
NHERI

Abstraction
C Structures

& C++ Programming Language
Frank McKenna

1

Outline
• Review
• Abstraction
• C Programming Language Contd.

• Structures
• Containers

• Object Oriented Programming
• C++ Language

What has made computing
pervasive?

3

Programmability

4

Networking

Performance

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1980 1990 2000 2010

Transistors
(Thousands)

5

What makes computers programmable?

1.Common Computer Model
2.Abstraction

1. Von Neumann Architecture

§ Components
oMemory (RAM)
o Central processing unit (CPU)

§ Control unit
§ Arithmetic logic unit (ALU)

o Input/output system

§ Memory stores program and data
§ Program instructions execute sequentially

6

2. Abstraction

• Abstraction: Focusing on the external properties of an
entity to the extent of almost ignoring the details of
the entity’s internal composition

• Abstraction simplifies many aspects of computing and
makes it possible to build complex systems.

• Computing Languages Provide Programmers Ability to
create abstractions. Higher Level Languages provide
more abstraction capabilities (albeit at expense of
performance)

Art of Program Design

• To take a problem, and continually break it down into a
series of smaller ideally concurrent tasks until ultimately
these tasks become a series of small specific individual
instructions.

• Mindful of the architecture on which the program will run,
identify those tasks which can be run concurrently and map
those tasks onto the processing units of the target
architecture.

What is Programming?

• Writing these instructions as a series of statements.
• A statement uses words, numbers and punctuation to detail

the instruction. They are like properly formed sentences in
English.

• A poorly formed statement -> compiler error
• Each programming language has a unique “syntax” that

defines what constitutes correct statements in that language

What Programming Language?

• Hundreds of languages ….
• Only a dozen or so are popular at any time
• We will be looking at C, C++ and Python

Types of Languages - Compiled/Interpreted

• Compiled:

• Interpreted.

• Hybrid, e.g. Java. Compiler converts to another language, e.g. bytecode. Interpreter runs on machine
and interprets this language, e.g. javaVM.

ExCPU

Executable
File

Interpreter
0011101110
0011100001

CPU
Evaluates using CPU

JavaScript
Ruby, Python

Java

C++

C
Fortran

Assembly Language Low-Level

High-Level (language
with strong abstraction
From details of
computer)

Machine Code

CPU

Programming Language Hierarchy
Ease of Development

Program Performance

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Abstraction_(computer_science)

• An application whose purpose is to:
- Check a Program is legal (follows the syntax)
- Translate the program into another language (assembly, machine

instruction)

What is a Compiler?

void man() {
…
…
a = b + c;
…
…

}

void man() {
…
load a into R1
load b into R2
R3 = R1 + R2
store R3 into c

…
}

COMPILER

Memory Hierarchy
Core Processor

Control

Arithmetic

Registers

Memory(RAM)
DiskL1 Cache L2 Cache L3 Cache

1000 Bytes
0.3 ns

64 KB
1 ns

256 KB
3-10 ns

2-4 MB
20-30 ns

4-16
GB
50-100 ns

4-16 TB
5-10e6 ns

.25-1TB
25-50e3 ns

Size
Latency

HW HW HW
Operating
System

Operating
SystemCompiler

Hard Drive SSD

Need for Virtual Memory & Why We
Page Fault

1. Is a memory management technique that provides an "idealized
abstraction of the storage resources that are actually available on a
given machine” wikipedia.

2. Program Memory is broken into a number of pages. Some of these are
in memory, some on disk, some may not exist at all (segmentation
fault)

3. CPU issues virtual addresses (load b into R1) which are translated to
physical addresses. If page in memory, HW determines the physical
memory address. If not, page fault, OS must get page from Disk.

4. Page Table: table of pages in memory.
5. Page Table Lookup – relativily expensive.
6. Page Fault (page not in memory) very expensive as page must be

brought from disk by OS
7. Page Size: size of pages
8. TLB Translation Look-Aside Buffer HW cache of virtual to physical

mappings.
9. Allows multiple programs to be running at once in memory.

https://en.wikipedia.org/wiki/Memory_management_(operating_systems)

The C Programming Language

§ Originally Developed by Dennis Ritchie at Bell Labs in 1969 to
implement the Unix operating system.

