative
Amplification Factor EOE
Steps Pl }.}, Each ;{Trmo‘;}lc (in) | Brror Bound
J CJ" J (in)

n
5,-0.991 |g,—1.013) g, —0.991]B,=Lo13]| 2 X lal 4,

0 0 0 0 0 0
100 19.4 19.3 | 0.016 | 0.023 ) 0.039
200 38.0 37.1 | 0.031 | 0.044 | 0.075

300 55.4 52.8 | 0.045 | 0.062 | 0.107

400 71.3 65.2 || 0.058 | 0.077 || 0.135
500 85.1 | 73.6 | 0.069 | 0.087 || 0.156
600 9.4 77.6 § 0.078 § 0.092 )] 0.170
7004 104.8 76.8 1 0.085 | 0.091 ) 0.176

Table 4.1 Cumulative Error Bound due to Two Major Harmonics

Near Resonance Frequency
(w = 18.91 sec™!, Ar = 0.02 sec, the example in Fig. 4.5)



Stiffness Matrix k

(kips/in)

759.3  -770.0 13.03 -2.683 0.5259 -0.1135
-770.0 1550 -799.5 23.10 -4.499 0.9682
13.03 -799.5 1754 -997.4 36.15 -7.753
-26.83 23.10 -997.4 2116 -1179 47 .43
0.5259 -4.499 36.15 -1179 2556 -1457
-0.1135 0.9682 -7.753 47.43 -1457 2504

Table 5.1  Stiffness Matrix of a Six-Story K-Braced Steel Frame

- 1071 -
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Vibration Frequencies o At
Modes ® (Ar = 0.01 sec)
m (sec™)
1 7.76 0.078
2 21.0 0.210
3 34.4 0.344
4 45.8 0.458
5 54.9 0.549
6 66.7 0.667
Table 5.2 Modal Frequencies of a Six-Story K-Braced Steel Frame

Normalized Mode Shapes ¢,

(5 ¢n =1

m=1 m=2 m=3 m=4 m=5 m=56
-0.5784 .5398 0.4613 0.3731 -0.1478 0.0141
-0.5315 .2193 -0.2625 -0.6476 0.4210 -0.0622
-0.4421 -0.2277 -0.5698 0.0968 -0.6172 0.1943
-0.3398 -0.4837 -0.0989 0.4904 0.4500 -0.4448
-0,2328 -0.5046 0.4161 -0.1042 0.1702 0.6915
~-0.1335 -0.3465 0.4591 -0.4250 -0.4342 -0.5312

Table 5.3 Normalized Mode Shapes of a Six-Story K-Braced Steel Frame




Random Error Amplification Factor for Each Mode m

Root-Sum

-Square

Factor

- liﬂlmax
m = = SP
2.86 7.21 17.8
2.63 2.93 2h.7
2.19 3.04 27 .4
1.68 6.46 30.3
1,15 6.74 33.7
(.660 4,63 33.1

Table 5.4 Modal Contributions of Cumulative Errors in a
Six-Story K-Braced Steel Frame
20 sec, At = 0.01 sec)



4.195
-8.848

5.291

-2.429
3.795
-2.240

-8.848
19.74
-12.55
5.133
-1.472
4.029

Stiffness Matrix k

(10* kips/in)

5.291
-12.55
9.339
-4.344
4.250
-15.67

-2.429 3.795
5.133 -7.472
-4.344 4.250
4.382 -3.693
-3.693 6.511
0.5780 -4.435

~2.240
4.029

-1.567
0.5780

-4.435
7.435

Table 5.5 Stiffness Matrix of a Six-Story Reinforced Concrete Structure

- ¥01 -
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Vibration | Frequencies oAt
Modes © (A7 = 0.005 sec)

m (sec™)

