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ABSTRACT

Ou, Ge PhD, Purdue University, August 2016. Robust Hybrid Simulation with Improved
Fidelity: Theory, Methodology, and Implementation. Major Professor: Shirley J. Dyke.

Civil engineers of today have been charged with the task of providing resilient and

sustainable infrastructure designs, and to use those for establishing resilient communities.

To achieve this mission, improved designs, new materials, and e�cient retrofit strategies

are being introduced around the world. Before many of these techniques are used in the

real world, e�cient methods are needed to evaluate the performance of those innovations

through high fidelity experimentation.

Hybrid simulation is an integrated, numerical-experimental method that combines the

benefits of simulation with component-level experiments. In hybrid simulation, the struc-

tural components which are di�cult to model are constructed physically (named the ex-

perimental substructure) while the rest of the structure is computationally modeled in a

simulation (named the numerical substructure). During hybrid simulation, the boundary

condition information between the numerical substructure and experimental substructure

is exchanged at each numerical substructure integration step.

The objective of this dissertation is to advance the state of the art in hybrid simulation.

First, a robust platform for hybrid simulation running in real time is developed that con-

siders the complex interactions between various components of the physical-computational

system. Next, to improve the fidelity of hybrid simulations that contain numerical elements

that are similar to the physical specimen, online system identification is integrated into

hybrid simulation. The improvement of fidelity through hybrid simulation with model up-

dating is illustrated through the model updating performance as well as a global assessment

by comparing to the shake table test results.
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1. INTRODUCTION

Extreme natural hazards, such as earthquakes, tsunamis, tornadoes, and hurricanes

are great threats to civilian safety and security. The total casualties from the 2005

Katrina Hurricane, 2008 Wenchuan Earthquake (Magnitude 8.0), 2010 Haiti Earth-

quake (Magnitude 7.0), 2011 Japan Earthquake (Magnitude 9.0) and Tsunami, and

2105 Nepal Earthquake (Magnitude 8.0) have reached over 400,000, and the economic

losses are well over $500 billion. One critical mission for todays civil engineers is to

provide resilient and sustainable design approaches for mitigating these hazards, with

the goal of eventually forming resilient communities.

To achieve such a mission, novel structural systems such as rocking walls, self

centering frames, and di↵erent composite shear wall systems are being introduced;

new materials including FRPs, high strength steel and high strength concrete are

being manufactured; and new retrofit concepts are being designed to prepare our aged

infrastructure to meet engineering needs according to design guidelines [1]- [8]. The

behavior of these new structural designs must also be investigated and assessed before

construction through either experimental or analytical means. Because structural

responses under extreme events are often hard to predict with complete accuracy

using numerical models, experimental methods such as quasi-static testing and shake

table testing have been developed and used extensively.

Quasi-static testing is used to understand the nonlinear behavior of an element

under a cyclic loading protocol, which often provides the basis for codes and guidelines

on element designs. However, global (structural) level response cannot be obtained si-

multaneously during quasi static testing and thus requires further numerical analysis.

Shake table testing provides a direct assessment of structural designs while consider-

ing realistic seismic loading. In a shake table testing, the entire structure is mounted

on a shake table while the table reproduces a ground motion either according to a
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design standard or a previously earthquake record. It is considered to be the most re-

alistic testing method for evaluating the global performance of a structure. However,

the application of shake table testing is limited by the cost and the available facility

for large scale structures. There are a limited number of shake tables worldwide able

to test full scale structures. Most notably, these include the E-Defense (1200 ton

vertical payload) in Miki City, Japan and the LHPOST (2000 ton vertical payload)

in San Diego, CA, United States, as well as some new laboratories coming online in

China in the near future. Testing using other shake table facilities will require com-

pensation for similitude and scaling e↵ects. Furthermore, some structures are simply

too large to test on even full scale shake tables.

As an e↵ective alternative to investigate performance of an infrastructure with

increased fidelity, hybrid simulation was proposed in 1969 by Hakuno et al. [9] which

is also known as online testing, pseudo-dynamic testing, and substructure testing. In

a hybrid simulation, a structure is decomposed into a numerical substructure and an

experimental substructure, some terminologies are later elaborated in chapter 2. The

interface between the two substructures can be any physical loading system, normally

a hydraulic actuator, can also be a shake table, an electric motor, etc. Boundary

conditions between the substructures are realized through such loading systems. For

the common form of hybrid simulation with hydraulic actuators, the hardware setup

is similar as a quasi-static testing. Instead of using a predetermined loading path as

in quasi-static testing, in a hybrid simulation, the physical specimen interacts with

the numerical model which loading path is the element response calculated under

realistic excitation in the specific structure. Therefore, hybrid simulation can provide

observations on both local behavior (element level) for component capacity analysis

and global behavior (structural level) for structural performance assessment [10].

The first hybrid simulation test of a single degree freedom system was conducted

using an analog computer to solve the equations of motion and an electromagnetic

actuator to impose the boundary condition. In the mid-1970s, the present form

of hybrid simulation was established utilizing digital computers for discrete system
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Figure 1.1.: Basic Procedure for Implementing Hybrid Simulation

analysis and hydraulic actuators for boundary condition compatibility execution [11].

A schematic implementation of hybrid simulation is illustrated in Fig. 1.1. From

the 1970s to the 1990s, e↵orts were made on developing precise displacement con-

trol algorithms for interface devices to minimize error propagation due to systematic

undershoot and overshoot in loading steps [12], [13], [14].

Most of the research e↵orts toward establishing hybrid simulation methods were

dedicated to the simulation of the numerical substructure, and integration stability

and accuracy were examined. Di↵erent integration algorithms including explicit,

implicit, or the mixture of the two, have been applied for hybrid simulation. Explicit

methods are conditionally stable, which means the a↵ordable time interval can be very

small according to the highest natural mode in a structure [15]. This requirement is

always a concern for implementing hybrid simulation. Alternatively, unconditionally

stable implicit algorithms require substep iterations. These substep iterations, if

implemented physically on the experimental substructure, can cause overshoots which

do not exist in the true structural response and purely induced by the computational

iterations [16]. These overshoots in the physical loading path can a↵ect the hysteretic

behavior of the experimental substructure. Advances in the integration algorithms
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are further made to improve computational accuracy with minimum or no iterations,

such as ↵ operator splitting method, predictor-corrector method, Rosenbrock-based

method, etc. [17] - [22].

1.1 Challenges in Real Time Hybrid Simulation

In early applications of hybrid simulation, studies focused on experimental sub-

structures consisting of steel bracings, joints, and frames, concrete and masonry build-

ings, bridge piers, etc. [23]- [28] which do not exhibit significant rate dependent e↵ects.

Therefore, all rate dependent e↵ects (inertia or viscous) were considered to be repre-

sented in the numerical substructure and the loading of the actuators needed to realize

the boundary conditions could be performed slowly. With a variety of promising en-

ergy dissipation devices (magnetorheological and viscous dampers) being developed

for structural dynamic response mitigation, these devices were considered to be very

good examples of experimental substructures in hybrid simulation due to their dis-

tinguishing role in an infrastructure. However, in order to accurately investigate the

behavior of these rate dependent energy dissipation devices, hybrid simulation needed

to be implemented at a real time scale. Based on these requirements, a new branch

of hybrid simulation was established, known as real time hybrid simulation (RTHS).

RTHS has introduced several new challenges due to the need for real time execu-

tion and implementation, in addition to all of the existing challenges associated with

hybrid simulation.

One important challenge of RTHS is the implementation of boundary conditions

by the interface devices. In RTHS, the loading in the experimental substructure

is no longer executed at an extended time scale, and the sampling rate needed for

each loading step can be as fast as several kHz. Therefore, possible time lags due to

actuator dynamics or due to delays resulting from hardware communication cannot

be ignored. Time delays and lags are equivalent to negative damping in RTHS and

can further cause instability in the test [29]. Several compensation algorithms and
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actuator control algorithms have been developed for RTHS, including the polynomial

extrapolation [30], [31], various time delay and adaptive time delay compensation

methods [32], [33], [34], [35], [36] and upper bound delay compensation algorithm [37].

Additionally, modern control algorithms have been introduced into interface device

control in RTHS. First a model-based control approach was proposed by Carrion and

Spencer [38], [39], and its later modification included optimized Linear Quadratic

Regulator (LQR) in the feedback for uncertainties is presented [40], [41]. Robust

control algorithms such as H1 control algorithm were considered to achieve a trade-

o↵ between the control accuracy and the systematic and random errors, including

modeling errors, measurement noises and disturbances [42], [43], [44].

As in hybrid simulation, the stability of the integration scheme used for the nu-

merical substructure represents another challenge. With the small time intervals

(often 1msec or less) available in RTHS, explicit integration methods are normally

adopted. Some explicit algorithms have been proved to be unconditionally stable

and una↵ected by the highest natural frequency of the structure [21], [45], [46], [47].

Predictor-corrector based numerical integration algorithms that help reducing de-

lays in RTHS due to the transfer system dynamics [48]. Some implicit integration

algorithms have also been investigated by researchers including an equivalent force

control for solving nonlinear equations of motion [49]. HHT-↵ spiting method with

fixed number of substep iteration [50] provides stable experimental results for RTHS.

However, the aforementioned HHT-↵ method requires numerical-experimental infor-

mation exchange at each substep, where the substep displacement commands is cal-

culated based on the measured restoring force from the previous substep [51]. This

substep numerical-experimental information exchange normally is not supported by

a real time computing platform.

The interactions present in the closed loop arrangement in RTHS introduces ad-

ditional challenges as well. Due to the nature of the hybrid simulation concept,

the numerical and experimental substructures are linked in sequential order and the

response of the experimental substructure cannot be obtained instantaneously. In
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Figure 1.2.: Schematic Drawing for Traditional Simulation/Shake Table Testing and
HS/RTHS

hybrid simulation, several small sub-steps displacement incremental are implemented

to achieve the i + 1th step displacement, therefore the steady state force response of

the i+1th step is available. However, the implementation of RTHS on an real-time op-

erating system (RTOS) platform is normally executed at one single fixed rate, and no

sub-step data acquisition is allowed. In RTHS, the restoring force is measured at the

beginning of the RTHS i+1 step which uses the response of the ith step displacement.

