
Agenda	– Day	1
Time Title Presenter
9:00-9:30 Welcome Frank	McKenna	&	You

9:30-11:30 The	VM,	Linux	&	Git Peter	Mackenzie-Helnwein

11:30-12:00 An	Introduction	To	Programming Frank McKenna

12.00-1:00 LUNCH

1:00-3:00 The	C	Programming	Language	 Frank	McKenna

3:00-5:00 Exercises You

Day	2 Debugging, Parallel	Programming with	MPI	&	OpenMP

Day	3 Abstraction, More C	&	C++

Day	4 User Interface	Design	 &	Qt

Day	5 SimCenter &	Cloud Computing

NHERI

An Introduction to Programming
&

The C Programming Language
Frank McKenna

2

Outline
• A	Computer	Program	and	the	Computer	on	Which	it	Runs
• C	Programming	Language

• Variables
• Operations
• Program	Control
• Functions
• Pointers	&	Arrays
• Other	Things

What	is	a	Computer	
Program?

• A	sequence	of	separate	instructions	one	after	another
• Each	instruction	tells	CPU	to	do	1	small	specific	task

Art	of	Programming		- I

• To	take	a	problem,	and	continually	break	it	down	into	a	series	
of	smaller	tasks	until	ultimately	these	tasks	become	a	series	
of	small	specific	individual	instructions.

What	is	Programming?
• Writing	these	instructions	as	a	series	of	statements.
• A	statement	use	words,	numbers	and	punctuation	to	detail	
the	instruction.		They	are	like	properly	formed	sentences	in	
English.

• A	poorly	formed	statement	->	compiler	error
• Each	programming	language	has	a	unique	“syntax”

What	Programming	
Language?

• Hundreds	of	languages	….	
• Only	a	dozen	or	so	are	popular	at	any	time
• We	will	be	looking	at	C	and	C++

Types	of	Languages	– Compiled/Interpreted
• Compiled:

• Interpreted.

• Hybrid,	e.g.	Java.	Compiler	converts	to	another	langauge,	e.g.	bytecode.	Interpreter	runs	on	machine	and	
interprets	this	language,	e.g.	javaVM.

ExCPU

Executable	File

Interpreter
0011101110
0011100001

CPU
Evaluates	using	CPU

JavaScript
Ruby,	Python

Java
C++

C
Fortran

Assembly	Language

Low-Level

High-Level

Machine	Code

CPU

Programming	Language	Hierarchy
Ease	of	Development

Program	Performance

Single	Processor	Machine	– Idealized	Model
CPU Memory

Control

Arithmetic

Registers

Fetches,	decodes
&	dispatches	instructions

Performs	numerical
operations

Data	from	Memory

Disk

• An	application	whose	purpose	is	to:
• Check	a	Program	is	legal	(follows	the	syntax)
• Translate	the	program	into	another	language	(assembly,	machine	instruction)

What	is	a	Compiler?

void	man()	{
…
…
a	=	b	+	c;	
…
…

}

void	man()	{
…
load	a	into	R1
load	b	into	R2
R3	=	R1	+	R2
store	R3	into	c
…

}

COMPILER

CPU	only	Works	on	Data	in	
Registers!

Memory	Hierarchy
Processor

Control

Arithmetic

Registers

Memory(RAM)
DiskL1	Cache L2	Cache L3	Cache

1000	Bytes
0.3	ns

64	KB
1	ns

256	KB
3-10	ns

2-4	MB
20-30	ns

4-16	GB
50-100	ns

4-16	TB
5-10e6	ns

.25-1TB
25-50e3	ns

Size
Latency

HW HW HW Operating	
System

Operating	
SystemCompiler

What	is	Cache?
• Small,	Fast		Memory
• Placed	Between	Registers	and	Main	Memory
• It	keeps	a	copy	of	data	in	memory
• It	is	hidden	from	software	(neither	compiler	or	OS	can	say	what	gets	loaded)

• Cache-hit:	data	in	cache	(b	in	cache)
• Cache-miss:	data	not	in	cache,	have	to	go	get	from	memory	(b	in	memory)
• Cache-line-length:	number	of	bytes	of	data	loaded	into	cache	with	missing	
data	(32	to	128bytes)

void	main()	{
…

load	b	into	R2
…

}

Why	Do	Caches	Work?
• Spatial	Locality	– probability	is	high	that	if	program	is	accessing	some	
memory	on	1	instruction,	it	is	going	to	access	a	nearby	one	soon

• Temporal	Locality	– probability	is	high	that	if	program	is	accessing	
some	memory	location	it	will	access	same	location	again	soon.

int main()	{
…
double	dotProduct =	0	
for	(int i=0,	i<vectorSize;	i++)
dotProduct +=	x[i]	*	y[i];	

…
}

So	Why	Did	I	Bring	Cache	Up
If	No	Control	Over	It?