1 7.76 0.039

2 26.1 0.131

3 57.6 0.288

4 98.9 0.494

5 144 0.721

6 312 1.561

Table 5.6 Modal Frequencies of a Six-Story Reinforced Concrete Structure

Normalized Mode Shapes ¢,,

(4’:5 ¢y = ]-)

m=1 m =2 m= 3 m=4 m=25 m=6
0.6509 ~0.5981 -0.3219 -0.112 0.0051 -0.3203
0.5303 -0.0039 0.2545 0.3502 -0.1872 0.7045
0.4115 0.3541 0.6324 0.0085 0.3080 -0.4587
0.2925 0.4660 -0.2388 -0.7633 -0.0759 0.2279
0.1830 0.5184 -0.4440 0.4716 -0.4192 -0.3203
0.0821 0.1758 -0.4214 0.2449 0.8299 0.1901
Table 5.7 Normalized Mode Shapes of a Six-Story Reinforced Concrete Frame
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Random Error Amplification Factor for Each Mode m Root-Sum
m 13 Factor
— I‘élilmax
m = m=2 m=3 m=4 m=25 m=6 TS,
2.27 7.02 8.38 5.07 0.353 71.5 72.6
1.85 0.05 6.63 16.0 12.9 157 159,
1.44 4.16 16.5 (.388 21.3 102 106
1.02 5.47 6.22 34.8 5.25 50.9 62.5
0.64 6.09 11.6 21.5 29.0 71.5 81.2
0.29 2.06 11.0 11.2 57.4 42.5 73.1

Table 5.8 Modal Contributions of Cumulative Errors in a
Six-Story Reinforced Concrete Structure
(at ¢ = 20 sec, Ar = 0.005 sec)
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[ s oo o sampes Avesge | Comuins
#op 1 2 3 4 5 | B@ | L E@
1 0.0006) 0.0064| 0.0083] 0.0094] 0.0113]] 0.0072) -0.0072
’ 2|l -0.0217[ -0.0137| -0.0107{-0.0076|-0.0075 || -0.0122} 0.0122
1} -0.0014f 0.0007{ 0.0052| 0.0009] 0.0047 | 0.0020§ -0.0092
' 21l -0.0218{ -0.0122{ -0.0085{-0.0049{-0.0050 {{ -0.0107} 0.0229
1 F -0.0302| 0.0053] -0.0057]-0.0062|-0.0056 | -0.0085| -0.0007
: 2t -0.0125{ -0.0141} -0.0041|-0.0037}-0.0017 I -0.0072) 0.0301
1{ 0.0002 | 0.0005| -0.0000{ 0.0005| 0.0020 | 0.0006| -0.0013
’ 2 11-0.0132 {-0.0035} -0.0033{-0.0026|-0.0036 || ~0.0052] 0.0353
1{[-0.0030 | -0.0023( -0.0018{-0.0016{-0.0005 || -0.0018{ 0.0005
* 2 {1-0.0091 | -0.0023| -0.0026|-0,0028|-0.0012 |{ -0.0036{, 0.0389
1] 0.0010 | 0.0022{ 0.0003}] 0.0010| 0.0016 | 0.0012{ -0.0007
° 2 |-0.0118 | -0.0069| -0.0033|-0.0017}-0.0003 || -0.0048) 0.0437
1[-0.0093 [-0.0078} -0.0039|-~0.0031}-0.0054 || -0.0059 ) 0.0052
° 2 {-0.0085 [-0.0025| -0.0016{ 0.0009} 0.0002 |} ~0.0023}f 0.0460
1 {{-0.0044 |-0.0043| 0.0056| 0.0062| 0.0065 | 0.0036| 0.0016
’ 2 ||-0.0015 |-0.0016| ~-0.0018{-0.0022;~-0.0026 || -0.0019 | -0.0479
1|1 0.0019 | 0.0039] 0.0031| 0.0023} 0.0017 || 0.0026 r STOP
° 2 “—0.0016 -0.0029( -0.0014{-0.0011{-0.0015 L-0.00l?H
Table 7.1 Iterative Correction in a Two-Degree-of-Freedom System

by the Equivalent Hysteretic Energy Compensation Method
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Fig. 1.1  Basic Experimental Scheme of the Pseudodynamic Method
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i=ji+1
Displacement Computed and
to be Imposed at Step /:

d;

~ -_—
d,' = d,' + e,d’”
F,‘ = F; + e,-""

Actual Feedback:

Actual Displacement:
&=+ eff

STRUCTURE

Fig. 2.1  Sources of Experimental Errors in Pseudodynamic Testing
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Fig. 2.2  Displacement Control Diagram of the Pseudodynamic System at Berkeley
(C;: actuator displ. calib., C,: displ. transducer calib., and C,: load trans-
ducer calib.; C; = C; x SPAN)
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(a) Relation of Force-Feedback Errors (e))
with Computed Displacements (d))
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/
/
/
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(b) Apparent Stiffness (k) vs Actual Stiffness (k) of a System