For example, to compute response at the first time step, the restoring force is set to be

zero because no input has yet been sent to the experimental substructure. However,

the true restoring force should be R(x
1

, ẋ
1

). Consequently, a unit delay, as shown

in Fig. 1.2, exists in the experimental force measurement. This delay is normally

considered as computational delay or communication delay [52]. Once the transfer

system lag is compensated for using a controller to accurately enforce the boundary

conditions with almost zero step time delay, such computational delay can a↵ect the

stability of an integration algorithm, further leading to constraints on the integration

step size. This e↵ect is most pronounced for sti↵, lightly-damped structures that have

relatively high natural frequencies associated with the first few dominant modes. Due
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to the growing interest in understanding and improving the fidelity of RTHS results,

there is a need to use larger, more sophisticated numerical models within RTHS [53].

Such high-fidelity models often take more time to run than the conventional RTHS

execution time interval of 1 msec, which creates a need for exploring RTHS at lower

execution rates and consequently higher computational delays.

1.2 Hybrid Simulation with Model Updating

In early hybrid simulation applications, it was only necessary to include one or

two nonlinear components in the experimental substructure [54]. Due to the advances

later in the new system and element designs such as post-tensioned rocking connec-

tions and shear walls, etc. [55] , those new elements may be spatially distributed

within a single structural system. Lab capacity (number of actuators, lab space)

and budget may limit the number of physical components in one hybrid simulation,

leaving a larger portion of their counterparts in the numerical substructure. In these

applications, hybrid simulation fidelity is more dominated by modeling accuracy of

those counterparts rather than the responses of the physical components.

Recent research has expanded the hybrid simulation concept by incorporating

model updating methods, with the goal of improving the accuracy of the numerical

model. In hybrid simulation with model updating, the model parameters of the tested

specimen are identified using the measured response of the physical component. Fur-

ther, those parameters are updated to its counterparts in the numerical substructure.

The identified parameters can be of a phenomenological (macro) model which may

not have physical meaning, which requires the identical geometry and constitution

between numerical and physical counterparts, or a constitutive model in which the

parameters describe the material property.

Phenomenological models in the Bouc-Wen family have been adopted widely

among recent hybrid simulation with model updating applications [56], [57], [58],

[59], [60]. Compared to phenomenological model, a constitutive model provides a



8

deeper understanding on structural component behaviors such as component level

of damage, serviceability, and prediction of failure. Furthermore, the tested compo-

nents and its counterpart in numerical simulation do not need to be exactly identical.

Hazem el al. [62] first proposed a hybrid simulation framework where the finite ele-

ment software ZeusNL is combined with model updating algorithms such as genetic

algorithm or neural network to identify the parameter of constitutive bilinear steel

model and nonlinear concrete model. This framework is validated through numerical

examples and o✏ine experimental data [63].

1.3 Motivation of the Dissertation

Hybrid simulation, especially real time hybrid simulation is an integrated feedback

system with complex components, including physical specimen, numerical integration

algorithm, interface device, the control algorithms, and D/A and A/D conversion.

Generally, in the previous development of RTHS techniques, each component is in-

vestigated in an isolated form. The interactions between noise and other uncertainties

in control, interface, and specimen, are not generally discussed. A robust hybrid sim-

ulation platform considering not only the performance of each component but the

performance of the entire closed loop system is desired.

To improve test fidelity, hybrid simulation with model updating is introduced

when components similar to the physical specimen, and thus, unknown, exist in

the numerical substructure [56]. However, the investigation of the limitations of

such concept has not been performed. Online model updating algorithms require

knowledge of the excitation to the physical substructure as well as its response to

identify the model parameters. This excitation normally takes the form of a structural

response which is already filtered by the structure itself and likely contains limited

frequency information, especially on examining the dynamic system where specimen

response is rate dependent. In hybrid simulation, the identification information is

more related to amplitude where the loading does not contain frequency content with
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low speed execution. In RTHS, the information maybe related to both amplitude

and frequency. Other possible limitations relate to the varying level of complexity of

the nonlinear models to be identified. Clearly, the performance of the chosen model

updating algorithm with respect to such challenges should be carefully examined prior

to implementing the test.

Even though hybrid simulation with model updating concept has been successfully

applied and validated through some past examples, those verification studies mainly

focused on local (model level) estimation accuracy [58], [59], [60]. The evidence

supporting hybrid simulation fidelity was related to parameters convergence during

the testing. However, global response comparison has not thus far been convincingly

demonstrated. In the past literature, those global responses are compared with a

baseline numerical simulation, which may not be accurate. Also, the performance

of model updating on both phenomenological and constitutive models of the same

specimens have not been investigated.

1.4 Organization of the Dissertation

The remainder of this dissertation is as follows: Chapter 2 introduces the terminol-

ogy and implementation procedure for hybrid simulation, real time hybrid simulation,

and hybrid simulation with model updating.

Chapter 3-7 are dedicated to the theory and methodology to establish robust real

time hybrid simulation technique. Chapter 3 discusses the model of interface dynam-

ics and the procedure of their identification. The identified model is further validated

with experimental data. Chapter 4 describes several current interface control algo-

rithms. The accuracy and robustness of those algorithms considering the e↵ect of

noise, disturbance, and modeling errors is systematically investigated. Continuing

from the conclusions in chapter 4, chapter 5 formulates a robust integrated actua-

tor control algorithm which aims at improving robustness of the control algorithm

without sacrificing accuracy when high noise to signal ratio exists. This algorithm
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is implemented on two di↵erent physical setups with di↵erent loading capacities.

Chapter 6 reviews the available numerical integration algorithms in real time hybrid

simulation. An associated stability analysis is conducted considering a unit time delay

due to the sequential loading feedback loop. Based on the observations, a modified

Runge-Kutta integration algorithm is proposed in Chapter 7. This integration al-

gorithm explicitly incorporates the existence of the unit delay. Both the theoretical

derivation and experimental validation are presented.

Chapter 8-11 discuss the methodology, implementation and performance analy-

sis for hybrid simulation with model updating. Chapter 8 provides a summary of

several available phenomenological and constitutive steel models. In Chapter 9, the

formulation of hybrid simulation with model updating is presented. The model up-

dating accuracy analysis is carried out to examine the feasibility of using such model

updating algorithm under hybrid simulation, demonstrated through a simulation ex-

ample. Finally in chapter 10, two hybrid simulation with model updating platforms

are established, where both phenomenological and constitutive models are updated.

The implementation procedure and model updating performance for both cases are

discussed in Chapter 10. To further analyze the improvement in hybrid simulation fi-

delity with model updating algorithm incorporated, responses from hybrid simulation

experiments are compared to shake table test results in Chapter 11.

Finally, in Chapter 12 a summary of this dissertation is presented along with some

potential future research suggestions.
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2. HYBRID SIMULATION FORMULATION

In hybrid simulation, one structure is decomposed into two substructures as in Fig.

2.1: the experimental substructure and the numerical substructure. In the experi-

mental substructure, one or several structural components which are hard to model

can be physically investigated. The rest of the structure, which is well understood,

is modeled in the numerical substructure. The loading path of the physical specimen

is the element response calculated under realistic excitation in the specific structure.

Therefore, hybrid simulation can provide observations on both local behavior (ele-

ment level) for component capacity anlaysis and global behavior (structural level) for

structural performance assessment [10].

Figure 2.1.: Whole Structure Model Representation in Hybrid Simulation [64]
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2.1 Hybrid Simulation

The implementation of hybrid simulation can take di↵erent forms depends on the

available hardware and software in a specific laboratory. In the basic concept of hy-

brid simulation, at least one computational component and one physical component

are needed [64]. Compared with the entire structure being modeled through solving

the equation of motion, in hybrid simulation, part of the numerical model is substi-

tuted with the components to be tested in the laboratory. The numerical boundary

condition obtained at each integration step is physically implemented and measured

using interface devices and data acquisition systems. In this chapter, to simplify the

explanation of hybrid simulation concept, it is assumed there is only one numerical

component and one physical component.

Figure 2.2.: Basic Components in Hybrid Simulation [64]

Fig. 2.2 shows a configuration of the basic components in a hybrid simulation. In

a hybrid simulation, the computational component sends a target command to the

physical component and the physical component returns the measured response. The

target command can be boundary condition displacement, force, or the combination

of the two, and the measured response can be either specimen restoring force or

displacement [65]. Based on the di↵erent target command and the interface device

control goal, there are displacement controlled hybrid simulation, force controlled

hybrid simulation, and mixed-controlled hybrid simulation. In this dissertation, only

displacement controlled hybrid simulation is discussed where the target command is

also known as desired displacement, the measured response is typically the restoring
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force of the specimen. The interface device is represented by a hydraulic actuator,

which could also be a shake table or electric motor as well.

2.1.1 Fundamental Theory and Procedure

The problem statement posed in hybrid simulation is to determine the seismic

response of a structural model composed of experimental and numerical substructures.

To this end, the complete structural model is idealized as a discrete parameter system

with a finite number of degrees of freedom. The time-discretized equation of motion of

the master model (combined experimental and numerical substructures) is expressed

as:

Mẍi + Cẋi +R(xi, ẋi) = Fi (2.1)

in which, M and C, are mass and damping matrices of the master model in hybrid

simulation, respectively; Fi is the external force vector; ẍi and ẋi are velocity and

acceleration vectors, respectively; R(xi, ẋi) is the restoring force vector that consists

of the measured force in the experimental substructures RE and the simulated force

in the numerical substructure RN ; and the subscript i denotes responses at the ith

integration step. If the numerical substructure is linear elastic, R can be expressed

as Kxi where K is the sti↵ness matrix of the numerical substructure and xi is the

displacement vector. Note that the experimental restoring force vector may include

strain rate-dependent, damping, or inertial forces, depending on the characteristics

of the experimental substructure.

Similar to any numerical simulation, time-stepping integration procedures are ap-

plied to solve the equations of motion in Eq. 2.1. A variety of integration methods

have been proposed for hybrid simulation, with explicit methods being the simplest

to implement. Implicit methods, though often preferred for numerical simulation of

structural responses, are challenging to implement for hybrid simulation due to the

required iterations.
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In a typical hybrid simulation, typically follows the steps below:

• For time step i+1, calculate the response based integration algorithm, if explicit

algorithm is used, then:

xi+1

= xi +�ẋi +
1

2
�t2ẍi (2.2)

• Impose displacement xi+1

to test specimen and measure experimental measured

force RE(xi+1

, ẋi+1

).

• Calculate numerical response ẋi, ẍi use integration scheme given fi+ and RE
i+1

.

• Go to time step i+ 2.

