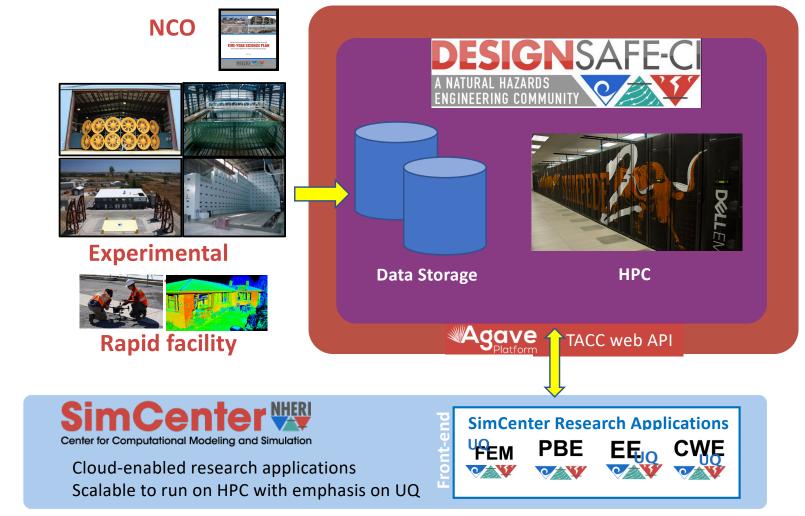


Introduction to SimCenter

Frank McKenna

University of California, Berkeley



Outline

Introduction to SimCenter

Research Applications Education & Outreach

NSF NHERI (Natural Hazards Engineering Research Infrastructure)

We are a Virtual EF

Leadership Group

Software Development Team

Peter (UW), Michael, Adam (Stanford), Frank, Charles, Wael, Pedro (UW)

Barbara

Domain Experts

Additional experts in engineering, urban planning, social science, and computer and information science

Iris Tien

George Deodatis

Patrick Lynette

Alex Taflanidis

Jack Baker

Ann-Margret Esnard

Joel Conte

Vesna Terzic

Filip Filippou

Ewa Deelman

Kincho Law

Ertugrul Taciroglu

Stella Yu

Eduardo Miranda

Andrew Kennedy

6

Jonathan Bray

Camille Crittenden

Mission

"Transforming the nation's ability to understand and mitigate adverse effects of natural hazards on the built environment through advanced computational simulation"

> Grounded in the present Five year focus Ten year vision

Advanced Computational Simulation?

- 1) Applications that generate UQ in Response Quantities
- 2) Applications to perform Performance Based Engineering
- 3) Applications for Community Resiliency
- 4) Educational Applications

How Are We Making the Mission a Reality?

Software Educational Activities

Outline

Introduction to SimCenter

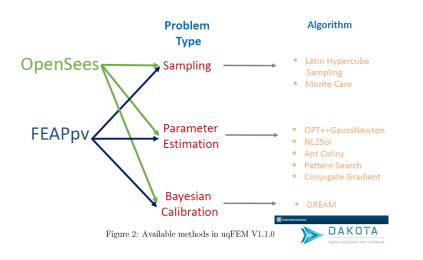
Research Applications

Education & Outreach

SimCenter Software Goals

To produce Extensible Software Researchers in NHE can use in their research

- Develop an open-source computational framework to support decisionmaking to enhance community resilience to natural hazards in the face of uncertainty;
- Design a framework that is sufficiently flexible, extensible, and scalable so that any component of it can be enhanced to improve the analysis and thereby better meet the needs of the community;
- Seed the framework with enough data and interfaces to existing simulation tools so that it can be employed in the near-term;
- Release tools/applications built using this framework that meets the computational needs of researchers in natural hazards engineering;
- Provide an ecosystem that fosters collaboration between scientists, engineers, urban planners, public officials, and others who seek to improve community resilience to natural hazards.