• Knowing	caches	exist,	understanding	how	they	work,	allows	you	as	a	
programmer	to	take	advantage	of	them	when	you	write	the	program

Program	Memory	– Main	Memory	Mismatch

Memory(RAM)

Virtual	Memory
• Is	a	memory	management technique	that	provides	an	"idealized	
abstraction	of	the	storage	resources	that	are	actually	available	on	a	
given	machine”	wikipedia.

• Program	Memory	is	broken	into	a	number	of	pages.	Some	of	these	
are	in	memory,	some	on	disk,	some	may	not	exist	at	all	
(segmentation	fault)

• CPU	issues	virtual	addresses	(load	b	into	R1)	which	are	translated	to	
physical	addresses.	If	page	in	memory,	HW	determines	the	physical	
memory	address.	If	not,	page	fault,	OS	must	get	page	from	Disk.

• Page	Table:	table	of	pages	in	memory.
• Page	Table	Lookup	– relativily expensive.
• Page	Fault	(page	not	in	memory)	very	expensive	as	page	must	be	
brought	from	disk	by	OS

• Page	Size:	size	of	pages
• TLB	Translation	Look-Aside	Buffer		HW	cache	of	virtual	to	physical	
mappings.

• Allows	multiple	programs	to	be	running	at	once	in	memory.

The	C	Programming	Language

• Originally	Developed	by	Dennis	Ritchie	at	Bell	Labs	in	1969	to	
implement	a	UNix operating	system.

• It	is	a	compiled language

• It	is	a	structured (PROCEDURAL)	language

• It	is	a	strongly	typed	language

• The	most	widely	used	languages	of	all	time

• It’s	been	#1	or	#2	most	popular	since	mid	80’s
• It	works	with	nearly	all	systems
• As	close	to	assembly	as	you	can	get
• Small	runtime	(embedded	devices)

C	Program	Structure

A	C	Program	consists	of	the	following	parts:
• Preprocessor	Commands
• Functions
• Variables
• Statements	&	Expressions
• Comments

Everyone’s	First	C	Program

#include <stdio.h>

int main() {
/* my first program in C */
printf("Hello World! \n");
return 0;

}

• The	first	line	of	the	program	#include	<stdio.h> is	a	
preprocessor	command,	which	tells	a	C	compiler	to	
include	the	stdio.h file	before	starting	compilation.

• The	next	line	int main() is	the	main	function.	Every	
program	must	have	a	main	function	as	that	is	where	the	
program	execution	will	begin.

• The	next	line	/*...*/ will	be	ignored	by	the	compiler.	It	is	
there	for	the	programmer	benefit.	It	is	a	comment.

• The	next	line	is	a	statement	to	invoke	the	printf(...)
function	which	causes	the	message	"Hello,	World!"	to	be	
displayed	on	the	screen.	The	prototype	for	the	function	is	
in	the	stdio.h file.	It’s	implementation	in	the	standard	C	
library.

• The	next	statement	return	0; terminates	the	main()	
function	and	returns	the	value	0.

no	space	between	#	and	include

statements	end		with	;
Function	that	indicates	they	will	return
an	integer,	MUST	return	an	integer

hello1.c

Exercise:	Compile	&	Run	Hello	World!

1. With a text editor create the file hello.c
in a terminal window type: gedit hello.c

2. Compile it
in a terminal window type: gcc hello.c

3. Run it
in a terminal window type: ./a.out #include <stdio.h>

int main() {
// my first program in C
printf("Hello World! \n");
return 0;

}

A	comment	may	also	be	
Specified	using	a	//.	The	compiler
ignores	all	text	from	comment	to	EOL

Variables	and	Types
• Except	in	simplest	of	programs	we	need	to	keep	track	of	data,	e.g.	current	
and	max	scores	in	a	game,	current	sum	in	vector	product	calculation

• A Variable	is	a name	a	programmer	can	set	aside	for	storing	&	accessing	
accessing	amemory	location.	

• C	is	a	strongly	typed	language.	The	programmer	must	specify	the	data	
type	associated	with	the	variable.