Fig. 2.3 shows a diagram of this procedure and the flow of a hybrid simulation

framework. The processes at each step includes solution of the equations of mo-

tion; execution of the target displacement; measurement of the restoring force; and

communication. It should be noted that while these processes are essential in most

hybrid simulations, there are many di↵erent ways to configure these tasks depend-

ing on hybrid simulation software, laboratory equipment, and numerical models, etc.

In particular, configurations for conventional hybrid simulation and real-time hybrid

simulation can be slightly di↵erent due to constraints and requirements.

2.1.2 Numerical Components

The numerical components in a hybrid simulation are similar as in a numerical

analysis of a dynamic system. A structural model (here named the numerical sub-

structure) and a time stepping integration algorithm are needed. The di↵erence is

the numerical model does not only implement the time stepping integration with nu-

merical data but is also sending and receiving data from the physical testing. This

normally requires a coordinator to associate with di↵erent communication protocol.

Some standard packages (UI-SIMCOR [66], OpenFresco [67], and HyTest [69]) have
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Figure 2.3.: Time Stepping Procedure in a Typical Hybrid Simulation

been developed to accomplish such tasks. Fig. 2.4 shows two typical configurations

of the computational components in hybrid simulation.

Configuration I has a designated coordinator to define a hybrid simulation. In

this configuration, the time-stepping integration algorithm and communications are

handled by the coordinator. The numerical and experimental substructures are out-

sourced to finite element program and a physical laboratory, respectively. Advantages

of this configuration are: i) all of the substructures are equally handled by the co-

ordinator (no di↵erences between the numerical and experimental substructures at

the coordinator) and; ii) it is relatively easy to define multiple/di↵erent components

to represent substructures in hybrid simulation. However, a disadvantage of this

configuration is that all of the target displacements and restoring forces have to be

transferred via network at each time step. Thus, if the sizes of the models become

large, communication and duration of the simulation can become problematic.

In Configuration II, there is no designated coordinator, but finite element software

serves as the master simulation that handles communication with the physical labora-



16

tory. In this configuration, the time-stepping integration algorithm and the numerical

substructures are processed in the master simulation, and the experimental substruc-

tures are treated as outsourced elements. The advantage of this configuration is that

it does not require network communication of data in the numerical substructures.

Thus, it is suitable for a hybrid simulation with a large number of degrees-of-freedom.

However, the disadvantage is that capabilities and functionalities are limited by the

finite element software package adopted as the master simulation. OpenSees uses this

configuration to conduct hybrid simulation [68].

Figure 2.4.: Example Configurations of the Computational Components in Hybrid
Simulation

2.1.3 Physical Components

The physical components in a hybrid simulation are similar to those used in a quasi

static (cyclic loading) testing. Fig. 2.5 shows a schematic of the essential physical
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components in hybrid simulation. A hydraulic actuator is needed for implementing

the target displacement. The physical specimen to be examined is attached to the

hydraulic actuator. Sensors such as linear variable di↵erential transducers (LVDTs)

and load cells are needed for measuring the executed displacement (measured dis-

placement) and restoring force.

Di↵erence in the test configuration may be present due to the choices made in

regard to the hydraulic actuator controller. The enclosed section in the dashed line

represents the servo-hydraulic feedback control system that consists of the hydraulic

actuator, hydraulic controller and sensors. Actuators are used to impose the target

displacements to the physical specimen and sensors are needed for measurements.

In most laboratories, such hydraulic actuator controller is embedded in commercial

software provided by the hydraulic actuator manufacturers, including a hydraulic

controller, hydraulic power supply, service manifold, etc. Because of the requirement

for accurate boundary condition compatibility in hybrid simulation, some specific

hydraulic control algorithms are developed. These controller can be implemented as

a outer loop in addition to the existing controller. More details of the inner loop and

outer loop controller are discussed in chapter 3, 4, 5 of this dissertation.

Figure 2.5.: Configuration of the Physical Components in Hybrid Simulation
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2.2 Real Time Hybrid Simulation (RTHS)

With the increased applications involving dissipation devices in structural dynamic

response mitigation, there has been a growing interest in real time hybrid simulation

(RTHS) where the hybrid simulation is implemented at a real time scale. The benefits

of RTHS are similar as in hybrid simulation.

However, the main di↵erence between hybrid simulation and RTHS is that in

RTHS the test is intended to be executed in real-time. This means that if the inte-

gration time step (i.e. sampling of the simulation, time discretization) is 1 ms, all

of the processes in each step in Fig. 2.3) would be completed within 1 ms. To meet

such a demanding constraint, there are certain system requirements in RTHS. Fur-

thermore, computational and physical components have to be configured together,

accounting for specifications of each other; unlike the conventional hybrid simulation,

computational and physical components cannot be configured independently [64].

Figure 2.6.: an RTHS Configuration Example

Fig. 2.6 shows an example configuration of RTHS. In this configuration, the time-

stepping integration algorithm and the numerical substructure are combined together

as a computational component. Note that the layout of the components in RTHS can

be slightly di↵erent (one may say data acquisition should be in the computational

components).
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On the physical side, in order to achieve the target displacements in real-time,

RTHS requires dynamic actuators that are capable of producing required velocity.

This requirement may require additional investigation of the hydraulic system such

as flow rate of hydraulic power supply, capacities of accumulator, and rated-flow of

the servo valve, etc. The other requirement in the physical components in RTHS is

high-speed data acquisition system that allows sampling of sensor data faster than

the sampling of the simulation .

One of the critical components in RTHS is the actuator controller. In RTHS,

the loading in the experimental substructure is no longer executed at an extended

time scale, and sampling rate for each loading step can be as fast as several kHzs.

Therefore, the possible time lag and delay due to the inherent actuator dynamics

and hardware communication cannot be ignored. To successfully perform RTHS,

the actuator controller is often essential to compensate for adverse e↵ects of actu-

ator dynamics and delays. The actuator controller is usually designed to generate

the command displacements from the target displacements such that the measured

displacements are close to the target displacements. On the computational side, the

time-stepping integration, analysis of the numerical substructure, and input /out-

put (I/O) between the physical components (I/O) have to be realized in real-time.

In most RTHS, the time-stepping integration and the numerical substructures are

integrated into a single program to increase computational e�ciency and eliminate

unnecessary communication time, as in Fig. 2.7. In hybrid simulation, the execu-

tion of the i + 1th step displacement is implemented through several small substep

increments, the steady state response of the specimen restoring force at the i + 1th

step is available at the substeps. However, the implementation of RTHS is on an

RTOS platform which is normally executed at one single fixed rate, no sub-step data

acquisition is allowed. In RTHS, the restoring force is measured at the beginning of

the RTHS i + 1 step which is the response of the ith step displacement. This unit

delay, or also known as the computational and communication delay, can a↵ect the

accuracy and even the stability of RTHS. This e↵ect is elaborated in chapter 6.
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Figure 2.7.: Time Stepping Procedure in an RTHS

2.3 Hybrid Simulation with Model Updating (HSMU)

Hybrid simulation with model updating (HSMU) is an extension to hybrid simu-

lation. In the early hybrid simulation applications, it was only possible to include one

or two nonlinear components in the experimental substructure. Later, with advances

such as new structural systems and component design RTHS enables their e�cient

investigation. Those target components may be spatially distributed in an infrastruc-

ture. The laboratory capacity (number of actuators, lab space) and budget may limit

the number of physical components in one hybrid simulation, leaving a larger portion

of their counterparts in the numerical substructure. In these applications, hybrid

simulation fidelity is often dominated by the modeling accuracy of those counterparts

rather than the responses of the physical components. Model updating methods have

been integrated into hybrid simulation, with the goal of improving the accuracy of

the numerical model. In HSMU, the model parameters of the tested specimen are

identified using the measured response of the physical component.
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The equation of motion of a dynamic system in Eq. 2.1 can be written into hybrid

simulation form as:

MN ẍN + CN ẋN + FE(xE, ẋE) +RN(xN , ẋN , ✓R) = F (2.3)

MEẍE + CEẋE +RE(xE, ẋE) = FE(xE, ẋE) (2.4)

where the superscript ( )N and ( )E denote the portions of the reference structure

included in the numerical and experimental substructures respectively, M = ME +

MN , C = CE+CN . FE denotes the measured force in the experimental substructure.

R(x, ẋ, ✓R)) is the restoring force provided by the nonlinear components. With model

updating:

✓̃R =  (RE, xE, ẋE, ✓
 

) (2.5)

where  indicates the model updating is performed in real-time, ✓
 

is the parameter

being updated through the chosen model updating algorithm, The parameter set of

the numerical model of the physical specimen ✓̃R can be recursively identified through

minimizing the cost function associated with the model updating algorithm. For the

components whose composition are similar to the physical specimen, their restoring

force can be modified into: RN = R(xN , ẋN , ✓̃R). Therefore, Eq. 2.3 can be modified

into:

MN ẍN + CN ẋN + FE(xE, ẋE) +RN(xN , ẋN , ✓̃R) = F (2.6)

The physical components in HSMU are the same as they are in the hybrid simu-

lation. In the computational components, an additional model updating algorithm is

needed. In some cases, the model updating algorithm is coded in a di↵erent program-

ming environment, thus a coordinator is needed to implement the communication.

The expended configuration example of HSMU is shown in Fig. 2.8.

Because of the additional model updating step, the implementation of the time

stepping in HSMU is modified, shown in Fig. 2.9. In each step, the nonlinear model
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Figure 2.8.: Example Configurations of the Computational Components in HSMU

parameter describes the physical specimen behavior is identified, this parameter set

✓R,i is updated to the numerical substructure. In this case, the quality of identified

parameter ✓R,i dominates the fidelity of the hybrid simulation test. There have been

arising interests on the discussion of the choices of di↵erent nonlinear models, di↵erent

model updating algorithms, the accuracy and convergence of model updating results,

and the evaluation of the fidelity of HSMU. Some of these open tasks are investigated

in chapter 8 - 11 of this dissertation.
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Figure 2.9.: Time Stepping Procedure in an HSMU

2.4 Conclusion

This chapter presents an overview of hybrid simulation formulation, components,

and implementation procedure. The basic concept and key benefit are very similar

for hybrid simulation and RTHS. However, due to the di↵erent implementation con-

straints in RTHS, the challenge is di↵erent. Also the expansion of hybrid simulation

incorporating model updating is introduced, some of the open tasks associated with

HSMU should be addressed.
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3. ACTUATOR IDENTIFICATION

RTHS is an accepted technique used to conduct e�cient and high fidelity lab testing.

One of the challenges to acquire reliable RTHS results is to achieve synchronization

of boundary conditions between the computational and physical substructure [42].