Some Released Software

FEM (to be renamed quoFEM)

Govindjee, Conte, Kennedy & Taflanidis Frank McKenna & Ziad Ghauch

Current Release V1.1 (Oct 2018)

- Correlation matrix for sampling methods
- Computation for Sobolev indices for sampling algorithms
- Specifying user-defined probability distribution functions for random variables (for sampling methods)
- Fitting of probability distribution functions for sampling results
- Conjugate gradient for calibration problems
- Pattern search for calibration problems

Future Release V2.0 (Sept 2019)

- Summary Statistics
- Correlation Matrix Testing with multiple events options
- User Defined Distribution

_	Building	a Model	Input				DOF	v						
		Informatio					1001							
	Numbe		5							1				
IM	Floor W		14		9	ary Heights		6						
	Story S	tiffness X	dim 13	0.0	9.	ory Stiffnes	s Y dirn	308.0						
		trength X				eld Strengtl								
		ing Ratio (н	erdening Ra	tio Y dim	0.1						
	Dampin	ng Ratio	0.1	12										
	Weight	Height	K,t	Fy_F	b,x	K.y	fycy	b,y	zeta					
	144	h	100.0	10.0	6.1	100.0	163	0.1	0.02					
	144	h	100.0	10.0	6.1	100.0		0.1	8:02					
	144	h	100.0	10.0	61	100.0	100	0.1	6.02					
	144	h	100.0	10.0	0.1	100.0	10.0	0.1	6.02	1				
ES	144	h	100.0	10.0	0.1	100.0	100	0.1	0.02					
								signSaf			m DesignS		E	

Arduino, Baker, Bray, Conte, Deodatis, Taciroglu & Taflanidis **Frank McKenna**, Wael Elhaddad, Charles Wang & Michael Gardner

Current Release V1.1 (March 2019)

- Loading:
 - PEER Motions
 - Site Response 2D/1D motion, Effective Stress
 - Stochastic Loading Vlachos et al.
 - Site Hazard Analysis
- Shear Building Model & OpenSees Models
- Earthquake & User Defined EDP

Future Releases

V1.2 (June 2019)

 Loading - Soil Column - 2d Motion, Effective Stress

V2.0 (Sept 2019)

- Loading:
 - Random Field Vertical
 - Stochastic Loading Dobaghi
- Building:
 - Expert System for Walls, Moment Frames and Braces
 - Conditional Spectrum

Deierlein, Baker, Taflanidis & Terzic Frank McKenna & Adam Zsarnóczay

Current Release V1.1 (March 2019)

- Incorporates EE-UQ features for building system analyses
- Enabled component-group-based (FEMA P58-style) loss assessment for earthquake hazard.

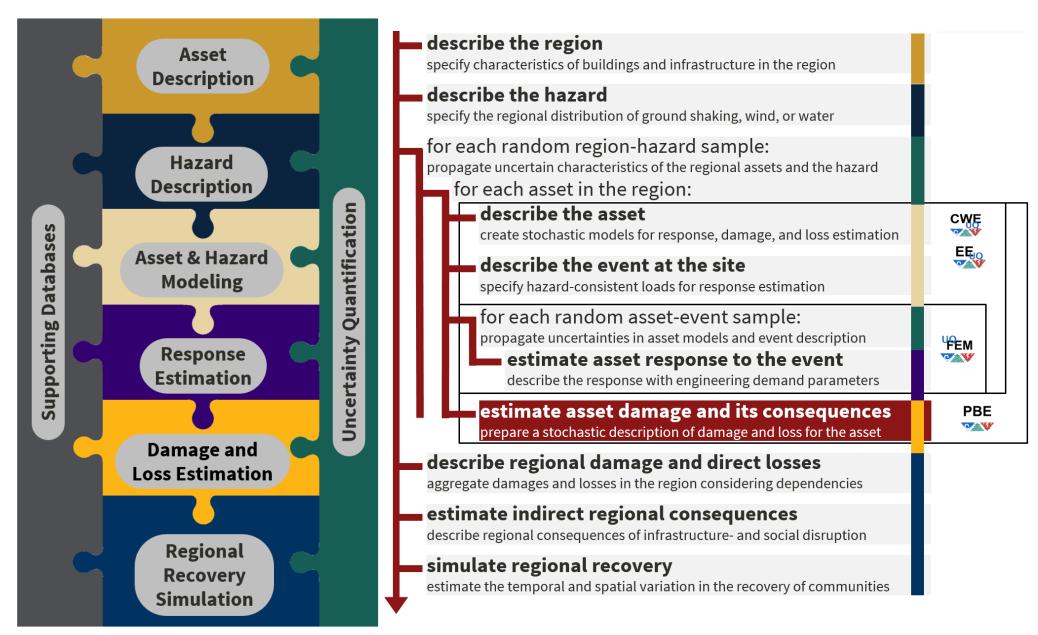
Future Release V2.0 (Sept 2019)