§ It is a compiled language
§ It is a structured (PROCEDURAL) language
§ It is a strongly typed language
§ The most widely used languages of all time
§ It’s been #1 or #2 most popular language since mid 80’s

§ It works with nearly all systems
§ As close to assembly as you can get
§ Small runtime (embedded devices)

C Program Structure

A C Program consists of the following parts:
- Preprocessor Commands
- Functions
- Variables
- Statements & Expressions
- Comments

Everyone’s First C Program
#include <stdio.h>

int main() {
/* my first program in C */
printf("Hello World! \n");
return 0;

}

• The first line of the program #include <stdio.h> is a
preprocessor command, which tells a C compiler to
include the stdio.h file before starting compilation.

• The next line int main() is the main function. Every
program must have a main function as that is where the
program execution will begin.

• The next line /*...*/ will be ignored by the compiler. It is
there for the programmer benefit. It is a comment.

• The next line is a statement to invoke the printf(...)
function which causes the message "Hello, World!" to be
displayed on the screen. The prototype for the function
is in the stdio.h file. It’s implementation in the standard C
library.

• The next statement return 0; terminates the main()
function and returns the value 0.

no space between # and include

statements end with ;
Function that indicates they will return
an integer, MUST return an integer

hello1.c

Allowable Variable Types in C

char
int
float
double
void
pointers

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
int i1 = 5;
float f1 = 1.2;
double d1 = 1.0e6;
char c1 = 'A';
printf("Integer %d, float %f, double %f, char %c \n", i1, f1, d1, c1);
return 0;

}

var3.c

The Dreaded Pointers – not so bad!
� You will use pointers an awful lot if you write any meaningful C code.
� Remember when you declare variables you are telling compiler to set aside some memory to

hold a specific type and you refer to that memory when you use the name, e.g. int x. When
you specify a pointer, you are seeting aside a mem address.

� The unary & gives the “address” of an object in memory.
� The unary * in a declaration indicates that the object is a pointer to an object of a specific

type
� The unary * elsewhere treats the operand as an address, and depending on which side of

operand either sets the contents at that address or fetches the contents.

#include <stdio.h>

int main() {

int x =10, y;

int *ptrX =0;

ptrX = &x;

y = *ptrX + x;

}

x y ptrX

10 drivel 0

x y ptrX

10 20 00023478650

void man() {
…
load ptrX into

R1
load R1 into R2
load x into R3
R4 = R2 + R3
store R4 into y

…
}

pointer1.c

Arrays - I
A fixed size sequential collection of elements laid out
in memory of the same type. We access using an index
inside a square brackets, indexing start at 0
to declare:

type arrayName [size];
type arrayName [size] = {size comma

separated values}
#include <stdio.h>

int main(int argc, char **argv) {
int intArray[5] = {19, 12, 13, 14, 50};
intArray[0] = 21;
int first = intArray[0];
int last = intArray[4];
printf("First %d, last %d \n", first, last);
return 0 ;

}

19 12 13 14 50

a[0] a[1] a[2] a[3] a[4]

WARNING: indexing
starts at 0

21

array1.c

po
in

te
r,

m
al

lo
c(

) a
nd

fr

ee
()

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv) {
int n;
double *array1=0, *array2=0, *array3=0;
// get n
printf("enter n: ");
scanf("%d", &n);
if (n <=0) {printf (“You idiot\n”); return(0);}

// allocate memory & set the data
array1 = (double *)malloc(n*sizeof(double));
for (int i=0; i<n; i++) {
array1[i] = 0.5*i;

}
array2 = array1;
array3 = &array1[0];

for (int i=0; i<n; i++, array3++) {
double value1 = array1[i];
double value2 = *array2++;
double value3 = *array3;
printf("%.4f %.4f %.4f\n", value1, value2, value3);

}
// free the array
free(array1);
return(0);

}

memory1.c

Arrays - II

Memory Layout of Arrays in C and
Fortran

Fortran

C double matrix[3][3];

REAL matrix(3,3);

Operations –
#include <stdio.h>
int main(int argc, char **argv) {
int a = 5;
int b = 2;
int c = a + b * 2;
printf("%d + %d * 2 is %d \n",a,b,c);

c = a * 2 + b * 2;
printf("%d * 2 + %d * 2 is %d \n",a,b,c);

// use parentheses
c = ((a * 2) + b) * 2;
printf("((%d * 2) + %d) * 2; is %d \n",a,b,c);
return(0);

}

What is c? Operator precedence!