A reliable, practical and easy-to-use system identification method to find a parame-

terized servo-hydraulic system model would be quite useful for controller design and

simulation.

Various servo-hydraulic system models have been considered in the literature. Ex-

periments have shown that a linearized model is valid under low frequency and small

amplitude applications [70]. Zhao [71] proposed a servo-hydraulic actuator system

identification procedure for e↵ective force testing based on a white-box identification

method. Because online measurement of each individual parameter in the hydraulic

loop is generally infeasible, they were determined based on manufacturer specifica-

tions or educated estimations. Alternatively, a black-box method was introduced by

Jelali and Kroll [70]. The system transfer function is established based solely on the

measured input and output data sets. Thus, the parameters obtained from a black

box identification method do not have physical significance. A grey-box identification

method o↵ers a compromise between these two extremes by establishing a parame-

terized model of the system but leaves specific parameter values as unknowns. This

method is widely used in most servo-hydraulic system modeling process in structural

testing [72], [73]. The system transfer functions are obtained and an optimization

technique is employed to optimize system characteristic parameters for a particular

experiment setup. However, in these studies, the parameters were identified for a

single test setup. Each time a new setup is established, the identification procedure

needs to be repeated. Therefore, a servo-hydraulic actuator model applicable to a

wider range of specimens is needed.



26

Herein, a general method is presented to identify the characteristics of the servo-

hydraulic actuator within a certain operation range to assist controller design and

RTHS simulation. This model will be applicable for modeling the same actuator

with di↵erent physical specimens and re-identification is no longer needed. To extract

unknown parameters in the servo-hydraulic system, the system identification problem

evolves to a global optimization over the continuous space corresponding to specimen

variation. An objective function is selected to find the optimal value of each parameter

and reflect the physical characteristics of the system. Genetic algorithms (GA) is

applied to e�ciently obtain the optimal value. The proposed method is demonstrated

to be e↵ective for the purpose of RTHS controller design and simulation and might

be applied to other scenarios where the linearized system model is valid.

3.1 Linear Actuator Model

Servo-hydraulic system is an arrangement of individual components connected to

achieve hydraulic power transfer. The basic structure of a servo-hydraulic system

consists of a hydraulic power supply, control elements (valves, sensors, etc.) and

actuating elements (cylinders, etc.) [70]. Since the force/pressure output demand of

a servo-hydraulic actuator is negligible when compared with the power supply in the

lab, only the dynamic responses of control and actuating elements is considered here.

The basic structure of the system is shown below in Fig. 3.1. Commonly, an internal

proportional feedback control scheme is applied to track the actuator performance by

controlling the servo-valve to regulate hydraulic flow. The hydraulic flow enables the

actuator to move the target structure as well as sending out real-time displacement

measurement from an LVDT, completing the internal controller feedback loop.

The dashed line in Fig. 3.1 indicates the natural velocity feedback inherent in the

system. The coupled dynamics prevent researchers from completely separating the

dynamic response of the structure and the actuator to model them as independent

components in series [74]. The mathematical model of each component in the servo-
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Figure 3.1.: Block Diagram of Servo-hydraulic System

hydraulic system has been well-documented in previous literature [71], [74], [75]. The

modeling focuses on four stages of the system: servo-valve and its controller, flow

dynamic, actuator, testing structure and its coupling with the servo-hydraulic system.

The governing equations of the servo-hydraulic system are described in following

sections [71], [74].

3.1.1 Servo-valve Dynamics

Servo-valve dynamics can be simplified into first order transfer function, assuming

inherent time delay ⌧ in the servo-valve. The spool position to valve input is assumed

to be linear dependent with ratio Kv as

⌧ ˙̃xv + x̃v = Kvvi (3.1)

Gv(s) =
xv(s)

vi(s)
=

Kv

⌧s+ 1
(3.2)

where Kv is the flow gain and ⌧ is the equivalent time constant of the servo-valve.

x̃v is the normalized spool position x
v

Max(x
v

)

. vi is the valve control signal transmitted
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from the hydraulic system internal proportional controller: vi = Kp(Xc � Xm), Xc

is the command signal to actuator and Xm is measured signal from LVDT feedback

with proportional gain of Kp.

3.1.2 Hydraulic Cylinder Dynamics

The dynamics in the hydraulic cylinder are linearized based on assuming: a)

leakage flow is neglected when valve orifices are closed; b) the square root relationship

between orifice flow QL and spool position xv, is put into an approximated linearzed

form as load pressure PL is negligible compared to the pressure supply Ps.

QL = KaṖL + ClPL + AẊm (3.3)

QL = Kvxv

s

1� xvPL

|xv|Ps
(3.4)

where Ka = V
t

4�
e

, Vt is the volume of the actuator cylinder and �e is the e↵ective

bulk modulus of the fluid. Cl is the leakage coe�cient of piston from on chamber to

another. A is the piston area. Xm is measured displacement from LVDT. The AẊm

indicated the natural velocity feedback in actuator and is causing control-structure

interaction. PL and QL are the load pressure and flow rate respectively. Kvis called

the flow gain of the servo-valve and Ps is the hydraulic pressure supply. Then the

equation can be linearized as QL = Kvxv .

3.1.3 Specimen Dynamics

The actuator force generated by PLA is applied to the test structure, and the

response of the structure is dominated by the equation of motion:

F = PLA = mẍ+ cẋ+ kx (3.5)
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Gx(s) =
x(s)

PL(s)
=

A

ms2 + cs+ k
(3.6)

where the mass m and damping c is the sum of specimen and actuator mass, damping

respectively. Since the actuator stroke is considered as rigid, therefore, the sti↵ness k

is assumed to be contributed by the specimen attached to the actuator. The overall

system described by the block diagram in Matlab Simulink is shown in Fig. 3.2.

Parameters involved in identifying the linear model is listed in Table 3.1.

Figure 3.2.: Block Diagram of Servo-hydraulic System

Table 3.1.: Servo-hydraulic system parameters for system identification

kq Valve Flow Gain Kv Valve Pressure Gain
⌧ Servo-valve Time Delay Constant Cl Piston leakage coe�cient
A Piston Area Vt Fluid Volume
Kp Internal Controller Proportional Gain �e E↵ective Bulk Modulus
m system and piston mass c system and actuator damping

3.1.4 Transfer Function Sensitivity

To understand this linearized system model, the influence of specimen parameters

on the system transfer function is investigated. Specimen mass mL, sti↵ness k, and

internal controller gain Kp are the three variables to consider. Thus, they were each

varied over a range to understand their influence on the transfer function.
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Fig. 3.3 shows the sensitivity of the system transfer function with specimen mass,

sti↵ness and internal controller gain in numerical simulations. In each of the three

cases the parameter (m, k andKp) varied between 10% to 1000% of the original value.

The controller gain variation clearly has the most significant e↵ect on the shape of the

transfer function. Specimen mass and sti↵ness variation do not change the transfer

function extensively, especially in terms of phase lag. However, it is worth noticing

that innately, the system transfer function does yield a unit gain when the sti↵ness

is not zero, which is due to the Clk in the denominator. This phenomenon will not

a↵ect the functionality of the model in most cases since Clk is usually relatively small

compared to the numerator. But when the specimen sti↵ness is large (e.g., a sti↵

frame) the transfer function needs to be modified to satisfy the static condition. A

general procedure to adjust the transfer function for large sti↵ness specimen case is

not within the scope of this chapter.

3.2 Genetic Algorithm

Genetic algorithms (GA) is an optimization technique using the concepts of natu-

ral evolution and the survival of the fittest. Compared to the straightforward greedy

searching criterion which requires high computing power, GA has two intrinsic ad-

vantages. First, it searches many peaks in the population in parallel, and exchange

information within the peaks to search broadly [75], increasing the possibility to con-

verge to the global optimum. Thus, the selection of initial population range is not

critical. On the other hand, the algorithms starts with an initial population ran-

domly distributed over all dimensions of the search space which considerably reduces

the time required in searching. The advantages of GA make it an appropriate choice

in servo-hydraulic actuator identification where there are a large number of unknowns.

GA has five basic operations: initialization, selection, crossover and mutation.

The structure of this algorithm is shown in Fig. 3.4.
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Figure 3.4.: General Genetic Algorithms (GA) Processing Structure

To start evolution, the first generation (i.e., parents) is generated and distributed

randomly over the boundaries within which they are defined. The population size

defines the number of first generation vectors, or can also be understood as the number

of chromosomes. Increasing the population usually yields a better result [71], [76],

but having too large of a population decreases computational e�ciency [77]. The

initial population for a particular element is generated by choosing n sample values

using the rule

xi = zi(xmax

� x
min

) + x
min

(3.7)

where a random variable zi[0, 1], xmax is the upper bound for xi, and xmin is the lower

bound. They are then clustered together to form an initial population in n⇥m matrix

form where n is the population size and m is the number of unknown parameters.

The fitness function defines the rules to rank the optimized search. In the system

identification case, a better value from the fitness function indicates a better fitting
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of the parameter-based model for the sampled data under various test specimen and

input signal configurations. Based on the fitness of each vector, they are re-arranged

in the population matrix with the fittest vector at the top. A selection ratio (⇣) is

predefined for the algorithm to indicate the portion of population left after a gener-

ation of natural selection. The second generation would then have a population of

n ⇥ (1 � ⇣) with the least fit n ⇥ ⇣ vectors removed from the matrix, or dying out

from the population.

Similar to the natural evolution process, the vectors that survive the natural

selection process mate with each other to exchange gene information. The organized

matrix generated in the last stage is randomly re-arranged in the column to form new

vectors. This process is visualized in Fig. 3.5 using a simple 56 matrix example.  

is the crossover operator.

Figure 3.5.: General Crossover Process for GA

Figure 3.6.: General Mutation Process for GA
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The matrix after crossover lays the foundation of the next generation vectors.

From the biological perspective, mutations occur in the process of mating. In GA,

mutations are also simulated to search for possible global optimum outside of the

current population. A mutation rate is defined for GA so that after a new generation

of population is generated in the form of matrix, Fig. 3.6 shows the mutation process

for the example matrix considered previously. ⌦ is the mutation operator. A mutation

rate µ is defined for GA so that after a new generation of population is generated in

the matrix, µ⇥ n of the elements in each column is substituted by a random number

within the assigned boundaries. The exact positions in each column to insert these

numbers are chosen randomly. In this identification procedure, µ is selected to be

0.2.