- Extend to incorporate damage and loss functions for wind and storm surge (HAZUS).
- Enable response estimation without simulation (HAZUS-style simplified approach typically using a simple formula), Business interruption (HAZUS).
- More sophisticated injury characterization (HAZUS).
- Downtime (REDi)
- Alternative UQ propagation methods for combining collapse and damage

Major Upcoming Applications (within next year)

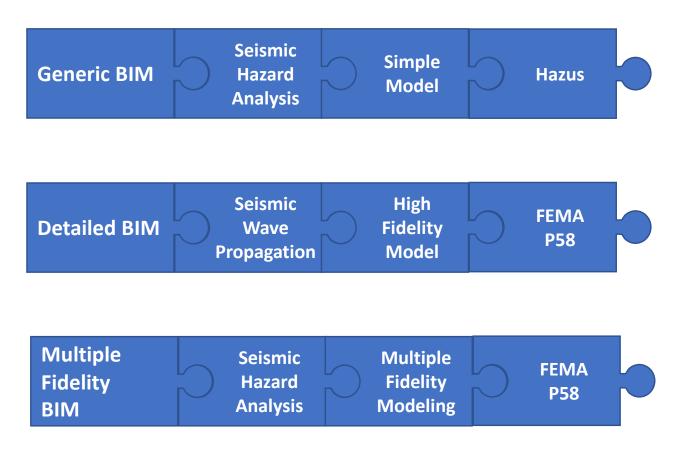
WE-UQ: Wind En	gineering with Uncertainty Quantificati	on		Logi
GI	Loading Type DEDM_HRP			
SIM		RGANIZATION TO REDUCE THE	DEDM-HI : Inpu	
EVT	Wind Tunnel Building Geometry			-
FEM UQ EDP	² B A M Wind			
RES	Building Height	• H=1 ○ H=2 ○ H=	3 H=4 H=5	
	Exposure Condition			
	 Urban/Suburban Area 	Oper	Terrain	
	Wind Speed and Duration			
	Mean Wind Velocity at Building Top Duration			mph min
	RUN	RUN at DesignSafe	GET from DesignSafe	Exit
	This work is based on ma		ce Foundation under grant 1612843	

Kareem, Kennedy, Motley & Taflanidis Frank McKenna, Peter Mackenzie-Helnwein, Jiawei Wan, Wael Elhaddad, Charles Wang & Michael Gardner


Initial Release V1.0 (June 2019)

- Wind Engineering Tool to consider UQ
 - Random Variables in all but CFD
 - Sampling Methods
- Loading
 - Stochastic loads.
 - Interface to Vortex Winds (HighRise).
 - CFD
 - User defined meshes.
 - Inflow for the initial conditions