USE PARENTHESES

op2.c

If-
else

#include <stdio.h>

int main(int argc, char **argv) {
int a = 15;
if (a < 10) {

printf("%d is less than 10 \n", a);
} else if (a == 10) {

printf("%d is equal to 10 \n", a);
} else {

printf("%d is greater than 10 \n", a);
}
return(0);

} Can have multiple else if in if statement

if (condition) {

// code block

} else if (condition) {

// another code block

} else {

// and another

}

if3.c #include <stdio.h>

int main(int argc, char **argv) {
int intArray[5] = {19, 12, 13, 14, 50};
int sum = 0, count = 0;
while (count < 5) {

sum += intArray[count];
count++;

}
printf(”sum is: %d \n”, sum);

}

while (condition) {

// code block

}
while

for loop – multiple init & increment

for (init; condition; increment) {

// code block

}

#include <stdio.h>

int main(int argc, char **argv) {
int intArray[6] = {19, 12, 13, 14, 50, 0};
int sum = 0;
for (int i = 0, j=1; i < 5; i+=2, j+=2) {

sum += intArray[i] + intArray[j];
}
printf(”sum is: %d \n”, sum);

}

for2.c

C Function
returnType funcName (funcArgs) {

codeBlock

}

• returnType <optional>: what data type the function will
return, if no return is specified returnType is int. If want
function to return nothing the return to specify is void.

• funcName: the name of the function, you use this name
when “invoking” the function in your code.

• funcArgs: comma seperated list of args to the function.
• codeBlock: contains the statements to be executed when

procedure runs. These are only ever run if procedure is
called.

#include <stdio.h>
#include “myVector.h”
int main(int argc, char **argv) {

int intArray[6] = {19, 12, 13, 14, 50, 0};
int sum;
sum = sumArray(intArray, 6);
printf(”sum is: %d \n”, sum);

}
}

// function to evaluate vector sum
// inputs:
// data: pointer to integer array
// size: size of the array
// outputs:
//
// return:
// integer sum of all values
int sumArray(int *data, int size) {

int sum = 0;
for (int i = 0; i < size; i++) {

sum += data[i];
}
return sum;

}

myVector.cmain.c

myVector.h
int sumArray(int *arrayData, int size);
int productArray(int *arayData, int size);
int normArray(int *arrayData, int size);
int dotProduct(int *array1, int *array2, int size);

Pass By Value, Pass by Reference
� C (unlike some languages) all args are passed by value

#include <stdio.h>

sumInt(int1, int2, int *sum);

int main() {

int int1, int2, sum=0;

printf("Enter first integer: ");

scanf("%d", &int1);

printf("Enter second integer: ");

scanf("%d", &int2);

sumInt(int1, int2, sum);

print(”%d + %d = %d \n”, int1, int2, sum)

}

void sumInt(int a, int b, int *sum) {

*sum = a+b;

}

to change the function
argument in the callers
“memory” we can pass
pointer to it, i.e it’s address
in memory.

This is Useful if you want
multiple variables changed,
or want to return an error
code with the function.

function4.c

What does it mean for Programmers
“The Free Lunch is Over” Herb Sutter

Multiple Cores!

• Up until 2003 programmers had been relying on Hardware
to make their programs go faster. No longer. They had to
start programming again!

• Performance now comes from Software
• To be fast and utilize the resources, Software must run in

parallel, that is it must run on multiple cores at same time.

Can All Programs Be Made to Run Faster?
§ Suppose only part of an application can run in

parallel
§ Amdahl’s law

- let s be the fraction of work done sequentially, so
(1-s) is fraction parallelizable

- P = number of processors
Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P)

<= 1/s

• Even if the parallel part speeds up perfectly performance is limited by the
sequential part

• Top500 list: currently fastest machine has P~2.2M; Stampede2 has 367,000

Simplified Parallel Machine Models

Shared Memory Model

Threads for Shared Memory Model (Posix Threads, OpenMP)
• Master Process spawns a team of threads as needed.

• Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Process
in red

A Nested
Parallel
region

Sequential Parts

Simplified Parallel Machine Models

Distributed Memory Model

Message Passing for Distributed
Memory (MPI API)� Processes run independently in their own memory space

and processes communicate with each other when data
needs to be shared CPU 1CPU 0

send(data) recv(data)

send(data) recv(data)

recv(data) send(data)

• Basically you write sequential applications with additional function
calls to send and recv data.

Process 0 Process 1

Simplified Parallel Machine Models

Hybrid Model

Outline
• Review
• Abstraction
• C Programming Language Contd.

• Structures
• Containers

• Object Oriented Programming
• C++ Language

Abstraction

“The process of removing physical, spatial, or
temporal details or attributes in the study of
objects or systems in order to more closely
attend to other details of interest” [source:
wikippedia] .

Abstraction

� Abstraction: Focusing on the external properties of an
entity to the extent of almost ignoring the details of
the entity’s internal composition

� Abstraction simplifies many aspects of computing and
makes it possible to build complex systems.

� Computing Languages Provide Programmers Ability to
create abstractions. Higher Level Languages provide
more abstraction capabilities (albeit at expense of
performance)

Digital Computer
“Digital computer, any of a class of devices capable of
solving problems by processing information in discrete
form. It operates on data, including magnitudes, letters,
and symbols, that are expressed in binary code —i.e.,
using only the two digits 0 and 1. By counting, comparing,
and manipulating these digits or their combinations
according to a set of instructions held in its memory, a
digital computer can perform such tasks as to control
industrial processes and regulate the operations of
machines; analyze and organize vast amounts of business
data; and simulate the behaviour of dynamic systems
(e.g., global weather patterns and chemical reactions) in
scientific research.” (source: enclyopedia Britannica)

Abstractions is What Makes
Computers Usable

We Work in Decimal

0,1,2,3,4,5,6,7,8,9

Computers in Binary

0,1

Computer Bit (on/off) (0/1)

We Combine Numbers

With 3 decimal digits we can represent any number 0 through 999

In Binary We Could Combine Numbers

With 3 binary digits we can represent numbers 0 through 7With 3 binary digits we can represent any number 0 through 7

With 3 digits we have the following possibilities

What Might these 7 represent?
Saudi Arabia
Iraq
Kuwait
Bahrain
Qatar
Oman
UAE

Computer naturally groups bits into bytes

Allowable Variable Types in C – II
qualifiers: unsigned, short, long

1. Integer Types 2. Floating Point Types

3. Enumerated Types

4. void Type

5. Derived Types

Structures,
Unions,
Arrays

C Character Set

#include <stdio.h>
int main(int argv, const char **argc) {

for (int i=-127; i<127; i++)
printf("%d -> %c \n",i,i);

}

charset.c

And Here is a Program To Print It

Outline
• Review
• Abstraction
• C Programming Language Contd.

• Structures
• Containers

• Object Oriented Programming
• C++ Language

What Abstractions for a Finite Element Application?

Node

Element

Load

Constraint Matrix

Vector

Domain

Analysis

What Does A Node Have?

Clean This up for a large FEM Project

Clean This up for a large FEM Project
Files for each date type and their functions:

node.h, node.c, domain.h, domain.c, …

#include "node.h"
#include "domain1.h"
int main(int argc, const char **argv) {

Domain theDomain;
theDomain.theNodes=0; theDomain.NumNodes=0; theDomain.maxNumNodes=0;
domainAddNode(&theDomain, 1, 0.0, 0.0);
domainAddNode(&theDomain, 2, 0.0, 2.0);
domainAddNode(&theDomain, 3, 1.0, 1.0);
domainPrint(&theDomain);
// get and print singular node
printf("\nsingular node:\n");
Node *theNode = domainGetNode(&theDomain, 2);
nodePrint(theNode);

}

fem/main1.c
Domain is some CONTAINER that
holds the nodes and gives access to
them to say the elements and analysis

Domain
• Container to store nodes, elements, loads, constraints
• How do we store them
• In CS a number of common storage schemes:

1. Array
2. Linked List
3. Double Linked List
4. Tree
5. Hybrid

Which to Use – Depends on Access
Patterns, Memory, …

#include "node.h"
typedef struct struct_domain {

Node **theNodes;
int numNodes;
int maxNumNodes;

} Domain;

void domainPrint(Domain *theDomain);
void domainAddNode(Domain *theDomain, int tag, double crd1, double crd2);
void domainPrintNodes(Domain *theDomain);
Node *domainGetNode(Domain *, int nodeTag);