• Names	are	made	up	of	letters	and	digits;	they	are case	sensitive;	names	
must	start	with	a	character,	for	variable	names	‘_’	counts	as	a	chracacter

• Certain	keywords	are	reserved,	i.e.	cannot	be	used	as	variable	names

Reserved	Keywords	in	C

Variable	Example
#include <stdio.h>
// define and then set variable
int main(int argc, const char **argv)
{
int a;
a = 1;
printf("Value of a is %d \n",a);
return(0);

}

#include <stdio.h>
// define & set in 1 statement
int main(int argc, const char **argv) {
int a = 1;
printf("Value of a is %d \n",a);
return(0);

}

Uninitialized	Variable Initialized	Variable

var2.cvar1.c

Allowable	Variable	Types	in	C	- I
char
int
float
double
void

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char **argv) {
int i1 = 5;
float f1 = 1.2;
double d1 = 1.0e6;
char c1 = 'A';
printf("Integer %d, float %f, double %f, char %c \n", i1, f1, d1, c1);
return(0);

}

var3.c

Allowable	Variable	Types	in	C	– II	
qualifiers:	unsigned,	short,	long

1.	Integer	Types 2.	Floating	Point		Types

3.	Enumerated	Types

4.	void Type

5.	Derived	Types

Structures,
Unions,
Arrays

Arrays	- I
• A	fixed	size	sequential	collection	of	elements	laid	out	in	memory	of	the	same
type.	We	access	using	an	index	inside	a	square	brackets,	indexing	start	at	0

• to	declare:		type arrayName [size];
type arrayName [size] = {size comma separated values}

#include <stdio.h>

int main(int argc, const char **argv) {
int intArray[5] = {19, 12, 13, 14, 50};
intArray[0] = 21;
int first = intArray[0];
int last = intArray[4];
printf("First %d, last %d \n", first, last);
return(0);
}

19 12 13 14 50

a[0] a[1] a[2] a[3] a[4]

WARNING:	indexing	
starts	at	0

21

array1.c

Multidimensional	Arrays- I
• A	fixed	size	sequential	collection	of	elements	laid	out	in	memory	of	the	same type.	
We	access	using	an	index	inside	a	square	brackets,	indexing	start	at	0

• to	declare:		type arrayName [l1][l2][l3]…;
type arrayName [l1][l2][l3] = {l1*l2*… comma separated values}

#include <stdio.h>

int main(int argc, const char **argv) {
double dArray[2][4]= {{19.1, 12, 13, 14e2},

{21.2, 22, 23, 24.2e-3}};
dArray[0][0] = 101.5;
int first = dArray[0][0];
int last = dArray[1][3];
printf("First %f, last %f \n", first, last);
return(0);
}

19 12 13 1400101.5

19 22 23 .024221

var1.c

array2.c

a[1][0]

a[0][0]

a[1][3]

a[0][3]

Memory	Layout	of	Arrays	in	C	and	Fortran

Fortran

C double matrix[3][3];

REAL matrix(3,3);

Operations
• We	want	to	do	stuff	with	the	data,	to	operate	on	it
• Basic	Arithmetic	Operations

+,	-,	*,	/,	%	
#include <stdio.h>

int main(int argc, const char **argv) {
int a = 1;
int b = 2;
int c = a+b;
printf("Sum of %d and %d is %d \n",a,b,c);
return(0);

}

op1.c

You	Can	String	Operations	Together	–
#include <stdio.h>
int main(int argc, const char **argv) {
int a = 5;
int b = 2;
int c = a + b * 2;
printf("%d + %d * 2 is %d \n",a,b,c);

c = a * 2 + b * 2;
printf("%d * 2 + %d * 2 is %d \n",a,b,c);

// use parentheses
c = ((a * 2) + b) * 2;
printf("((%d * 2) + %d) * 2; is %d \n",a,b,c);
return(0);

}

What	is	c?	Operator	precedence!