Release V1.1 (Sept 2019) UQ for CFD & Basic Meshing

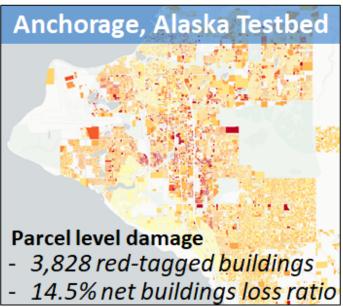


Resiliency Decision Tool

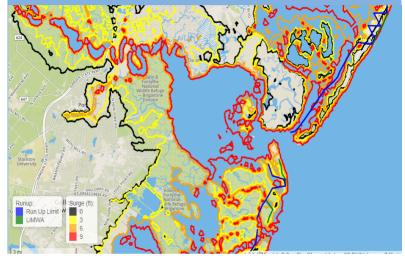
Regional Workflow for Hazard And Loss Estimation

rWHALE Deierlein, Kareem, Conte, Deelman, Deodatis, Kijewski-Correa, Taflanidis & Tien Frank McKenna & Wael Elhaddad

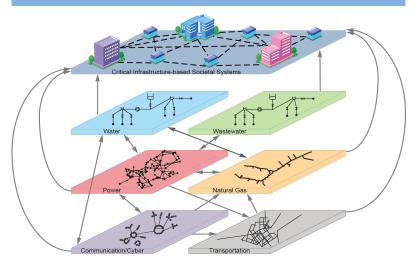
Current Release V1.1 (Feb 2019)


- Regional earthquake workflow
- Various hazard representations

Future Release V2.0 (Sept 2019)


- Regional storm workflow
- Initial version to consider ASCE7 wind loading and HAZUS type damage and loss

Regional Workflow Testbeds to Verify rWhale



Atlantic City, NJ Storm Testbed

Memphis, TN Lifelines Testbed

Outline

Introduction to SimCenter

Research Applications

Education & Outreach

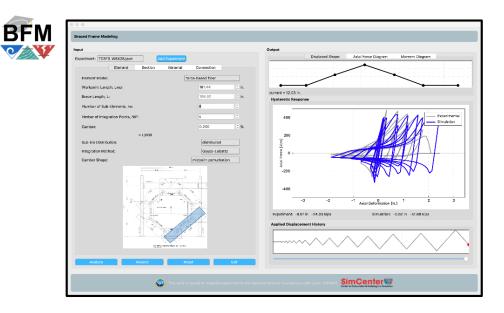
SimCenter ECO Activities

- Training
 - Online Webinars
 - Workshops
 - Tool Training
 - Programming Bootcamp
 - NHERI Summer REU Program
 - State-of-the-Art Report
- Education
 - Educational App's
- Learn about the SimCenter
 - NHERI Summer Institute
 - Subscribe to SimCenter news and join Slack channels https://simcenter.designsafe-ci.org/join-community/

Training Activities: Workshops

- SimCenter Tool Training Workshop (June 13-14 2019)
 - Hands-on software training and instruction in SimCenter Tools and their useful applications in natural hazards engineering (45 registered)
- Summer Programming Bootcamp (July 22-26, 2019)
 - Goal is to train NHERI researchers in the programming paradigms not covered in traditional civil engineering coursework, but required to advance NHE simulation capabilities (30 registered)

Educational Applications (Years 1&2)


MDOF	

Multiple Degrees of Freedom Application	n		
Input Motion	Earthquake Motion	Output Displaced Shape	
Input Motion ElCentro Sca	ale Factor 1 Add	Max Disp Fundamental Period	7.46 in 2.09 sec
Analysis Duration	31.2 sec	1	
Buiding Properties			
Number Hoors Building Weight Building Stellens Stary Stellens I module POetta 1 100 144 3154 11=100 001 2 100 144 3154 11=100 001 3 100 144 3154 11=100 001 3 100 144 3154 11=100 001	0.05	Current Time Current Root Disp	4.70 sec
5 100 144 31.54 1e+100 0.01	0.05 Exit		ga: 0.32g
	This work is based on mat	rid reported by the National Science Francision under grant 16/2/243	