#include "node.h"
typedef struct struct_domain {

Node *theNodes;
} Domain;

void domainPrint(Domain *theDomain);
void domainAddNode(Domain *theDomain, int tag, double crd1, double crd2);
void domainPrintNodes(Domain *theDomain);
Node *domainGetNode(Domain *, int nodeTag);

fem/domain1.h

fem/domain2.h

Array

Linked List

#ifndef _NODE
#define _NODE

#include <stdio.h>

typedef struct node {
int tag;
double coord[2];
double disp[3];
struct node *next;

} Node;

void nodePrint(Node *);
void nodeSetup(Node *, int tag, double crd1, double crd2);

#endif

fem/node.h

Node *domainGetNode(Domain *theDomain, int nodeTag) {
int numNodes = theDomain->numNodes;
for (int i=0; i<numNodes; i++) {

Node *theCurrentNode = theDomain->theNodes[i];
if (theCurrentNode->tag == nodeTag) {

return theCurrentNode;
}

}
return NULL;

}

Node *domainGetNode(Domain *theDomain, int nodeTag) {
Node *theCurrentNode = theDomain->theNodes;
while (theCurrentNode != NULL) {

if (theCurrentNode->tag == nodeTag) {
return theCurrentNode;

} else {
theCurrentNode = theCurrentNode->next;

}
}
return NULL;

}

fem/domain1.c

fem/domain2.c

Exercise: Add constraint to the fem
example

1. Create constraint.h
2. Create constraint.c
3. Modify domain.c to handle constraints
4. Modify main.c to add nodes and constraints
5. Compile & Execute Constraint:

Some tag, some node tag, for
each degree-of-freedom
some bool flag indicating
whether free or constrained

Outline
• Review
• Abstraction
• C Programming Language Contd.

• Structures
• Containers

• Object Oriented Programming
• C++ Language

Divides the problem
into more easily handled
subtasks, until the
functional modules
(procedures) can
be coded

Identifies various
objects composed of
data and operations,
that can be used
together to solve
the problem

Approaches to Building Manageable Programs

PROCEDURAL
DECOMPOSITION

OBJECT-ORIENTED
DESIGN

FOCUS ON: procedures FOCUS ON: data objects

75

Outline
• Review
• Abstraction
• C Programming Language Contd.

• Structures
• Containers

• Object Oriented Programming
• C++ Language

The C++ Programming Language

• Developed by Bjourne Stroustroup working at Bell Labs
(again) in 1979. Originally “C With Classes” it was
renamed C++ in 1983.

• A general purpose programming language providing
both functional and object-oriented features.

• As an incremental upgrade to C, it is both strongly typed
and a compiled language.

• The updates include:
o Object-Oriented Capabilities
o Standard Template Libraries
o Additional Features to make C Programming easier!

C Program Structure

A C C++ Program consists of the following parts:
- Preprocessor Commands
- Functions
- Variables
- Statements & Expressions
- Comments
- Classes

Hello World in C++
#include <iostream>
int main(int argc, char **argv) {
// my first C++ program
std::cout << "Hello World! \n";

}

#include <stdio.h>
int main(int argc, char **argv) {

// my first program in C
printf("Hello World! \n");
return 0;

}

Code/C++/hell01.cpp

Code/C/hell01.c

#include <iostream>
int main(int argc, char **argv) {

int n;
double *array1, *array2, *array3;
std::cout << "enter n: ";
std::cin >> n;

// allocate memory & set the data
array1 = new double[n];
for (int i=0; i<n; i++) {

array1[i] = 0.5*i;
}
array2 = array1;
array3 = &array1[0];
for (int i=0; i<n; i++, array3++) {

double value1 = array1[i];
double value2 = *array2++;
double value3 = *array3;
printf("%.4f %.4f %.4f\n", value1, value2, value3);

}
// free the array
delete array1;

}

Code/C++/memory1.cpp

po
in

te
rs

, n
ew

()
an

d
de

le
te

()