USE	PARENTHESES

op2.c

Some	Operations	are	so	Common	
there	are	special	operators

#include <stdio.h>
int main() {

…
a = a + 1;
…

}

a += 1;

a ++;

+=
-=
*=
/=
++
--

• So	far	instruction	sequence	has	been	sequential,	one	instruction	after	
the	next	..	Beyond	simple	programs	we	need	to	start	doing	
something,	if	balance	is	less	than	0	don’t	withdraw	money

if (condition) {
// code block

}
Conditional	Code	– if	statement

#include <stdio.h>
int main(int argc, const char **argv) {
int a	=	15;
if	(a	<	10)	{
printf("%d	is	less	than	10	\n",	a);
}
if	(a	==	10)	{
printf("%d	is	equal	to	10	\n",	a);
}
if	(a	>	10)	{
printf("%d	is	greater	than	10	\n",	a);
}
return(0);

}

<
<=
>
>=
==
!=

Conditional	
Operators

if1.c

If-else	

#include <stdio.h>
int main(int argc, const char **argv) {
int a	=	15;
if		(a	<=	10)	{
if	(a	!=	10)	{
printf("%d	is	less	than	10	\n",	a);

}	else	{
printf("%d	is	equal	to	10	\n",	a);
}

}	else	{
printf("%d	is	greater	than	10	\n",	a);

}
return(0);

}

#include <stdio.h>
int main(int argc, const char **argv) {
int a	=	15;
if	(a	<	10)	{
printf("%d	is	less	than	10	\n",	a);

}	else	if	(a	==	10)	{
printf("%d	is	equal	to	10	\n",	a);

}	else	{
printf("%d	is	greater	than	10	\n",	a);

}
return(0);

}

else-if	

Can	have	multiple	else	if	in	if	statement

if (condition) {

// code block

} else {

// other code

}

if (condition) {

// code block

} else if (condition) {

// another code block

} else {

// and another

}if2.c

if3.c

Logical	and/or/not	
#include <stdio.h>
int main(int argc, const char **argv) {
int a	=	15;
if	((a	<	10)	&&	(a	==	10))	{
if		!(a	==	10)	{
printf("%d	is	less	than	10	\n",	a);

}	else	{
printf("%d	is	equal	to	10	\n",	a);
}

}	else	{
printf("%d	is	greater	than	10	\n",	a);

}
return(0);

}

&&
||
|

Conditional	Code	– switch	statement
• Special	multi-way	decision	maker	that	tests	if	an	expression	matches	
one	of	a	number	of	constant values

#include <stdio.h>
int main(int argc, const char **argv) {
char c=‘Y’;
switch (c) {
case ‘Y’:
case ‘y’:
c = ‘y’;
break;

default:
printf(”unknown character %c \n",c);

}
return(0);

}

switch(expression)	{	
case	constant-expression	:				

statement(s);	
break;		/*	optional	*/	

case	constant-expression	:	
statement(s);	
break;	/*	optional	*/	

…..
default	:	/*	Optional	*/	

statement(s);	
}

• Common	task	is	to	loop	over	a	number	of	things,	e.g.	look	at	all	files	
in	a	folder,	loop	over	all	values	in	an	array,…

while (condition) {
// code block

}
Iteration/loops	- while

#include <stdio.h>

int main(int argc, const char **argv) {
int intArray[5] = {19, 12, 13, 14, 50};
int sum = 0, count = 0;
while (count < 5) {
sum += intArray[count];
count++;

}
printf(”sum is: %d \n”, sum);
}

If you do enough while loops
you will recognize a pattern
1) Initialization of some

variables,
2) condition,
3) increment of some value

Hence the for loop

//	If	left	out	=>infinite	loop	..	
//	Something	must	happen	in	while	to	break	out	of	loop

while1.c

for	loop

for (init; condition; increment) {
// code block

}

#include <stdio.h>

int main(int argc, const char **argv) {
int intArray[5] = {19, 12, 13, 14, 50};
int sum = 0;
for (int count = 0; count < 5; count++) {
sum += intArray[count];

}
printf(”sum is: %d \n”, sum);
}

for1.c

for	loop	– multiple	init &	increment

for (init; condition; increment) {
// code block

}

#include <stdio.h>

int main(int argc, const char **argv) {
int intArray[6] = {19, 12, 13, 14, 50, 0};
int sum = 0;
for (int i = 0, j=1; i < 5; i+=2, j+=2) {
sum += intArray[i] + intArray[j];

}
printf(”sum is: %d \n”, sum);
}

for2.c

Exercise:	Code	to	count	number	of	digits,	white	spaces	
(‘	‘,	‘\n’,’\t’)	and	other	char	in	a	file.		Write	info	out.