After crossover and mutation are complete, the next generation of population is

generated. This process will continue iterating until the stop criterion is met. The

stop criterion can either be set such that the population is less than a threshold, or

the fitness for a particular vector is larger than a particular value. The last vector

left or the arithmetic average of each element in the last few vectors is considered

as the GA optimization results. If the last few vectors still have a large standard

deviation, another round of GA with narrower boundaries may be required, or it can

be combined with an exhaustive searching method using greedy criterion to finalize

the parameters.

To utilize GA for servo-hydraulic actuator identification, each of the unknown

system parameters in Table 3.1 is assigned an estimated range. The initial population

of each parameter is then generated randomly within the range. After selecting

the appropriate fitness function and stop criteria, selection, crossover and mutation

are conducted to yield a set of system parameters that best reproduce the response

recorded from the experiments.
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3.3 Experimental Implementation

Experiments are conducted in the Intelligent Infrastructure Systems Laboratory

at Purdue University. A Shore Western 910D actuator with 6.0 inch (152 mm) stroke

and 1.1 kip (4,893 N) force output is used as target actuator. Actuators of similar

size are widely used in RTHS to drive the physical specimens, usually magnetorheo-

logical (MR) dampers [40], [73]. The actuator has an internal LVDT (G.L. Collins,

LMT-711P34) to measure displacement. It is controlled by a Schenck-Pegasus 162M

servo-valve rated for 15 GPM (3.41 m3/hr) at 3000psi (20,684 kPa). This servo-valve

has a nominal operating range of 0 to 60 Hz. The system in the lab is shown in Fig.

3.8. A high performance Speedgoat (Speedgoat GmbH, 2011) real time kernel with

Core i5 3.6GHz processor is configured as the real-time target machine. The desired

displacement command is generated from a Matlab host computer and compiled onto

the target machine to send real-time command to the Shore Western SC6000 hy-

draulic system controller. All measurements are carried out at a sampling frequency

of 4096Hz. The time domain data is then converted to the frequency domain using

the fast Fourier transform (FFT).

The physical specimens for system identification are a series of spring-mass sets.

These specimens are well-understood and can thus be helpful to separate the in-

formation of test specimen from the actuator system. A connector is attached to

the actuator rod to make it compatible with various loading configurations. The

structural configurations shown in Fig. 3.7 are applied in our system identification

procedure.

For each test specimen, three proportional gain and displacement amplitude val-

ues are used in an e↵ort to derive a model applicable to a wider range of interest.

The proportional gains and amplitudes chosen are: Kp=5000,7000,10000; Ampli-

tude=0.02,0.05,0.1 in. To fully excite the system dynamics across the frequency of

interest, a band-limited white noise (BLWN) with a bandwidth of 0-80 Hz is chosen

as the excitation for system ID.
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Figure 3.7.: Di↵erent Specimens Used in Servo-hydraulic System Identification

Figure 3.8.: Actuator and Experimental Setup for Servo-hydraulic System Identifica-
tion

3.3.1 Identification Results

The initial population size in GA is 200. The boundary conditions for each pa-

rameter are listed in Table 3.2. Mean Square (RMS) error between the measured

displacement of the actuator and the calculated displacement based on the purposed

model was chosen to construct the fitness function.
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Table 3.2.: Boundary Values for Unknown Parameters

Parameter Z
0

m
0

Ka Cl Tv c
Unit m3/(s · kPa) kg m3/kPa m3/(skPa) s kN � s/m

Minimum 1E-5 1 2E-12 2E-9 0.001 0.8
Maximum 2E-5 10 2E-10 2E-8 0.006 5

The fitness of the model with each test case is defined as

F (i, j) =
�(xm,j � xi,j)

�(xm,j)
(3.8)

where F (i, j)indicate the fitness of vector ifor test case j, xm,j is the measured output

for test case jand xi,jis the calculated output for test case jbased on the model

predicted by parameter vector i. � indicates standard deviation. The fitness for

parameter vector i is than calculated by F (i) =
NP
j=1

F (i, j) where N is the number

of transfer functions we have generated from the experiment. The selection rate and

mutation rate in our study are 0.8 and 0.2, respectively. Reproduction stops when

the population size reduces to 5.

The idea behind GA is to extract the fittest information from the initial popula-

tion. Fig. 3.10 shows the evolution of GA for two specific system characteristic values

plotting over 12 generations: the Z
0

value defined before and the viscous damping

in the actuator c. As can be observed through the scatter, the initially randomly

distributed data within the boundaries converges to a smaller region of the domain as

the data go through the natural selection process. This trend can also be visualized

by the cost function value defined by the Eq. 3.8. As population generation increases,

this value decreases consistently, reaching a stable but low value when the algorithm

meets the tolerance. The identified parameters of the system transfer function are

tabulated in Table 3.3.
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Figure 3.9.: Evolution of Actuator Damping and z
0

Value

Figure 3.10.: Fitting Function Value Decreasing Trend

Based on the identified Ka value, and a rough estimation of the actuator cylin-

der volume using piston area and stroke, the e↵ective bulk modulus of the fluid is

estimated as

�e =
1

4
⇥ Vchamber

Ka
=

6⇥ 10�4m3

4⇥ 1.39⇥ 10�10m3/kPa
= 1.1⇥ 106kPa (3.9)
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Table 3.3.: Identified system parameters

Parameter Value Unit
Z0 KvpKcKqA 1.48E-05 m3/(s · kPa)

v Valve time delay 0.0036 s
Cl Piston leakage coe�cient 1E-8 m3/(s · kPa)
c E↵ective actuator damping 3.2 kN � s/m
m0 Actuator initial mass 4.25 kg
Ka Vt/4�e 1.39E-10 m3/kPa

where Vchamber is an estimation of the chamber volume based on bore diameter and

chamber length. A reference value of bulk modulus for hydraulic oil at the lab tem-

perature is approximately 1.5⇥106kPa [78] indicating a high fidelity in the identified

parameters.

3.3.2 Experimental Verification

To verify this method a series of similar tests with the internal controller propor-

tional gain Kp set di↵erently as 6. This choice is made because, according to our

study on the influence of each parameter on the transfer function in Section 2.1.5, Kp

can most significantly change the system transfer function and Kp=6000 cases are

not part of the fitness function in GA.
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Figure 3.11.: Time Domain Verification of the Identified Model
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(b) Mass=0.98 kg, Sti↵ness=67.6 kN/m, Kp=6000, RMS amplitude=0.1 in

Figure 3.12.: Frequency Domain Verification Results for Servo-hydraulic System Iden-
tification

Figs. 3.11 and 3.12 show the time domain and frequency domain verification of

the servo-hydraulic actuator model under BLWN excitation in experiments. From

the time domain perspective, the model accurately predicts the system amplitude



41

and time lag for a BLWN input signal. This conclusion is further confirmed by

the transfer function, where perfect tracking is observed up to 30 Hz. When the

frequency goes higher than 30 Hz the modeled amplitude starts to deviate from

the experiment results, while the modeled phase still matches perfectly. In general,

since the frequencies higher than 20 Hz are not typically of interest in earthquake

engineering [79], the model generated by this procedure would be su�cient to help

the modeling and control design of any similar servo-hydraulic actuator involved in

RTHS.

3.4 Conclusion

This chapter presents a high fidelity and e�cient general procedure to identify

servo-hydraulic actuators involved in RTHS and similar experimental applications.

The system transfer function is derived from a fourth-order, component-based model

of the servo-hydraulic system. Known parameters from the design of the actuator and

the physical test setup are employed in the model. The remaining parameters in the

experimental transfer function are identified using a series of white noise inputs with

varying physical components. Genetic algorithms is used to optimize system char-

acteristic parameters in this transfer function. Various test specimens are attached

to the actuator, and the dynamics in each case is compared with the mathematical

model to generate a fitness function in GA. The proposed approach is found to be

highly e�cient and have fast convergence for this application and the results of the

parametric identification is demonstrated to be e↵ective. The resulting model is eval-

uated using di↵erent specimen cases and yields a good match between experimental

results and predicted responses.
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4. ACTUATOR CONTROL ALGORITHMS AND PERFORMANCE

Real time hybrid simulation (RTHS) has tthe additional benefit of enabling investi-

gating rate dependent components in the experimental substructure. Some challenges

of RTHS have been stated in earlier chapters, including accurate boundary condition

tracking, integration stability and experimental-numerical interaction in a closed loop

form. In 1996, Horiuchi et al [29] first drew the conclusion that time lag in RTHS,

modeled as a pure time delay, is equivalent to adding negative damping. When the

time delay is significant, instability may occur in the closed loop RTHS. In response

to this issue, many researchers have sought to compensate for the time delay. First,

Horiuchi et al used polynomial extrapolation based on displacement to predict and

compensate the delay e↵ect [87]. Later, Horiuchi and Konno linearly extrapolated

the acceleration instead, to improve stability [30]. Darby et al introduced the first

online estimation of time delay, and compensated for the updated time delay is com-

pensated in real time [32]. Ahmadizadeh et al improved time delay estimation based

on reference and measured signal slope [33]. Nguyen and Dorka also developed phase

lag compensation with online system identification, where a black box with recursive

estimation is used in online updating for system delay [34]. Wallace extended the

work of Horiuchi and Darby, updating the polynomial coe�cient by a least squares

algorithm in real time to compensate for actuator dynamics [31]. Recently, Wu et al

proposed an upper bound delay compensation algorithm [37].

Another important branch in the actuator control literature is the model based

control approach, which was first proposed by Carrion and Spence [38], [39]. They in-

troduced a data based actuator system identification and inverted the identified plant

model directly by adding a low pass filter to ensure the system strictly proper. Phillips

and Spencer modified FF compensation to eliminate of low pass filter and using a

time domain representation to replace the improper inverse of actuator plant, one
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linear quadratic regulator (LQR) is added as optimized feedback regulation for un-

certainties [40]. Combining the model based approach with delay/lag compensation,

Chen and Ricles assumed the actuator plant can be modeled as a first order transfer

function, and compensated with an inverse controller that uses a single estimation

parameter representing the time delay/lag in actuator [35]. They later modified their

inverse control algorithm with an adaptive feature to update the delay estimation

parameter in real time [36]. In 2011, Gao et al proposed a robust actuator controller

for RTHS based on H1 theory which, for the first time, considered noise, disturbance

and model uncertainty e↵ects in actuator control [42], [43], [44]. This H1 controller is

designed by trading o↵ tracking performance and control robustness, giving the user

the power to meet the testing needs.