#include <iostream>
#include <string>

int main(int argv, char **argc) {
std::string pName = argc[0];
std::string str;
std::cout << "Enter Name: ";
std::cin >> str;

if (pName == "./a.out")
str += " the lazy sod";

str += " says ";
str = str + "HELLO World";
std::cout << str << "\n";

return 0;
}

Code/C++/string1.cpp

st
rin

gs

#include <iostream>

void sum1(int a, int b, int *c);
void sum2(int a, int b, int &c);

int main(int argc, char **argv) {
int x = 10;
int y = 20;
int z;
sum1(x,y, &z);
std::cout << x << " + " << y << " = " << z << "\n";

x=20;
sum2(x, y, z);
std::cout << x << " + " << y << " = " << z << "\n";

}
// c by value
void sum1(int a, int b, int *c) {
*c = a+b;

}

// c by ref

void sum2(int a, int b, int &c) {
c = a + b;

}

Code/C++/ref1.cpp

Pa
ss

 b
y

re
fe

re
nc

e

STL Library
The Standard Template Library (STL) is a set of C++ template
classes to provide common programming data structures and
functions such as lists, stacks, arrays, etc. It is a library of
container classes, algorithms, and iterators.

Will hold off on an example for now

Class
A class in C++ is the programming code that defines the
methods (defines the api) in the class interface and the code
that implements the methods. For classes to be used by other
classes and in other programs, these classes will have the
interface in a .h file and the implementation in a .cpp (.cc,
.”.cxx", or ".c++”) file

Will hold off on an example for now

Programming Classes – header file
(Shape.h) keyword class defines this as a class, Shape is the

name of the class
Classes can have 3 sections:

Public: objects of all other classes and
program functions can invoke this method on
the object
Protected: only objects of subclasses of this
class can invoke this method.
Private: only objects of this specific class can
invoke the method.

virtual double GetArea(void) = 0 , the =0;makes
this an abstract class. (It cannot be instantiated.) It
says the class does not provide code for this
method. A subclass must provide the
implementation.
virtual void PrintArea(ostream &s) the class
provides an implementation of the method, the
virtual a subclass may also provide an
implementation.
virtual ~Shape() is the destccutor. This is method
called when the object goes away either through a
delete or falling out of scope.

#ifndef _SHAPES
#defne _SHAPE

class Shape {
public:

Shape();
virtual ~Shape();
virtual double GetArea(void) =0;
virtual void PrintArea(ostream &s);

private:
};

#endif // _SHAPES

Rectangle.h (in blue)
• class Rectangle: public Shape defines this as a

class, Rectangle which is a subclass of the class
Shape.

• It has 3 sections, public, protected, and private.
• It has a constructor Rectangle(double w,

double h) which states that class takes 2 args,
w and h when creating an object of this type.

• It also provides the methods double
GetArea(void) and void

• PrintArea(ostream &s); Neither are virtual
which means no subclass can provide an
implementation of these methods.

• In the private area, the class has 3 variables.
Width and height are

• unique to each object and are not shared. Num
rect is shared amongst all objects of type
Rectangle.

class Shape {
public:

Shape();
virtual ~Shape();
virtual double GetArea(void) =0;
virtual void PrintArea(ostream &s);

};

class Rectangle: public Shape {
public:
Rectangle(double w, double h);
~Rectangle();
double GetArea(void);
void PrintArea(std::ostream &s);

protected:

private:
double width, height;
static int numRect;

};

Circle.h
• class Circle: public Shape defines this as a class

Circle which is a subclass of the class Shape.
• It has 2 sections, public and private.
• It has a constructor Circle(double d) which

states that class takes 1 arg d when creating an
object of this type.

• It also provides the method double
GetArea(void).

• There is no PrintArea() method,meaning this
class relies on the base class implementation.

• In the private area, the class has 1 variable and
defines a private method, GetPI(). Only objects
of type Circle can invoke this method.

class Shape {
public:

Shape();
virtual ~Shape();
virtual double GetArea(void) =0;
virtual void PrintArea(ostream &s);

};

#ifndef _CiIRCLE
#define _CIRCLE
class Circle: public Shape {
public:
Circle(double d);
~Circle();
double GetArea(void);

private:
double diameter;
double GetPI(void);

};
#endif // _CIRCLE

Programming Classes – source file
(Shape.cpp) • Source file contains the implementation of the

class.
• 3 methods provided. The constructor Shape(),

the destructor ~Shape() and the PrintArea()
method. A definition for each method defined
in the header file.