1. gedit count.c
2. gcc hello.c
3. ./a.out << count.c

#include <stdio.h>
int main() {

int nDigit =0, nWhite =0, nOther = 0;
while ((c = getchar()) != EOF) {

// your code
}
// some more code here

}

Pointers	&	Addresses				(before	I	start	using	them	in	examples)
• You	will	use	pointers	an	awful	lot	if	you	write	any	meaningful	C	code.
• Remember	when	you	declare	variables	you	are	telling	compiler	to	set	aside	some	memory	to	
hold	a	specific	type	and	you	refer	to	that	memory	when	you	use	the	name,	e.g.	int x.	When	you	
specify	a	pointer,	you	are	seeting aside	a	mem	address.

• The	unary	& gives	the	“address”	of	an	object	in	memory.
• The	unary	*	in	a	declaration	indicates	that	the	object	is	a	pointer	to	an	object	of	a	specific	type
• The	unary	* elsewhere	treats	the	operand	as	an	address,	and	depending	on	which	side	of	
operand	either	sets	the	contents	at	that	address	or	fetches	the	contents.
#include <stdio.h>
int main() {

int x =10, y;
int *ptrX =0;

ptrX = &x;
y = *ptrX + x;

}

x y ptrX

10 drivel 0

x y ptrX

10 20 00023478650

void	man()	{
…
load	ptrX into	R1
load	R1	into	R2
load	x	into	R3
R4	=	R2	+	R3
store	R4	into	y
…pointer1.c

Functions
• Art	of	Programming	I:	“To	take	a	problem,	and	recusivily break	
it	down	into	a	series	of	smaller	tasks	until	ultimately	these	tasks	
become	a	series	of	small	specific	individual	instructions.”

• For	large	code	projects	the	we	do	not	put	all	the	code	inside	a	
single	main	block

• We	break	it	up	into	logical/meaningful	blocks	of	code.	In	object-
oriented	programming	we	call	these	blocks	classes,	in	
procedural	programming	we	call	these	blocks	procedures	or	
functions.

• Functions	make	large	programs	manageable:	easier	to	
understand,	allow	for	code	re-use,	allow	it	to	be	developed	by	
teams	of	programmers,..	

C	Function
returnType funcName (funcArgs) {

codeBlock
}

• returnType <optional>:	what	data	type	the	function	will	
return,	if	no	return	is	specified	returnType is	int.	If	want	
function	to	return	nothing	the	return	to	specify	is	void.

• funcName:	the	name	of	the	function,	you	use	this	name	
when	“invoking”	the	function	in	your	code.

• funcArgs:	comma	seperated list	of	args to	the	function.
• codeBlock:	contains	the	statements	to	be	executed	when	
procedure	runs.	These	are	only	ever	run	if	procedure	is	
called.

#include <stdio.h>

// function to evaluate vector sum
int sumArray(int *data, int size) {
int sum = 0;
for (int i = 0; i < size; i++) {
sum += data[i];

}
return sum;

}

int main(int argc, const char **argv) {
int intArray[6] = {19, 12, 13, 14, 50, 0};
int sum = sumArray(intArray, 6);
printf(”sum is: %d \n”, sum);
return(0);
}

#include <stdio.h>
// function to evaluate vector sum
int sumArray(int *data, int size) {
int sum = 0;
for (int i = 0; i < size; i++) {

sum += *data++;
}
return sum;

}

int main(int argc, const char **argv) {
int intArray1[6] = {19, 12, 13, 14, 50, 0};
int intArray2[3] = {21, 22, 23};
int sum1 = sumArray(intArray1, 6);
int sum2 = sumArray(intArray2, 3);
printf(”sums: %d and %d\n”, sum1, sum2);
return(0);
}

int *:	data	is	a	pointer	to	an	int
function1.c function2.c

#include <stdio.h>

int main(int argc, const char **argv) {
int intArray1[6] = {19, 12, 13, 14, 50, 0};
int intArray2[3] = {21, 22, 23};
int sum1 = sumArray(intArray1, 6);
int sum2 = sumArray(intArray2, 3);
printf(”sums: %d and %d\n”, sum1, sum2);
return(0);
}
// function to evaluate vector sum
int sumArray(int *data, int size) {
int sum = 0;
for (int i = 0; i < size; i++) {
sum += *data++;

}
return sum;

}

int sumArray(int *, int);

Function	Prototype

Good practice to give the args names

function3.c

int sumArray(int *arrayData, int size); int sumArray(int *arrayData, int size);

Good	Practice:
1. For	large	programs	it	is	a	good	idea	to	put	functions	into	different	

files	(many	different	people	can	be	working	on	different	parts	of	the	
code)

2. If	not	too	large,	put	them	in	logical	units,	i.e.	all	functions	dealing	
with	vector	operations	in	1	file,	matrix	operations	in	another.