Fig. 2.3  Systematic Error Effects due to Mis-Calibration of Control
and Measurement Transducers
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(a) Relation of Force-Feedback Errors (¢)
with Computed Displacements (d,)
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{(b) Apparent Energy-Changing Force-Deformation Hysteresis

Fig. 2.4  Systematic Error Effects due to Mis-Calibration of Actuator Displacement
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(a) Relation of Force-Feedback Errors (e))
with Computed Displacements (d))
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(b) Apparent Energy-Dissipating Force-Deformation Hysteresis

Fig. 2.5  Systematic Error Effects due to a Constant Frictional Influence
on Force Feedback
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(b) Apparent Energy-Adding Force-Deformation Hysteresis

Fig. 2.6  Systematic Error Effects due to Truncation Errors in the
A/D Conversions of Displacement-Control Signals
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(a) Relation of Force-Feedback Errors (/)
with Computed Displacements {(d,)

(b} Apparent Discontinuity of Stiffness

Fig. 2.7  Systematic Error Effects due to Idealized Slip Movement
of System Support at Load Reversal
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(b) Apparent Energy-Changing Force-Deformation Hysteresis

Fig. 2.8  Systematic Error Effects due to Persistent Overshooting
or Lagging-Behind of Actuator Motion
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Comparisons of Cumulative Error Growth Among
Different Integration Methods
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Fig. 3.2  Error Propagation in the Basic Central Difference Method
(w = 18.91 sec™', At = 0.02 sec)
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Error Propagation in the Basic Central Difference Method
(v = 18.91 sec™!, and Ar =0.01 sec)
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APPENDIX A
MODELLING OF SYSTEMATIC ERRORS

Al, Transducer Calibration Errors

We assume that displacement and force transducers are mis-calibrated with small errors
+8C, and +8C,, respectively, and that C, and C, are the correct calibration factors of the
transducers. Due to the displacement transducer calibration error, the actually imposed and

measured displacements are

 =d; + ef* (AD
and
ai = 3,'.“1‘ eidm

respectively, where 4, is the computed displacement; and e and e are the displacement con-

trol and measurement errors. The incremental displacement at each step is
A;,"= 21 s 21,_1 (AZ)

Because of the erroneous calibration factor, the displacement-voltage conversion is incorrect,

and the actually imposed displacement becomes

- A
o A3
d, d’1+CdiaCdCd (A3)
Neglecting the higher order terms of 8C,/ C,, we have
— A " SC
di=d_y +Ad; [1 - j:——-f-l (A4)
Ca

Substituting Egs. (A1) and (A2) into Eq. (A4), we get
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. - 8C, -
di=d — e — + —Ci (Ad, — efe, — ef) (AS)
d

in which Ad, = d; — d,_;. Due to the error in voltage-dispalacement conversion,

~ —_

dici=diq |1 £ (A6)

8C,
Cy

Consequently, e = + d,_1. Substituting this into Eq. (A5) and neglecting the

(6C,/ Cef and (8C,/Cre terms, we obtain

- - 8C, -
e — . 7
d; ; [t . d,] (AT)

Therefore, the displacement control and measurement errors are

§C, —
e,'dc= *+ _—d d{ (Ag)
Cy
and
ef=— et
Similary, because of the load transducer calibration error +8C,, the measured force feed-
back is

. 3C,
fi=kd |l & (A9)
v )
Consequently, the force measurement errors are
et d 8C et
eM=r—kd== -k d; (A10)



- 158 -
Neglecting the (3C,/C,) e term, we have

8C, -
M=+ —— k g, (A11)

AZ. Actuator Displacement Calibration Error

If the calibration of actuator motion is inconsistent with displacement transducer calibra-

tion, such that there is an error +8C), the actually imposed displacement at step i becomes

it

Ad;

dy=d;; + m C; (A12)

where C; = C; x SPAN is the correct calibration factor of actuator displacement (see Fig. 2.2);

and

Ad/=d;~ d, (A13)

by assuming that displacement measurement errors do not exist. Substituting Eq. (A13) into

Eq. (A12), and neglecting (8C;/C)) ef| and the higher order terms of 3C;/ C;, we have

t_ji‘= é_if + L A—,' (A14)

! Ad, (A15)
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APPENDIX B

EXPLICIT INTEGRATION ALGORITHMS

Bl. Formulations and Numerical Properties
(i) Basic Central Difference Method

Without viscous damping, the dynamic equilibrium of a SDOF system at time ¢ = [ At is

ma,-+r,-=fi (Bl)

where r; = k 4, In the basic central difference method, the velocity and acceleration terms are

approximated by

dr‘+1 - di—l

A (B2)