All the aforementioned control algorithms require model and parameter identi-

fication of the actuators with di↵erent level of complexity. However, the e↵ect of

modeling error on the control algorithm performance has not been studied. Mean-

while, for a dynamic system control, noise and disturbance is considering as another

source a↵ecting control performance. Thus, it is necessary to investigate the noise

e↵ect on di↵erent control algorithms.

This chapter includes a literature review and parametric study on existing actuator

control algorithms. Three commonly used control algorithms in RTHS are studied,

including the inverse control algorithm proposed by Chen and Ricles [35], which is

a feedforward control algorithm; the feedforward and feedback algorithm (FFFB)

by Phillips and Spencer [41], and the H1 control algorithm by Gao and Dyke [44].

First, the control parameters are defined in each algorithm. Simulations are carried

out to understand how the design of these control parameters can a↵ect the tracking

performance. In the end, an experimental example is utilized to investigate how the

tracking performance is a↵ected according to modeling error and system noise.
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4.1 Actuator Control Algorithms in RTHS

In this section, three actuator control algorithms are presented with design pa-

rameters indicated. In the inverse control algorithm, the system is modeled as a first

order time delay system with constant parameter ↵; in the feedforward and feedback

control algorithm, a feed forward loop is designed in time domain as a direct inverse

of a third order plant model, and the linear quadratic regulator (LQR) feedback loop

is implemented by appropriate weighting matrices QLQR and RLQR; and, in the H1

control algorithm, the goal is to design a desired open loop shaping function Gd(s).

4.1.1 Inverse Control Algorithm Formulation

Figure 4.1.: Block Diagram of the Inverse Control Algorithm

Chen and Ricles proposed the inverse control algorithm for actuator time delay,

shown in Fig. 4.1. The time delay td = ↵ · �t can be calculated by:

G(s) =
Xm(s)

Xc(s)
(4.1)

td =
�\G(!)

!
(4.2)

where G(s) is the transfer function between measured signal Xm(s) and command

signal Xc(s), time delay is represented by phase lag of transfer function G(s) at

circular frequency !.
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Assuming the response of actuator can be linearly interpolated at the ith step,

then measured signal at i+ 1th step is expressed as following:

Xm
i+1 = Xm

i +
1

↵
· (Xc

i+1 �Xm
i) (4.3)

Applying discrete z transformation,

Gd(z) =
Xm(z)

Xc(z)
=

z

↵ · z � (↵� 1)
(4.4)

To compensate time delay, use the inverse of Gd(z) as a feedforward block, the

inverse controller Gc(z) is derived to be

Gc(z) =
1

Gd(z)
=

Xc(z)

Xm(z)
=

↵ · z � (↵� 1)

z
(4.5)

In the inverse control algorithm, the only parameter that a↵ects control perfor-

mance is ↵. Later, the sensitivity of the change in ↵ to control performance is

discussed.

4.1.2 Feedforward-Feedback Control Formulation

Figure 4.2.: Block Diagram of Feedforward and Feedback Controller Components
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Carrion and Spencer proposed a feedforward-feedback control algorithm for real-

time servo-hydraulic system [39]. The feedforward controller is formulated as the

inverse of an identified actuator-specimen plant G(s) and a low pass filter to stabilize

the system. Phillips and Spencer reformulated the feedforward - feedback algorithm

to a regulation problem, which includes a linear quadratic Gaussian (LQG) based

regulator in the feedback loop to reduce residual tracking error after feedforward

control. The previous low pass filter is eliminated in the reformulation to get rid of

the unwanted dynamics induced by the low pass filter. The schemetic drawing of

feedforward and feedback controller is as as Fig. 4.2.

Feedforward Controller

The plant model G(s) is identified based on a open loop test (with no additional

controller applied) with physical specimen attached to the hydraulic system. A typical

third order servo-actuator transfer function is presented to describe transfer function

between measured displacement and command displacement, as

G(s) =
Xm(s)

Xcs
=

Kn

(s� a)(s� b)(s� c)
(4.6)

where, Kn is a constant zero polynomial coe�cient and a, b, c are the poles of the

plant. To directly compensate servo actuator dynamics, the inverse of G(s) can be

written in frequency domain as:

GFF (s) =
1

G(s)
=

(s� a)(s� b)(s� c)

K
= a

0

+ a
1

s+ a
2

s2 + a
3

s3 (4.7)

where a
0

, a
1

, a
2

, a
3

are pole polynomial coe�cients expanded from Eq. 4.6. In the

time domain, Eq. 4.7 can be written as:

GFF (s) = a
0

x+ a
1

ẋc(t) + a
2

ẍc(t) + a
3

...
x c(t) (4.8)
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In general, the equations of motion are solved at the ith time step and the i+ 1th

displacement is imposed to the physical specimen. In discrete form, Eq. 4.8 can be

written as:

GFF (t) = a
0

xi+1

c + a
1

ẋi+1

c + a
2

ẍi+1

c + a
3

...
x i+1

c (4.9)

where the desired acceleration is assumed to be linearly extrapolated over one time

step:

ẍi+1

c = 2ẍi
c � ẍi�1

c (4.10)

thus, ˙xi+1

c and
...
x i+1

c can be written as ẋi+1

c = ẋi
c +

�t
2

(ẍi
c + ẍi+1

c ) and
...
x i+1

c = 1

�t(ẍ
i
c �

ẍi�1

c ).

Feedback Controller

Because the feedforward control part is determined by the estimation of the plant

model which implies that modeling error might a↵ect the performance. The use of

LQG control in the feedback is aimed to reduce the tracking error with respect to

modeling error and disturbances.

The system is written in state space form as:

˙̃z = Az̃ +BuFB + Ewf (4.11)

ỹ = Cz̃ + vf (4.12)

where disturbance wf and measurement noise vf is introduced. Only output ỹ =

Xm � Xc which is the error between the measured signal and the command signal

can be observed all the time. Disturbances in the system are assumed to be a filtered

Gaussian white noise after a second-order filter, the peak, bandwidth and roll o↵ of

the disturbance can be defined individually.

żf = Azf + Efw (4.13)
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wf = Cfzf (4.14)

The augmented system can be written as: za =

2

4 zf

z̃

3

5 . and can be estimated by

Kalman filter, with estimated state ẑa and observer gain matrix LKal

˙̂za = Aẑa +BuFB + LK(ỹ � Cẑa) (4.15)

Thus, the feedback control command uFB can be obtained using an LQR design

assuming full state feedback as:

JLQR =

Z
[ỹTQLQRỹ + uT

FBRLQRuFB]dt (4.16)

uFB = �KLQRẑa (4.17)

˙̂za = Aẑa � BKLQRẑa + LKal(ỹ � Cẑa) (4.18)

where KLQR is the optimal state feedback gain matrix and JLQR is the costs function

minimized by LQR design, QLQR and RLQR are the weighting matrices for output

and system inputs respectively.

For the FFFB control algorithm, the design parameter is the weighting matrix

QLQR and RLQR.

4.1.3 H1 Control Algorithm Formulation

In 1989, Glover and McFarlane introduced a control design procedure that applies

loop-shaping methods for exploring performance/robust stability trade o↵s [81]. For

a system represented by a transfer function G(s) and controller K(s) in Fig. 4.3 the

system sensitivity function is defined in Eq. 4.19 to quantify disturbance and noise.
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Figure 4.3.: Block Diagram of a Typical Feedback Control System

For tracking performance measurement, the complementary sensitivity function (also

known as the output-input transfer function) is defined as Eq. 4.20.

S
0

(s) = (1 +G(s)K(s))�1 (4.19)

T
0

(s) = 1� S
0

(s) = GK · (1 +G(s)K(s))�1 (4.20)

Consider a weighting function or a loop shaping function, Gd(s) as

Gd(s) =
T
0

(s)

S
0

(s)
=

G(s)K(s) · (1 +G(s)K(s))�1

(1 +G(s)K(s))�1

= G(s)K(s) (4.21)

In the desired signal tracking frequency, T
0

should be close to unity, indicating

good tracking performance. Meanwhile, S
0

is close to 0 based on Eq. 4.19, there-

fore, Gd is with its lower bound limit. In the high frequency range, where model

uncertainties and noise e↵ect are dominant, S
0

(s) needs to be large and T
0

(s) should

be minimized, this indicates the feedback noise does not a↵ect the control command

signal. Thus, Gd(s) is with upper bound limit. The upper bound, lower bound, and

the loop shaping function satisfying such criterion are shown in following Figure 4.4.
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Figure 4.4.: Upper Bound and Lower Bound for Loop Shaping Function

H1 methods allows for optimization of a transfer function F (s), with its maximum

singular value over the entire frequency range, s = j!, j is the imaginary unit. The

goal of the H1 control method is to design a controller K(s) by following rule, where

� = 1 indicates the best fit.

||F (s)||1 = sup�(F (s)) =
p

�maxF (s) ⇤ F (s) (4.22)

�(G(s)K(s)) � 1

�
�(Gd(s)) (4.23)

�(G(s)K(s))  ��(Gd(s)) (4.24)

In H1 control algorithm design, the e↵ective design of the controller is based on

the choice of the loop shaping function Gd. The parameters in designing the loop

shaping function Gd is discussed in the numerical study.



52

4.2 Numerical Study on Actuator Control Design and Performance

In this section, the design procedures for three di↵erent control algorithms are

presented. Control performance is defined with an RMS error indicator and time

delay between desired and measured signal. The sensitivity of controller parameter

to control performance and control e↵ort (command output voltage) is discussed.

Because the FFFB algorithm assumes linear extrapolation of acceleration, the plant

model in this section is represented using a third order transfer function, identified

from an experimental setup, as in Fig. 4.5. The plant transfer function is written:

G(s) =
4.8507⇥ 106

s3 + 353.3s2 + 79264s+ 4.8304⇥ 106
(4.25)

Figure 4.5.: Data Based Plant Frequency Response: Excited with 0-100 Hz BLWN
Noise
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The RMS error indicator used to determine the tracking performance in the time

domain is defined as:

RMSe =

q
⌃(Xm �Xc)i

2

q
⌃(Xc)i

2

(4.26)

4.2.1 Parametric Study of Inverse Control Algorithm

In the inverse control algorithm, the only parameter that changes the performance

is ↵ which is the estimation for time delay. From Eq. 4.2, ↵ can be estimated

with given sampling frequency and time delay td. The estimated time delay td from

experiment is 12.9 millisecond.
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Figure 4.6.: Time Domain Signal Tracking Performance with Di↵erent Inverse Con-
troller Designs

The design parameter ↵ using estimated time delay changes from 7 milliseconds

to 30 milliseconds (equivalent to Td = 14�60 steps), at sampling frequency 2048 Hz.