3. Put	prototypes	for	all	functions	in	another	file.
4. If	function	large,	put	in	separate	file.	
5. Get	into	a	system	of	documenting	inputs	and	outputs.

#include <stdio.h>
#include “myVector.h”
int main(int argc, const char **argv) {
int intArray[6] = {19, 12, 13, 14, 50, 0};
int sum;
sum = sumArray(intArray, 6);
printf(”sum is: %d \n”, sum);
}
}

// function to evaluate vector sum
// inputs:
// data: pointer to integer array
// size: size of the array
// outputs:
//
// return:
// integer sum of all values
int sumArray(int *data, int size) {
int sum = 0;
for (int i = 0; i < size; i++) {
sum += data[i];

}
return sum;

}

myVector.cmain.c

myVector.h
int sumArray(int *arrayData, int size);
int productArray(int *arayData, int size);
int normArray(int *arrayData, int size);
int dotProduct(int *array1, int *array2, int size);

Exercise:	Write	a	function	to	sum	two	values

1. gedit sumc
2. gcc sum.c
3. ./a.out

#include <stdio.h>
int sumInt(int a, int b);
int main() {
int integer1,	integer2,	sum;	
printf("Enter	first	integer:	");
scanf("%d",	&integer1);	//	read	input	to	integer	1	
printf("Enter	second	integer:	");	
scanf("%d",	&integer2);	//	Read	input	into	integer2
sum = sumInt(integer1, integer2);
printf(“sum %d + %d = %d\n”, integer1, integer2, sum);
return(0);
}

// your code here
}

&integer1:	memory	address	of	integer1

&integer2:	memory	address	of	integer2

Pass	By	Value,	Pass	by	Reference
• C	(unlike	some	languages)	all	args are	passed	by	value

#include <stdio.h>
sumInt(int1,	int2,	&sum);

int main() {
int int1, int2, sum=0;
printf("Enter first integer: ");
scanf("%d", &int1);
printf("Enter second integer: ");
scanf("%d", &int2);
sumInt(int1, int2, sum);
print(”%d + %d = %d \n”, int1, int2, sum)

}
void	sumInt(int a,	int b,	int *sum)	{

*sum	=	a+b;

}

to	change	the	function	
argument	in	the	callers	
“memory”	we	can	pass	
pointer	to	it,	i.e it’s	address	
in	memory.

This	is	Useful	if	you	want	
multiple	variables	changed,	
or	want	to	return	an	error	
code	with	the	function.

function4.c

Math	Functions	in		<math.h>,	link	with	-lm

#include <stdio.h>
int main() {
double a = 34.0;

double b = sqrt(a);
print(”%f + %f = %f \n”, a, b)
return 0;

}

Scope	of	Variables
#include <stdio.h>
int sum(int, int);
int x = 20; //	global	variable
int main(int argc, const char **argv) {
printf("LINE	5:	x = %d\n",x);

int x = 5;
printf("LINE	8:	x = %d\n",x);

if (2 > 1) {
int x = 10;
printf("LINE	12:	x = %d\n",x);

}
printf("LINE	14:	x = %d\n",x);

x = sum(x,x);
printf("LINE	17:	x = %d\n",x);

}

int sum(int a, int b) {
printf("LINE	21:	x = %d\n",x);
return a+b;

}

scope1.c

Recursion

• Recursion	is	a	powerful	
programming	
technique	commonly	
used	in	divide-and-
conquer	situations.

#include <stdio.h>
#include <stdlib.h>
int factorial(int n);
int main(int argc, const char **argv) {
if (argc < 2) {
printf("Program needs an integer

argument\n");
return(-1);

}
int n = atoi(argv[1]);
int fact = factorial(n);
printf("factorial(%d) is %d\n",n, fact);
return 0;

} i
int factorial(int n) {

if (n == 1)
return 1;

else
return n*factorial(n-1);

}

recursion1.c

Arrays	- II
• An	array	is	fixed	size	sequential	collection	of	elements	laid	out	in	memory	
of	the	same type.	We	access	using	an	index	inside	a	square	brackets,	
indexing	start	at	0

• to	declare:		type arrayName [size];
type arrayName [size] = {size comma separated values}

• Works	for	arrays	where	we	know	the	size	at	compile	time.	There	are	
many	times	when	we	do	not	know	the	size	of	the	array.	