Vi =

dir1—2 di + digy
! AR

respectively. Substituting the acceleration term in Eq. (B1) with Eq. (B2), we have the numeri-

cal formulation:

A
dj+1=2 d,"—di..l“"—;;z_(fi—r,') (B3)

Further, by letting r, = k d; and f; = 0 in Eq. (B3), we can obtain a recursive matrix form of

free-vibration response:

X4 = A X; (B4ﬂ.)

where

d
X; = df—l (B4b)
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and

lz—wasﬂ —1]

Stability. A numerical method is stable if the free-vibration response computed by it will not
grow without bound for any initial conditions. From Eq. (B4), we can see that
dy= cy M+ ¢3 Mf, where Ay, are the eigenvalues of A (refer to Sec. 3.3). Therefore, the
method is stable if |15l < 1. Furthermore, A, must be complex conjugates in order to have

oscillatory response. By solving the eigenvalue problem (A=MD =0, we have

AM2=A4A % iB (BSa)
where
24 2
A—l—w§t~ (BSb)

Vi— (@lAr—2)?
7

B =

To satisfy the stable oscillatory response conditions, we must have (42+ BY) < 1 and B be
real. Since (42 + B?) is always equal to 1, according to Eq. (BSb), we have the stability condi-

tion that

(?A-2)2< 4 (B6)

which implies

0L wAt <2 (B7)

When B = 0, the response is non-oscillatory, but stable.

Accuracy. The accuracy of a numerical method is measured by the deviation of numerical

damping £ and frequency w from the true & and « values of a system. According to Egs.
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(3.20) and (BSb), we have

§=0 (B8)

and

1 Vi— (@iAf-2)?
At 2-wlAfd

Therefore, the central difference method does not have numerical dissipation property. From
Eq. (B8), we can find that (w — ®)/w is smaller than 1% when wAt is less than 0.5, Conse-

quently, both accuracy and stability can be achieved with reasonably small Ar.
(ii) Newmark Explicit Method

Using the Newmark integration method [11], we consider the equilibrium equation:

m a1+ riv = fin (B9

and assume that the velocity and acceleration can be approximated by

Vigl = V; + [(1 - d) a; + ai“i-l} At (BIO)

digg = d; + v; At + [(%— B) a;+Ba] AP (B11)

where « and 8 are parameters selected by the user. By letting « = 1/2 and 8 = 0 in the above

equations, we immediately obtain an explicit algorithm as

_ Af
d,’+1 = d,' + At v,— + '_2— a,' (Bl2)
1
a1 = - (fi+1 =~ ris) (B13)

vi+1 = V" + % (a,- + ai-}-]) (B14)
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By setting f;s1 =0 and r..1 = k d,1, We can obtain a recursive matrix equation of free vibra-

tion as Eq. (B4a) with

d;
X; =1V (Bls)
a;
and
A
1 At 5
| o’Ar . AP Ar-e’Al
A== =3 2
24 2
—0?  —wlAt —‘—"—2’-‘:’—

In this case, the first two eigenvalues, Ay, of A turn out to be identical to those in (i), and
A3 =0. Therefore, this method has the same numerical properties as the basic central

difference method.
(iii) Summed Form of the Central Difference Method

From Eq. (B9), the dynamic equilibrium at ¢ = (i + 1) Ar, we get
1
i+ = o (Fis1 — rist) (B16)
Defining a new term z; = (d;s; — d,)/At, we have
di+1 == d,' + At Zi (B17)

Hence, knowing z4; — z; = (dj4g — 2 djy1 + d))/At, we can obtain from Egs. (B2) and (B16)

the expression

At
Zin=z+ o (fie1— ris1) (B18)
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-Eqs. (B17) and (B18) are the summed form of the central difference method. It can avoid
unfavorable rounding errors which will occur in the basic central difference method when Az is

very small [14].

In a similar way as before, we find a recursive matrix formula with
d;

and

A 1 At
T l-elAr 1-0?A

The eigenvalues of A are again identical to those in Eq. (B5). Therefore, the numerical proper-

ties here are similar to those of the two previous methods.