The time domain tracking performance is shown in Fig. 4.6 for a band limited white

noise with frequency range of 0-10 Hz. The grey scale bar shows the corresponding
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↵ value used in designing the controller. When the controller design is with a larger

↵ value which is equivalent to assuming larger time delay in the system, the time

delay is better compensated. However, when ↵ value keeps increasing, the overshoot

e↵ect takes over the advantage of time delay compensation, which induces larger RMS

error, as shown in Fig. 4.7.
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Figure 4.7.: RMS Error and Time Delay of Compensated System with Di↵erent
Inverse Control Designs

4.2.2 Parametric Study of Feedforward and Feedback Control Algorithm

FFFB control algorithm performs an inversion of a third order transfer function

and extrapolates to the time domain. The feedforward loop design depends on mod-

eling accuracy, where a
0

, a
1

, a
2

, a
3

value in Eq. 4.8 is derived from G in Eq. 4.25.

Parameters in the feedback loop are flexibly selected based on the LQR algorithm. As

in Eq. 4.16, the optimization weighting Q/R ratio determines the control gain JLQG.

In this section, Q/R ratio changes gradually between 1 to 4000, and the performance

of FFFB algorithm is evaluated also in terms of the RMS error and the residual

system time delay. Fig. 4.8 indicates that the larger the Q/R value, the better the

control performance is. Also, the residual time delay is further reduced. With the

FFFB controller, because the feedforward loop takes numerical di↵erentiation of the
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measured signal and commanded signal, control output is sensitive for both signal

amplitude and sampling frequency as in Fig. 4.9. The physical plant has a limitation

on the input voltage, (commonly ± 10 volts), large input signal or running at high

sampling frequency can be a potential problem for FFFB controller.

Figure 4.8.: RMS Error and Time Delay of Compensated System with Di↵erent FFFB
Control Designs

Figure 4.9.: Output Voltage of FFFB Controller under Di↵erent Sampling Frequencies
and Signal Amplitudes
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4.2.3 Parametric Study of H1 Control Algorithm

H1 control algorithm allows for a flexible trade o↵ between controller robustness

and performance. As mentioned earlier, the design of an H1 controller is equivalent

to design to achieve a desired open loop transfer function Gd. The parameters in a

shape function can vary broadly which makes control design less intuitive. In this

section, only consider a second order transfer function for Gd as:

Gd(s) =
Gdc ⇥ ab

(s+ a)(s+ b)
(4.27)

where, �a,�b are poles of the open loop system. The closed loop transfer function

GCL is:

GCL(s) =
Gdc ⇥ ab

(s+ a)(s+ b) +Gdc ⇥ ab
(4.28)

Rewriting Eq. 4.28 into complex form, its magnitude and phase can be expressed as:

GCL(!) =
Gdc[�!2 +Gdc + ab� (a+ b)j!]

!4 � (Gdc + 6ab+ a2 + b2)!2 + (Gdc + ab)2
(4.29)

|GCL(!)| =

s
Gdc[�!2 +Gdc + ab� (a+ b)j!]

!4 � (Gdc + 6ab+ a2 + b2)!2 + (Gdc + ab)2
(4.30)

✓CL(!) = arctan
(a+ b)!

�!2 +Gdc + ab
(4.31)

Ensuring the closed loop transfer function will have a small phase lag (equivalent

to time delay) requires a larger a, b values and larger constant gain Gdc. Solving Eq.

4.31 yields many parameter sets for a, b, Gdc which satisfy a desired predetermined

cross over frequency. Simulation results for the 2nd order open loop transfer function

Gd are studied with a, b, Gdc parameters indicated in Fig. 4.10. It shows the larger

the Gdc, a, b value, the better the control performance is(less RMS error and smaller

time delay).
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Figure 4.10.: RMS Error and Time Delay of Compensated System with Di↵erent H1
Control Designs

�a,�b are open loop poles for the system, this finding can be expanded to a

higher order open loop transfer function where

Gd(s) =
Gdc ⇥ a

1

a
2

a
3

...an
(s+ a

1

)(s+ a
2

)(s+ a
3

)...(s+ an)
(4.32)

However, during experimental testing, system noise, if existed, can be excited and am-

plified with high constant open loop gain Gdc. This e↵ect is considered as robustness

limitation and is discussed in detail in later sections.

In this section the controller parameters sensitivity are discussed, based on a sim-

ulation task, the key parameters of three commonly used actuator control algorithms

are investigated. For the inverse control algorithm, when time delay associated pa-

rameter ↵ increases, the residual time lag between measured plant output to command

signal decreases. However, at large ↵, the tracking accuracy is reduced due to the

signal overshoot. Based on the simulation, inverse controller works better for system

with small delay. In FFFB controller, high Q/R ratio increases the tracking accuracy.

This control algorithm is easy to design with third order transfer function informa-

tion. However, it is found for tracking command at larger amplitudes, this algorithm

generates a large output in voltage output reaches the limit of physical facility.
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The H1 controller is the most flexible control algorithm among the three, the

order of loop shaping function is configurable as well as the constant gain Gdc and

loop shaping function pole locations. From simulation, it is found that the constant

gain Gdc is the dominant parameter for control accuracy. However, a smaller pole

value (more stable, further to the negative real axis), reduces the tracking accuracy

(RMS error and larger delay). Again, that is the trade-o↵ between accuracy and

robustness for H1 controller design.

4.3 Experimental Study on Control Accuracy

In this section, an experimental study is carried out for illustrating the control

performance of the same three control algorithms. The equipment and facility used for

experimental investigation are located in the Intelligent Infrastructure System Lab

(IISL). Due to its inherent rate dependent characteristic, the magneto-rheological

(MR) damper is considered as a representative experimental substructure in RTHS.

In the experimental setup, a small scale MR damper is attached to the same actuator

used in chapter 3, the performance of linear control algorithms are investigated on

such setup. An RD-8040-1 MR damper with a maximum force capacity of 450 lbf (2

kN) and a stroke of 2.2 inch (56 mm) manufactured by Lord Corporation is attached

to the Shore Westsern 910D actuator. A Lord Wonder Box pulse-width modulator has

been applied to control MR damper excitation input, the MR damper is considered

in on mode with input of 3 Amps and o↵ with input of 0 Amps.

As indicated in the previous chapter, the real-time control system is implemented

using a Matlab xPC framework to ensure all physical components to meet the time

constraints. A high performance Speedgoat/xPC real-time kernel is utilized as the

target PC and it is used with a Core i5 3.6 GHz processor for intensive processing

of complex model in real-time computation. Two 18-bit analog I/O boards with

high accuracy are integrated into the digital control system which supports up to

32 input A/D channels and 8 output D/A channels at the same time. A Shore



59

Figure 4.11.: Block Diagram of a combination of Inverse Controller andH1 Controller

Western SC6000 analog servo-controller is equipped in the testing to provide control

of hydraulic actuators.

Four di↵erent control algorithms are used in the experimental investigation. In

addition to the three discussed control algorithms, a new controller is proposed as

a combination of the H1 controller and the inverse controller, the schematic block

diagram in Fig. 4.11. Due to the e↵ective improvement of inverse control on systems

with small time delays, it is desired to include such a feedforward loop to eliminate any

residual time lag after H1 when smaller open loop pole (a, b value as discussed earlier)

is selected. This controller is later expanded to formulate the Robust Integrated

Actuator Control (RIAC) algorithm, which is presented in detail in chapter 5.

Because all the control algorithms discussed in this chapter are based on linear

system assumption, an approximated linearization of the MR damper - actuator non-

linear system is implemented. One common used approximation is performed as

follows: 1) take transfer functions of the nonlinear system with band limited white

noise (BLWN) displacement input by and measured displacement output, 2) run the

transfer function identification with both MR damper o↵ (0 amps current) and on (3

amps current) condition; 3) take the average of the approximated transfer function

in step 2) to represent an averaged linear behavior among both conditions. The on
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Figure 4.12.: Experimental Setup: MR damper Attached to Hydraulic Actuator

and o↵ transfer functions with corresponding curve fitting results are shown in Fig.

4.13.

Goff (s) =
1⇥ 106

s3 + 287s2 + 5⇥ 104s+ 1⇥ 106
(4.33)

Gon(s) =
7⇥ 106

s3 + 467s2 + 1.7⇥ 105s+ 7⇥ 106
(4.34)

The averaged transfer function is as:

Gavg(s) =
4⇥ 106

s3 + 377s2 + 1⇥ 105s+ 4⇥ 106
(4.35)

Two input signals are utilized to investigate the control performance: one is a 0-20

Hz BLWN with an RMS amplitude of 0.03 inch, another is 0.5 Hz sinusoidal signal

with amplitude of 0.3 inch. Parameters used for all controllers are listed in Table

4.1. For both tests, controller designs are based on the averaged transfer function in

Equation 4.35. During the BLWN testing, MR damper input current was first set at
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Figure 4.13.: Data Based Plant Frequency Response: Excited with 0-60 Hz BLWN
Noise

0 Amps (o↵ condition) and then 3 Amps (on condition). In sinusoidal signal testing,

only MR damper o↵ condition is considered.
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The comparison results for di↵erent controllers are shown in Fig. 4.14 and 4.15.

Quantified RMS errors and residual time delays are illustrated in Fig. 4.16. As

observed from the time domain plots, the measured and desired displacements are

closed to identical for FFFB and H1 with inverse controllers. Between on and o↵

condition, time lags after inverse controller are not the same, which reveals the need

of a more versatile control scheme for controlling such system. FFFB has slightly

better performance for on condition, while the H1 with inverse controller has smaller

RMS error for the o↵ mode. In the frequency domain time lag plot, time lags for

FF-FB controller shown to be flat and close to zero for both MR damper on and o↵

modes. Residual delay is around 4-5 ms for H1 controller, and is well compensated

by the additional inverse control algorithm in the modified H1 control design.
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(d) H1 with Inverse Controller

Figure 4.14.: Time Domain Tracking Performance for Di↵erent Control Algorithms,
MR damper O↵ Condition, Tracking of 0-20 Hz BLWN

For sinusoidal signal, Fig. 4.17 shows quantified RMS errors and time domain

tracking, all controllers have acceptable tracking accuracy. For FFFB control algo-

rithm, and modified H1 control with incorporating inverse controller, RMS errors

are both under 1%. Inverse controller is found to be more e↵ective for a narrow band

input.
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Figure 4.15.: Time Domain Tracking Performance for Di↵erent Control Algorithms,
MR damper On Condition, Tracking of 0-20 Hz BLWN
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Figure 4.16.: RMS Error and Time Delay between Desired Signal and Measured
Signal after Di↵erent Controllers, Tracking of 0-20 Hz BLWN, Upper Figure: MR
Damper O↵ Condition, Lower Figure: MR Damper On Condition

Figure 4.17.: RMS Error and Time Domain Tracking Performance under Di↵erent
Controllers, MR Damper O↵ Condition, Tracking of 0.5 Hz Sine Wave
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4.4 Control Algorithm Robustness Study

Previously, uncertainties have not been thoroughly studied in developing actuator

control algorithms for RTHS. Those uncertainties include systematic uncertainties

such as modeling errors, and the random uncertainties as the existence of noise. In

this section, controller robustness according to the two types of uncertainties are

investigated. Modeling error due to misidentification of specimen properties and

modeling error due to system simplification (di↵erent transfer function order) are

both considered.