• TheDestructor just sends a string to cout.
• The PrintAreamethods prints out the area. It

obtains the area by invoking the this pointer.
• This pointer is not defined in the .h file or .cpp

file anywhere as a variable. It is a default
pointer always available to the programmer. It
is a pointer pointing to the object itself.

#include <Shape.h>

Shape::Shape() {

}

Shape::~Shape() {
std::cout << "Shape Destructor\n";

}

void
Shape::PrintArea(std::ostream &s) {

s << "UNKOWN area: " <<
this->GetArea() << "\n";

}

Rectangle.cpp
• int Rectangle::numRect = 0 creates the

memory location for the classes static variable
numRect.

• The Rectangle::Rectangle(double w, double d)
is the class constructor taking 2 args.

• the line :Shape(), width(w), height(d) is the
first code exe. It calls the base class constructor
and then sets it’s 2 private variables.

• The constructor also increments the static
variable in numRect++; That variable is
decremented in the destructor.

• The GetArea() method, which computes the
area can access the private data variables
height and width

int Rectangle::numRect = 0;

Rectangle::~Rectangle() {
numRect--;
std::cout << "Rectangle Destructor\n";

}

Rectangle::Rectangle(double w, double d)
:Shape(), width(w), height(d)

{
numRect++;

}

double
Rectangle::GetArea(void) {

return width*height;
}
void
Rectangle::PrintArea(std::ostream &s) {

s << "Rectangle: " << width * height <<
" numRect: " << numRect << "\n";

}

Circle.cpp

• Last but not least!

#include <Circle.h>

Circle::~Circle() {
std::cout << "Circle Destructor\n";

}

Circle::Circle(double d) {
diameter = d;

}

double
Circle::GetArea(void) {

return this->GetPI() * diameter *
diameter/4.0;
}

double
Circle::GetPI(void) {

return 3.14159;
}

Main Program (main1.cpp)
When we run it, results should be as you
expected. Notice the destructors for s2 and s3
objects not called. The delete was not invoked.
Also notice order of destructor calls, base class
destructed last.
s1 is a variable of type Circle. To invoke methods
on this object we use the DOT .
s2 and s3 are pointers to objects created with
new. To invoke methods on these objects from
our pointer variables we use the ARROW ->

#include "Rectangle.h"
#include "Circle.h"

int main(int argc, char **argv) {
Circle s1(2.0);
Shape *s2 = new Rectangle(1.0, 2.0);
Shape *s3 = new Rectangle(3.0,2.0);

s1.PrintArea(std::cout);
s2->PrintArea(std::cout);
s3->PrintArea(std::cout);

return 0;
}

STL Library
The Standard Template Library (STL) is a set of C++ template
classes to provide common programming data structures and
functions such as lists, stacks, arrays, etc. It is a library of
container classes, algorithms, and iterators.

Main Program with STL Container
#include "Rectangle.h"
#include "Circle.h"
#include <list>
int main(int argc, char **argv) {

std::list<Shape*> theShapes;

Circle s1(2.0);
Shape *s2 = new Rectangle(1.0, 2.0);
Shape *s3 = new Rectangle(3.0,2.0);

theShapes.push_front(&s1);
theShapes.push_front(s2);
theShapes.push_front(s3);

std::list<Shape *>::iterator it;
for (it = theShapes.begin();

it != theShapes.end(); it++) {
(*it)->PrintArea(std::cout);

}
return 0;

}

C++/shape/main2.cpp

#include "Rectangle.h"
#include "Circle.h"
#include <list>
#include <vector>
typedef std::list<Shape*> Container;
//typedef std::vector<Shape*> Container;
typedef Container::iterator Iter;

int main(int argc, char **argv) {
Container theShapes;

Circle s1(2.0);
Shape *s2 = new Rectangle(1.0, 2.0);
Shape *s3 = new Rectangle(3.0,2.0);

theShapes.push_front(&s1);
theShapes.push_front(s2);
theShapes.push_front(s3);

Iter it;
for (it = theShapes.begin(); it != theShapes.end(); it++) {

(*it)->PrintArea(std::cout);
}
return 0;

}

C++/shape/main3.cpp

Exercise: Add Some Other Shape

1. cp rectangle.h to ?.h
2.cp rectangle.c to ?.cpp
3.Edit both files, global replace …
4. Compile & Execute

C++ Finite Element Application?