B2. Transformability of the Explicit Algorithms

The three explicit integration algorithms just discussed have identical numerical proper-
ties. This can be expected if we know that they are transformable to one another and are

mathemtically identical. This will be shown in the following.
(i) Summed Form to Basic Central Difference Form

Because of Eq. (B17), we have

dH—l - d[ = df - di~l + At (Zi - Z,'_l) (B20)

Substituting z; — z._; in Eq. (B20) with Eq. (B18), we obtain Eq. (B3).
(ii) Newmark Explicit Form to Basic Central Difference Form

Because of Eq. (B12), we have

2
di-H - d; = di - di-—l + At (V,- - VfA_l) + éi't‘— (a,~ - a,-_.;) B21)
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Substituting v; — v,_; in Eq. (B21) with Eq. (B14), we get

dyt1— di = d,— diey + A1 a (B22)

which is again Eq. (B3) by subsituting a; with Eq. (B13).

However, because of the different numerical forms, these methods can have different
magnitudes of rounding errors and error-propagation properties when computations are carried

out with a digital computer and experimental feedback is used during a pseudodynamic test.
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APPENDIX C

ERROR PROPAGATION EQUATION
FOR THE BASIC CENTRAL DIFFERENCE METHOD

From the basic central difference method, we can identify the following characteristic

matrices and vectors:

1 0
2 ~1
B=1 o
AR
m
L=1y
S = {w?m, 0}

cn

Since x,; = {d,, d,_,} 7, errors introduced in each step can be modelled as ef= {ef 0} and

e/?={e/? 0} 7 respectively. Using these error vectors and Eq

(3.23) that

a;=12 ef

Q1) = 44-1 eid

and

Bii= 2 (1 - A) e,-’d

By =41 —A4) A4 e

. {C1), we can obtain from Eq.

(C2a)

(C2b)

in which A is the real part of the eigenvalues Ay, of A, as defined in Bq. (B5) in Appendix B.

Since the third eigenvalue A3 does not exist and £ =0, as shown in Appendix B, Egs. (3.22b)



- 166 -
and (3.22¢) give
@, = di; COS wAt{n—9 + az; sin wAt{n—1i) (C3a)

Bni= bi;cos wAt(n—i) + by; sin wAt(n—10 (C3b)

By substituting Eq. (C2a) into Eq. (C3a), we can solve for a;; and a;

a;=2¢f {C4a)

knowing that 4 = cos @At and B = sin wA¢ from Eq. (3.19). Similarly, we find

by; =20 —4) e (C4b)

_20-44

b2i B i

Substituting these parameters back into Eq. (3.22), we arrive at Eq. (3.30), the cumulative dis-

placement error equation.
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APPENDIX D

MODIFIED NEWMARK EXPLICIT ALGORITHM
WITH NUMERICAL DAMPING

The modified Newmark explicit algorithm formulated in Eq. (7.10} can be written in a

recursive matrix form as

x’.+l == A x[. . (Dla)
where
d;
X = At Vi (le)
Atz a;
1
1 1 7
_l.a2 Q’ p 1 o’ p
A= > 1- (1+) 2 3 (1+a) 44
2
~Q? —(l+a)ﬂz-p —(1+a)QT g—
Matrix A has eigenvalues
A=A £ (A12 — 4y 1/2 (D2a)
and
}\3 = 0
where
A=1-(+a) X _2 (D2b)

Az 1"(102—"[1
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To satisfy the stable oscillatory condition, we must have Af < A,; €1, such that Ay ; aré com-
plex conjugates and !hl,zl < 1, as discussed in Appendix B. When AZ = A, the algorithm
will have a non-oscillatory solution, but the solution will remain stable if 4; < 1. The condi-

tion 4 € A, implies that

—-]+-\/1—“+ajp 1+\/1—z1+aig
< <
1+« S < 14« (D3a)

and from A; € 1, we have

Q ;_‘/_p_ (D3b)

If p is always negative and « is positive, we can combine the conditions in Egs. (D3a) and

(D3b) as

-

1+«

This is the stability condition for the modified Newmark explicit algorithm.
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D.F. Tsztoo =~ 1978
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"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp
and A. Mukhopadhyay - 1978

"Experimental Results of an Earthguake Isolation $System using Natural Rubber Bearings," by J.M.