• Need	to	use	pointers and	functions	free()	and	malloc()
type *thePointer = (type *)malloc(numElements*sizeof(type));
…

free(thePointer)

• Memory	for	the	array	using	free()	comes	from	the	heap
• Always	remember	to	free()	the	memory	..	Otherwise	can	run	out	of	memory.

po
in
te
r,	
m
al
lo
c(
)	a
nd

	fr
ee
()

#include <stdio.h>
#include <stdlib.h>

int main(int argc, const char **argv) {
int n;
double *array1=0, *array2=0, *array3=0;

// get n
printf("enter n: ");
scanf("%d", &n);
if (n <=0) {printf (“You idiot\n”); return(0);}

// allocate memory & set the data
array1 = (double *)malloc(n*sizeof(double));
for (int i=0; i<n; i++) {

array1[i] = 0.5*i;
}
array2 = array1;
array3 = &array1[0];

for (int i=0; i<n; i++, array3++) {
double value1 = array1[i];
double value2 = *array2++;
double value3 = *array3;
printf("%.4f %.4f %.4f\n", value1, value2, value3);

}
// free the array
free(array1);
return(0);

}

memory1.c

Po
in
te
rs
	to

	p
oi
nt
er
s	
&
	

m
ul
ti-
di
m
en

si
on

al
	a
rr
ay
s

#include <stdio.h>
#include <stdlib.h>

int	main(int	argc,	const	char	**argv)	{
int	n;
double	**matrix1	=0;

printf("enter	n:	");
scanf("%d",	&n);

//	allocate	memory	&	set	the	data
matrix1	=	(double	**)malloc(n*sizeof(double	*));
for	(int	i=0;	i<n;	i++)	{
matrix1[i]	=	(double	*)malloc(n*sizeof(double));
for	(int	j=0;	j<n;	j++)
matrix1[i][j]	=	i;

}
for	(int	i=0;	i<n;	i++)	{
for	(int	j=0;	j<n;	j++)
printf("(%d,%d)	%.4f\n",	i,j,	matrix1[i][j]);

}
//	free	the	data	
for	(int	i=0;	i<n;	i++)

free(matrix1[i]);
free(matrix1);
}

memory2.c

 double **matrix2 =0;
matrix2	= (double **)malloc(numRows*sizeof(double *));
for (int i=0; i<numRows; i++) {

matrix2[i] = (double *)malloc(numCols*sizeof(double));
for (int j=0; j<numCols; j++)

matrix2[i][j] = i;
}

Because	many	prebuilt	libraries	work	
assuming	continuous	layout	and	
Fortran	column-major	order:	

 double *matrix2 =0;
matrix2	= (double *)malloc(numRows*numCols*sizeof(double *));
for (int i=0; i<numRows; i++) {

for (int j=0; j<numCols; j++)
matrix2[I	+	j*numRows] = i;

}

for	Compatibility	with	many	matrix	libraries	this	is	poor	code:

 double *matrix2 =0;
matrix2	= (double *)malloc(numRows*numCols*sizeof(double *));
for (int j=0; j<numCols; j++)

for (int i=0; i<numRows; i++) {
matrix2[I	+	j*numRows] = i;

}

 double **matrix2 =0;
matrix2	= (double **)malloc(numRows*numCols*sizeof(double *));
double	*dataPtr =	matrix2;
for (int j=0; j<numCols; j++)

for (int i=0; i<numRows; i++) {
*dataPtr++ = i;

}

memory3.c

Special	Problems:	char	*	and	Strings
• No	string	datatype,	string	in	C	is	represented	by	type	char	*
• There	are	special	functions	for	strings	in	<string.h>

• strlen()
• strcpy()
• ….

• To	use	them	requires	a	special	character	at	end	of	string,	namely	‘\0’
• This	can	cause	no	end	of	grief,	e.g.		if	you	use	malloc,	you	need	size+1
and	need	to	append	‘\0’

#include	<string.h>
….	
char	greeting[]	=	"Hello";	
int length	=	strlen(greeting);
printf("%s	a	string	of	length	%d\n",greeting,	length);

char	*greetingCopy =	(char	*)malloc((length+1)*sizeof(char));
strcpy(greetingCopy,	greeting);

WARNING

• Arrays	and	Pointers	are	the	source	of	most	bugs	in	C	Code
• You	will	have	to	use	them	if	you	program	in	C
• Always	initialize	a	pointer	to	0
• Be	careful	you	do	not	go	beyond	the	end	of	an	array