ut Forces			Output			
Earthquake	Wind		Periods			
Input Motion ElCentro	ASCE 7 Exposure C	Category B	Fundamental Perio	id		2.09 sec
Scale Factor 1	Gust Wind Speed (Displacements			
Add	seed	100	Pastkenalie	Story Farce History	tertand.	
	3000	Story			,	
ding Properties			76			Earthqu
		(w) 0	50 25 0 -25			
umber Floors		5	0			
uilding Weight			-25			
			0 50	100 150 Time (sec)	200	250
hape Square				Time (sec)		
				Time (sec)		
Height 720	in Width 72		75	Time (sec)		Ň
	in Width 72	8	75	, and the second	1. ar. on Mr. and a der Mart and	hollihan Michae
Height 720	in Width 72	1.3 31.54 24	75 50 25 -25	(Munikan Munika Munika Mu	harberthypholathym	hallehan the the
Height 720 rag Coefficient tory Stiffness amping Ratio	in Width 72	1.3 31.54 24	28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000100000000000000000000000000000000	harton of the function of the second	nulling all her her
Height 720 rag Coefficient tory Stiffness amping Ratio	in Width 72	1.3 31.54	75 50 25 -25	100 Time (sec)	larbordd ynhal ar Ynhal 200	v 11-11-11-11-11-11-11-11-11-11-11-11-11-
Height 720 arg Coefficient ory Stiffness amping Ratio Include PDelta		1.3 000 31.54 red 0.05	28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000100000000000000000000000000000000	(ht/ht/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h	11-0.00 in
Height 720 rag Coefficient ory Stiffness imping Ratio Include PDelta Weight Height K Fy	b	1.3 31.54	75 25 25 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 Time (See)		104114444 250
Height 720 rag Coefficient	b 0 0.05 0 0.05	1.3 000 31.54 red 0.05	20 0 0 50 50 50 Current Disp	100 Time (sec) -0.00 in	Current Disp	11-0.00 in
Height 720 rag Coefficient tory Stiffness mohio Ratio Include PDelta Weight Height K Fy 100 144 31.54 Te-100	b 0 0.05 0 0.05	1.3 000 31.54 red 0.05	20 20 20 20 20 20 20 Current Disp	100 Time (sec) -0.00 in	Current Disp	-0.00 in 5.06 in
Height 720 rag Coefficient	b 0 0.05 0 0.05	1.3 000 31.54 red 0.05	20 0 0 50 50 50 Current Disp	100 Time (sec) -0.00 in	Current Disp	10.00 in

How to Collaborate

- Use The tools and provide feedback
- If there are additional features that exist in existing software you would like to see added let us know
- If you want to as part of your research incorporate your work into our tools we can work with you (letters of collaboration, send students for a visit,....)
- Nominate / volunteer your graduate students and postdocs to participate in the early researcher webinar series..
- Few Spots in Summer Programming Bootcamp still open .. Send your student or come learn to program yourself!
- State-of-the-Art Report: Version 2.0 .. Don't agree or want to add to the existing state-of-the-art report get in touch.
- Follow us on <u>Twitter</u>, <u>Facebook</u>, and on our <u>website</u>
- Feedback is essential: email, tool surveys, tool slack channels

Some Noteworthy Metrics

- 5 Research Tools and 4 Educational Apps released.
- ~750 downloads of our tools in the last seven months.
- 2 Testbeds released that demonstrate earthquake capabilities of rWHALE.
- 19 webinars hosted.
- More than 5,000 cumulative online views of our webinars.
- More than 1,000 downloads of our State-of-the-Art Report.
- Letter of Collaboration requests: >1 per month.
- 172 subscribers to our email newsletter (65% open rate).
- Twitter has 131 followers and had 9,600 impressions in the last 28 days.