sidinger and J.M. Kelly - 1978 (PB 281 686)A04

"Seismic Behavior of Tall Liguid Storage Tanks," by 4. Niwa - 1978 (PBE 234 (017)Aald
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"Optimal Design of an Earthquake Isclation System," by M.A. Bhatti, K.S. Pistar and E. Polak - 1978
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"MASH - A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in
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"Studies of Strong Ground Motion in Taiwan," by ¥.M. Hsiung, B.A. Bolt and J. Penzien - 1978
(PB 298 436)A06

"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Height to Width Ratio of 2," by P.A., Hidalgo,
R.L. Mayes, H.D. McNiven and R.W. Clough - 1978 (PB 298 211)A07

"Cyelic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratio of 1," by S.-W.J. Chen,
P.A, Hidalgo, R.L. Mayes, R.¥W. Clough and H.D. McNiven - 1978 (PB 296 212)A0%

"Rnalytical Procedures in Soil Dynamics," by J. Lysmer - 1978 (pB 298 445)A086

"Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages," by B. Forzani,
E.P. Popov and V.V. Bertero -~ April 1979(PB 298 287)a06

"The Development ¢f a Mathematical Model to Predict the Flexural Responsa of Reinforced Concrets Beams
to Cyclic ILoads, Using System Identification,"” by J. Stanton & H. McNiven - Jan, 1979(PB 295 87%5)AlQ

"Lineaxr and Nonlinear Earthquake Response of Simple Torsionally Coupled Systems," by C.L., KXan and
A.K. Chopra - Feb, 1979(PB 298 262)A06

"A Mathematical Model of Masonry for Predicting its Linear Seismic Response Characteristics,™ by
Y. Mengi and H.D. McNiven - Feb. 1979(PB 298 286)A04

“Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Reinforcement,”
2y M.A. Manxigue, V.V. Bertero and E.P. Popov - May 1979(PB 301 114) A06

"Static Tilt Tests of a Tall Cylindrical Liguid Storage Tank," by R.W. Clough and A. Niwa = Feb. 1879
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"The Design of Steel Energy Abscrbing Restrainers and Their Incorporation into ¥ucleaX Power Plants
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by M.C. Lee, J. Penzien, A.K. Chepra and K, Suzuki "Complex Systems" by G.H. Powell, E.L. Wilson,
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1979(pB 301 328)a03

"Cyclic Loading Tests of Masonry Single Plers; Volume 3 - Height to Width Ratio of 0.53," by
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"Cyclic Behavior of Dense Course-Grained Materials in Relation to the Seismic Stability of Dams,” by
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“Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V. Bertero and
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"Recommendations for a U.$.-Japan Cooperative Research Program Utilizing Large-Scale Testing Facilities "
by U.S.-Japan Planning Group - Sept. 1979(PB 301 407)a0é

"Earthquake=~Induced Liquefaction Near Lake Amatitlan, Guatemala,” by H.B8. Seed, I. Arango, C.K. Chan,
A. Gomez-Masso and R. Grant de Asceli - Sept. 1979 (NUREG~CRL341)}A03

"Infill Panels: Their Influence on Seismic Response of Buildings," by J.W. Axley and V.V. Bertero
Sept. 1973(PB 80 163 371) AlD

“3D Truss Bar Element (Type 1) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - Nov. 1979
{PB 80 169 709)a02

"2D Beam-Column Element (Type 5 - Parallel Element Theory) for the ANSR-II Program," by D.G. Row,

G.H. Powell and D.P. Mondkar - Dec. 1973(PB 80 167 224)a03

"30 Beam-Column for the ANSR-II Program," by A. Riahi,

G.H.

Element (Type 2 - Parallel Element Theory)
Powell and D.P. Mondkar - Dec. 1979{PB 80 167 216)A03

"On Response of Structures to Stationary Excitation,” by A. Der Kiureghian - Dec. 1979(PB 80166 929) 03

“Undisturbed Sampling and Cyclic Load Testing of Sands,” by S. Singh, H.B. Seed and C.X. Chan
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"Interaction Effects of Simultanecus Torsional and Compressional Cyclic Loading of sSand,” by
P.M, Griffin and W.N. Houston ~ Dec, 1379(ADA 092 352}AlS

"Earthquake Response of Concrete Gravity Dams Inecluding Hydrodynamic and Foundation Interaction
Effects,” by A.K. Chopra, P. Chakrabarti and S. Gupta - Jan. 1980(AD-a087297)410