• Be	thankful	for	segmentation	faults
• If	you	have	a	race	condition	(get	different	answers	every	time	you	run,	probably	a	
pointer	issue)

What	We	Neglected

• File	I/O
• Struct
• ….	And	some	other	stuff	(not	necessarily	minor)

• References
• Operating	on	bits

Practice	Exercises	(1	hour):	as	many	as	you	can

1. Write	a	program	that	when	running	prompts	the	user	for	two	floating	point	numbers	and	
returns	their	product.
• i.e.	./a.out would	prompt	for	2	numbers	a	and	b	will	output	a	*	b	=	something

2. Write	a	program	that	takes	a	number	of	integer	values	from	argc,	stores	them	in	an	array,	
computes	the	sum	of	the	array	and	outputs	some	nice	message.	Try	using	recursion	to	
compute	the	sum.	(hint	start	with	recursion1.c	and	google	function	atof(),	copy	from	
memory1.c)	
• i.e.		./a.out 3	4	5.5	6	will	output	3	+	4	+	5.5	+	6	=	18.5

3. Taking	the	previous	program.	Modify	it	to	output	the	number	of	unique	numbers	in	the	
output.
• i.e.	./a.out 3	1.1	2.0	1.1	will	output	3	+	2*1.1	+2.0	=	7.7

4. Write	a	program	that	takes	a	number	of	input	values	and	sorts	them	in	ascending	order.
• I.e.	./a.out 2	7	4	5	9	will	output	2	4	5	7	9

Exercise:	Compute	PI

#include	<stdio>
static	int long	numSteps =	100000;
int main()	{
double	pi	=	0;	double	time=0;
//	your	code
for	(int i=0;	i<numSteps;	i++)	{
//	your	code

}
//	your	code
printf(“PI	=	%f,	duration:	%f	ms\n”,pi,	time);
return	0;
}

Source:	UC	Berkeley,	Tim	Mattson	(Intel	Corp),	CS267	&	elsewhere	

Exercise:	Matrix-Matrix	Multiply

66

Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Source:	UC	Berkeley,	Jim	Demmell,	CS267	

67

Blocked (Tiled) Matrix Multiply
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where b=n / N is block size

for i = 1 to N
for j = 1 to N

{read block C(i,j) into fast memory}
for k = 1 to N

{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

block	size	=	loop	
bounds

cache	does	this	
automatically

3	nested	loops	
inside

Tiling	for	registers	(managed	by	you/compiler)	or	caches	(hardware)

Source:	UC	Berkeley,	Jim	Demmell,	CS267	

Recursive Matrix Multiplication (RMM) (1/2)
C = = A · B = ·

=

= � =

• True when each bock is a 1x1 or n/2 x n/2
• For simplicity: square matrices with n = 2m

• Extends to general rectangular case

A11 A12
A21 A22

B11 B12
B21 B22

C11 C12
C21 C22

A11·B11 + A12·B21 A11·B12 + A12·B22
A21·B11 + A22·B21 A21·B12 + A22·B22

C11 C12

C21 C22

A11 A12

A21 A22

B11 B12

B21 B22

A11*B11 +	
A12*B21

A11*B12 +	
A12*B22

A21*B11 +	
A22*B21

A21*B12 +	
A22*B22

68
Source:	UC	Berkeley,	Jim	Demmell,	CS267	

Recursive Matrix Multiplication (2/2)
func C = RMM (A, B, n)

if n=1, C = A * B, else
{ C11 = RMM (A11 , B11 , n/2) + RMM (A12 , B21 , n/2)

C12 = RMM (A11 , B12 , n/2) + RMM (A12 , B22 , n/2)
C21 = RMM (A21 , B11 , n/2) + RMM (A22 , B21 , n/2)
C22 = RMM (A21 , B12 , n/2) + RMM (A22 , B22 , n/2) }

return

A(n) = # arithmetic operations in RMM(. , . , n)
= 8 · A(n/2) + 4(n/2)2 if n > 1, else 1
= 2n3 … same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM(. , . , n)
= 8 · W(n/2) + 4· 3(n/2)2 if 3n2 > Mfast , else 3n2

= O(n3 / (Mfast)1/2 + n2) … same as blocked matmul
Don’t need to know Mfast for this to work!

Source:	UC	Berkeley,	Jim	Demmell,	CS267	