Node

Element

Load

Constraint Matrix

Vector

Domain

Analysis

Domain.h
#ifndef _DOMAIN
#define _DOMAIN

#include "Domain.h"
#include <map>

class Node;

class Domain {
public:
Domain();
~Domain();

Node *getNode(int tag);
void Print(ostream &s);
int AddNode(Node *theNode);

private:
std::map<int, Node *>theNodes;

};

#endif

C++/fem/domain.h

• Storing nodes in a map

• The #ifndef, #define, #endif are
important. You should put them in
every header file

Domain.cppDomain::Domain() {
theNodes.empty();

}

Node *
Domain::getNode(int tag){

Node *res = NULL;
std::map<int, Node *>::iterator it = theNodes.find(tag);
if (it != theNodes.end()) {

Node *theNode = it->second;
return theNode;

}
return res;

}

void
Domain::Print(ostream &s){

// create iterator & iterate over all elements
std::map<int, Node *>::iterator it = theNodes.begin();

while (it != theNodes.end()) {
Node *theNode = it->second;
theNode->Print(s);
it++;

}
}

C++/fem/domain.cpp

Exercise: Add constraint to the fem
example

1. Create Constraint.h
2. Create Constraint.c
3. Modify Domain.c to handle constraints
4. Modify main.c to add nodes and constraints
5. Compile & Execute Constraint:

Some tag, some node tag, for
each degree-of-freedom
some bool flag indicating
whether free or constrained

Main Abstractions in OpenSees
Framework as an Example of OOP Design

DomainModelBuilder Analysis

Recorder

Constructs the objects
in the model and adds
them to the domain.
(5 classes)

Monitors user defined
parameters in the
model during the
analysis
(20 classes)

Moves the model
from state at time t to
state at time t + dt
(200 classes)

Holds the state of the model
at time t and (t + dt)
(500 classes)

i

Recorder

ElementRecorder
NodeRecorder
EnvelopeNodeRecorder
EnvelopElementRecorder
DatabaseRecorder

File
MySQL
Oracle

Database

DataOutputHandler

StandardStream
FileStream
XML_FileStream
TCP_Stream
DatabaseHandler

Recorder Options

Domain

TimeSeriesElement MP_Constraint SP_ConstraintNode LoadPattern

ElementalLoad NodalLoad SP_Constraint

What is in a Domain?

Truss
ZeroLength
ElasticBeamColumn
NonlinearBeamColumn(force, displacement)
BeamWithHinges
Quad(std, bbar, enhanced, u-p)
Shell
Brick(std, bbar, 20node, u-p, u-p-U)
Joint
GenericClient

(>100 element classes)

Constant
Linear
Rectangular
Sine
Path

BeamPointLoad
BeamUniformLoad
BeamTempLoad

Plain
Uniform
MultiSupport

Aggregation/Collection-of

Some Other Classes associated with Elements:

GeomTransformation

Linear
Pdelta
Corotational

Element in Global System

Element in Basic System

Geometric Transformation
U

v
q

P

Elastic
J2
DruckerPrager
TemplateElasto-Plasto
FluidSolidPorous
PressureMultiYield(dependent, independent)

Material

Uniaxial

Elastic
ElasticPP
Hardening
Concrete
Steel
Hysteretic
PY-TZ-QZ
Parallel
Series
Gap
Fatigue

nD Section

Elastic
Fiber

(over 250 material classes)

CHandler SolnAlgorithmNumberer Integrator

AnalysisModel

CTest SystemOfEqn

Analysis

StaticAnalysis
TransientAnalysis

Plain
Penalty
Lagrange
Transformation

EquiSolnAlgo
Linear
NewtonRaphson
ModifiedNewton
Broyden
BFGS
KrylovNewton
NewtonLineSearch
…
(25 classes)

Plain
RCM
AMD

StaticIntegrator
LoadControl
DispControl
ArcLength
…
TransientIntegrator
CentralDifference
Newmark
HHT
GeneralizedAlhpa
NewmarkExplicit
TRBDF2
(35 classes)

BandGeneral
BandSPD
ProfileSPD
SparseGeneral
SparseSymmetric

NormDispIncr
NormUnbalance
NormEnergy
RelativeNormDispIncr
RelativeNormUnbalance
RelativeNormEnergy

What is an Analysis?