"Rocking Responsge of Rigid Blocks to Farthquakes," by C.§. Yim, A.K. Chopra and J. Penzien - Jan. 1980
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Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures,” by S5.W. Zagajeski
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Table Research on Concrete Dam Models," by A. Niwa and R.W. Clough = Sept. 1980(PB81 122 3568)A06
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"The Design of steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety {vVol lA): Piping with Energy Absorbing Restrainers: Parameter Study on Small Systems,”
by G.H. Powell, C. Gughoiurlian and J. Simons ~ June 1980

"Inelastic Torsional Response ¢f Structures Subjected to Earthquake Ground Motions," by Y. Yamazaki
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“Treatment of Non-Linear Drag Forces Acting on Offshore Platforms,” by B.V. Dac and J. Penzien
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Program," by D.P. Mondkar and G.H. Powell - July 1980(PB81 122 350)A03
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"Cyclic Inelastic Buckling of Tubular Steel Braces," by V.A. Zavas, E.P. Popov and S.A. Mahin
June 1980(FBBLl 124 885)Al0

"Dynamic Response of $imple aArch Dams Including dydrodynamic Interaction,” by C.S. Porter and
A.K. Chopra -~ July 1980{(pB8L 124 000)Al3

“"Experimental Testing of a Friction Damped Aseismic Base Isolation System with Fail-sSafe
Characteristics,” by J.M. Kelly, K.E. Beucke and M.S. Skinner - July 1980{PB81 148 59%5)A04

"The Design of Steel Energy-ahsorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety (Vol 1B): Stochastis Seismic Analyses of Nuclear Power Plant Structures and Piping
Systems Subjected to Multiple Support Excitations,™ by M.C. lLee and J. Penzien - June 1980
"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced safety (Vel 1C): Numerical Method for Dynamic Substructure Analysis," by J.M. Dickens
and E.L. Wilson - June 1980
E Y
"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants

for Enhanced Safety {(Vol 2): Development and Testing of Restraints for Nuclear Piping Systems,” by
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"U-Bar Restraint Element (Type L1} for the ANSR-II Program,” by C. Oughourlian and G.H. Powell
July 1980 (FES1 122 293)203

"Testing of a Natural Rubber Base Isolation System by an Explosively Simulated garthguake.," by
J.M. Kelly - August 1980(PB81 201 360)a04

"Input Identification from Structural Vibrational Response,” by ¥. Hu = August L980(pPB81 152 308)a05%

"Cyclic Imelastic Behavior of $teel Offshere Structures,"” by V.A. Zayas, S.A. Mahin and E.P. Popov
August 1980 (pB81 196 180)AlS5

"Shaking Table Testing of a Reinforced Concrete Frame with Biaxial Response,” by M.G. Oliva
October 1980{PB81 154 304)al0

"Dynamic Properties of a Twelve-$tory Prerfabricated Panel Building,” by J.G. Bouwkamp, J.P. Kollegger

and R.M. Stephen - October 1980(pBS82 117 128)A06
"Dynamic¢ Properties of an Eight=Story Prefabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger
and R.M, Stephen - October 1980(pB&1 200 313)a05

"Predictive Dynamic Response of Panel Type Structures Under Barthquakes,”" by J.P. Kollegger and
J.G. Bouwkamp - October 1980 (PB8l 152 316)a04

"The Design of Steel Energy-absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 3): Testing of Commercial Steels in Low~Cycle Torsional Fatigue,'" by
P. Spenaar, E.R. Parker, E. Jongewaard and M. Drory

0

tThe D§Sigﬂ ©f Steel Energy-Absorbing Restrainers and their Incorporation into Muclear Power Plants
tor Ennanced Safety (Vol 4): Shaking Table Tests of Piping Systems with Energy-Absorbing Restrainers,”
by $.¥. Stiemer and W.G. Godden - Sept, 1980

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced safety (vol S5): Summary Report," by P. Spencer

"Bxperimental Testing of an Energy-Abscrbing Base Isolation System," bv J.M. Kelly, M.5. Skinner and
K.E. Beucke - October 1980(PB81 154 072)A04

"Simulating and Analyzing Artificial Non-Stationary Earthquake Ground Motions,” by R.F. Nau, R.M. Oliver
and K.S. Pister - October 1980(PB81 153 397)a04

"Earthquake Engineering at Berkeley ~ 1980," - Sept, 1980(PBSB1 205 974)A02

"Inelastic Seismic Analysis of Large Panel Buildings," by V. Schricker and G.H. Powell - Sept. 1980
(PBBL 154 338)Al3

"Dynamic Response ¢of Embankment, Concrete—Gravity and Arch pams Including Hydrodynamic Interaction,'
by J.F¥. Hall and A.K. Chopra - October 1980(PBBLl 132 324)Aall

"Inelastic Buckling of Steel Struts Under Cyclic load Reversal,” by R.G. Black, W.A. Wenger and
E.P. Popov - October 1980(pPB81 154 312)208

"Influence of Site Characteristics on Building Damage During the October 3, 1974 Lima Earthguake," by
P. Repetto, I. Arango and H.B. Seced - sept. l280(PB81 161 739)A05

“Evaluaticn of a Shaking Table Test Program on Response Behavior of a Two Story Reinforced Concrete
Frame," by J.M. Blondet, R.W. Clough and S.A. Mahin

"Modelling of Soil-Structure Interaction by Finite and Infinite Elements,” by F.
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Medina -~
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"OPTNSR - An Interactive Software System for Optimal Design of Statically and Dynamically Loaded
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"Bnalysis of local Variations in Free Field Seismic Ground Motions," by J.-C. Chen, J. Lysmer and H.B.
Seed - January 1981 (AD-A0S9508)al13

"Inelastic Structural Modeling of Braced Offshore Platforms for Seismic Loading,” by V.A. Zayas,
P.-5.B. Shing, S.A. Mahin and E.P. Popov - January 1981(PB82 138 777)a07

"Dynamic Response of Light Egquipment in Structures," by A, Der Kiureghian, J.L. Sackman and B. Nour-
Omid - April 1881 (PB81 218 497)A04

"Preliminary Experimental Investigation of a Broad Base Liquid Storage Tank," by J.G. Bouwkamp, J.P.
Kollegger and R.M. Stephen - May 1981 (PB82 140 385)a03

"The Seismic Resistant Design of Reinforced Concrete Coupled sStructural Walls,” by A.E. Aktan and V.V.
Bertero - June 1981 (PB82 113 358)All

"The Undrained Shearing Resistance of Cohesive Soils at Large Deformations," by M.R. Pyles and H.B.
Seed - August 1981

"Experimental Behavior of a Spatial Piping System with Steel Enerqgy Absorbers Subjected to a Simulated
Differential Seismic Input," by S.F. Stiemer, W.G. Godden and J.M. Kelly - July 1981
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"Evaluation of Seismic Design Provisions for Masonry in the United States," by B.I. Sveinsson, H.L.
Mayes and H.D. McNiven - August 1981 {PB82 1606 075)A08

"Two-Dimensional Hybrid Medelling of Soil-Structure Interaction," by T.-J. Tuong, 5. Cupta and J.
Penzien - August 1981 (PH82 142 118)A04

*Studies on Effects of Infills in Seismic Resistant R/C Construction,” by $. lrokkon and V.V, Bertero -
september 1981 (PREZ 166 190) A0S

"Linear Models to Predict the Nonlinear Seismic Behavier of a One-5tory Steel Frame," by H. Valdimarsson,
A.H. Shah and H.D. McNiven -~ September 1981 (PB82Z 138 793)A07

"TLUSH : Kagawa,

L.H. Moiia,

A Computer Program for the Three-Dimensional Dynamic Analysis of Earth Dams,”™ by T.
H.B. Seed and J. Lysmwer - September 1981(PB82 139 940)A06

"Three Dimensional Dynamic Response Analysis of LCarth Dams," by L.H. Mejia and H.B. Seed - Septemper 1981
(FPEB2 137 274)Al2

“Experimental Study of Lead and Elastomeric Dampers for Base Isolation Systems,” by .1.M. Kelly and
$.B. Hodder - October 198] (PB82 166 182)A05

"The Influence of Base Isolation on the Seismic Response of Light Secondary Equipment,“ by J.M. Kelly -
April 1981 (PB82 255 266)A04

"Studies on Evaluation of Shaking Table Response Analysis Procedures,” by J. Marcial Blondet - November
1981 (PBBZ 197 278)Al0

“DELIGHT.STRUCT: A Computer-Aided Design Environment for Structural Engineering,” by ®.J. Balling,
K.S. Pister and E. Polak - December 1981 (P3B2 218 496)A07

"Optimal Design of Seismic-Resistant Planar Steel Frames," by R.J. Balling, V. Ciampi, K.S§. Pister and
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