4.4.1 Control Robustness to Modeling Error

As discussed in chapter 3, the plant transfer function is changing with specimen

mass, sti↵ness and is changing significantly with di↵erent proportional gain. Thus,

system misidentification error in this chapter is assumed more on the testing specimen

(experimental substructure) rather than in the hydraulic actuator.

Using the example from chapter 3, the attached specimen spring has a sti↵ness

386lb/in and an added mass of 2lb. The proportional gain of 7000 is defined as

a nominal specimen in this section. The other test cases shown in Table 4.2 are

considered to have modeling error.

Fig. 4.18 shows the system transfer functions corresponding to each specimen

setup, the dash line is the nominal plant. Transfer function plots are sorted into two

groups which is due to the proportional gain change from 7000 to 6000.

The control parameters are defined in Table 4.3, assuming the plant model is the

nominal case, with plant transfer function:

GR(s) =
4.837⇥ 109

s4 + 904.7s3 + 4.9126⇥ 105s2 + 7.9909⇥ 107s+ 5.0123⇥ 109
(4.36)

The results in Fig. 4.19 and 4.20 demonstrate that control performance is not

quite sensitive to specimen sti↵ness and mass change in this case, because the mass
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Figure 4.18.: Transfer Function for Systems with Di↵erent Parameters, Dash Line
Shows the Nominal Model

Table 4.3.: Parameters and Compensation Results for Di↵erent Controllers in Nomi-
nal System

Parmeter RMS error
Inverse Compensator td=0.015 sec 0.7392
Feedforward Feedback Q/R = 400 0.0928
H1 compensation Gd(s) =

4.2578⇥10

4

(s+20)(s+230+7647)

0.4752

H1 with inverse
Gd(s) =

4.2578⇥10

4

(s+20)(s+230+7647)

TdH1=0.0055 sec
0.0790

and sti↵ness change is relatively small as compared to actuator capacity. This finding

is also supported by Fig. 4.18, where only P gain change can noticeably a↵ect the

transfer function. From the comparison, both H1 with inverse and FFFB controller

yield competitive performance with RMS error under 1%. However, in Fig. 4.21,

where the P gain is reduced from 7000 to 6000, the original H1 control design and

H1 with inverse controller are a↵ected more, and for the H1 with inverse controller,
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error changes from 0.97% to 1.52%. However, the FFFB controller is not a↵ected by

P gain setting quite much which shows high robustness.

Figure 4.19.: Sensitivity of Tracking Performance for Di↵erent Control Algorithms
According to Di↵erent Specimen Mass

Figure 4.20.: Sensitivity of Tracking Performance for Di↵erent Control Algorithms
According to Di↵erent Specimen Sti↵ness
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Figure 4.21.: Sensitivity of Tracking Performance for Di↵erent Control Algorithms
According to Di↵erent P Gain

4.4.2 Control Robustness to Random Uncertainties

In this section, a experimental based simulation is conducted, where the influence

of di↵erent levels of measurement noise are discussed. The controller parameters op-

timization and control performance under di↵erent signal/noise ratios are presented.

The plant model in this section is the model identified from the experimental study.

The noise is measured at random testing time from experimental test. Fig. 4.22

demonstrates the power spectrum and standard deviation for di↵erent noise traces

which is not stationary at all the time. Therefore, such uncertainty in the distribution

requires control robustness regarding to noise and disturbance.

Controller aggressiveness, which is represented by the key design parameter of a

controller that dominates the performance, in the inverse compensation, is the delay

parameter ↵ (sec); in the feed-forward and feed-back compensation, is the Q/R ratio

in the LQG feedback loop and in H1 control is the static constant Gdc in Eq. 4.27.

To understand controller sensitivity to noise, the noise trace 2 (the most severe

case with largest standard deviation) is added to plant feedback in the measurement.

In simulation, a band limited white noise signal with bandwidth of 10 Hz is im-
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Figure 4.22.: Characteristics of Di↵erent Noise Traces

plemented as input signal, di↵erent signal/noise ratio is investigated while the key

design parameters in each controller varies. The signal/noise ratio is defined as RMS

amplitude of input signal to the noise standard deviation.

The controller sensitivity to noise is quantified by the level of noise in the mea-

surement. First the measurement signal went through a low pass filter with pass

band up to 30Hz and the cuto↵ frequency is set at 50Hz. Noise content in measure-

ment is considered as the residue between filtered signal and unfiltered signal with

signal synchronization. Fig. 4.23, 4.24, and 4.25 illustrate the noise content excited

under di↵erent level of controller agressiveness for inverse compensator, Feedforward

feedback compensator and H1 compensator respectively.

From inverse compensation, for smaller signal/noise ratio, noise content in mea-

surement does not vary with design parameter ↵, however, when signal/noise ratio

increases, the e↵ect of ↵ increase leads to the increase of noise content in output

measurement. In FF-FB compensation, this trend can be observed through all sig-

nal/noise ratio cases and similarly to H1 compensation algorithm. In Hinfty com-

pensation in Fig. 4.25, when the aggressiveness of the compensator increases, the

closed loop system may go unstable due to the severe amplification of noise in the

measurement which indicates the high sensitivity to noise.
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Figure 4.23.: Noise Amplification with Di↵erent Controller Aggressive Level, Inverse
Controller

Figure 4.24.: Noise Amplification with Di↵erent Controller Aggressive Level, FFFB
Controller

In tracking control, more aggressive controller has better performance such as

smaller time delay, smaller RMS error between desired tracking signal and measured

signal shown in Fig. 4.26. However, to further study the aggressiveness of the feedback

controller design under noise environment, RMS error between desired and measured

signal is calculated to study the compensation e�ciency.
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Figure 4.25.: Noise Amplification with Di↵erent Controller Aggressive Level, H1
Controller

Figure 4.26.: Tracking RMS between Desired and Measured Signal with Di↵erent
Controller Aggressive Levels, Left Figure: Inverse Controller, Middle Figure: FFFB
Controller, Right Figure: H1 Controller

Simulation results indicate the optimization of inverse control algorithm is not

a↵ected by noise or the signal/noise level, trend for time delay constant ↵ is the

same as without noise. It is because that inverse compensation is a feed forward only

compensation, noise in the feedback does not a↵ect the design of controller.

For FFFB compensation in Fig. 4.28, noise is amplified by controller and the

e↵ect of noise amplification overcomes the improvement due to increase in controller

aggressiveness. For smaller signal/noise ratio, the optimized Q/R ratio is 9, this

limitation is increasing when signal/noise ratio increases.
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Figure 4.27.: Tracking RMS between Desired and Measured Signal under Di↵erent
Controller Aggressive Level, Inverse Controller

Figure 4.28.: Tracking RMS between Desired and Measured Signal with Di↵erent
Controller Aggressive Levels, FFFB Controller

Such trend shows clearly in H1 controller design. As compare to Fig. 4.26 where

control performance is constantly improved by increase static design gain Gdc, Fig.

4.29 indicates in a noisy environment, noise is largely amplified and even drives the



74

system to unstable. Severe observation is found even when signal/noise ratio is small,

demonstrating noise in the feedback can dominate the tracking performance.

Figure 4.29.: Tracking RMS between Desired and Measured Signal with Di↵erent
Controller Aggressive Levels, H1 Controller

4.5 Conclusion

This chapter presents three commonly used actuator control algorithms and dis-

cusses the controller performance to each control parameter. For the inverse control

algorithm, when time delay associated parameter ↵ increases, residual time lag be-

tween measured plant output to command signal decreases. However, at large ↵, the

tracking accuracy is reduced due to the signal overshoot. Based on the simulation, in-

verse controller works better for system with small delay. Also from the experimental

study, inverse controller is found to be more e↵ective for a narrow band input.

In the FFFB controller, high Q/R ratio increases the tracking accuracy. This

control algorithm is easy to design by giving a third order transfer function informa-

tion. However, it is found for tracking command of larger amplitude, this algorithm

generates a large output in voltage output reaches the limit of physical facility. Also

the experimental study shows the FFFB controller is robust to plant modeling error.

The H1 controller is the most flexible control algorithm among the three, the

order of loop shaping function is configurable as well as the constant gain Gdc and loop
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shaping function pole locations. From simulation, it is found that the constant gain

Gdc is the dominant parameter for control accuracy. Larger pole value, increases the

tracking accuracy, however, noise e↵ect from measurement can be amplified. Again,

that is the trade-o↵ between accuracy and robustness for H1 controller design.

From the random uncertainty study, noise in measurement is always amplified by

the increase of controller aggressiveness in feedback control algorithms. This obser-

vation illustrates that noise e↵ect in the system can limit the performance of those

controllers. The optimal design of such controller changes with di↵erent signal/noise

ratio. Therefore, the noise content in the sensor measurement should be carefully

investigated in designing a feedback control algorithm. This is further discussed in

chapter 5.
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5. ROBUST INTEGRATED ACTUATOR CONTROL

ALGORITHM

For over two decades, hybrid simulation was always performed on an extended time

scale, neglecting the e↵ects of rate dependent behaviors [83], [84]. Several promising

load rate dependent auxiliary devices have been developed recently. These develop-

ments, combined with recent innovations in embedded systems and real-time oper-

ating systems, have enabled the earthquake engineering community to embrace this

new technology [85]. Therefore, Executing a hybrid simulation in real time scale is

necessary and possible.

Even though it is technically possible to implement real time hybrid simulation

(RTHS), challenges certainly exist. During RTHS, data acquisition, numerical in-

tegration and experimental application of the numerical response through a loading

(transfer) system is restricted within a small time frame (0.5 to 1 ms). To execute

the numerical computations and experimental actions simultaneously, high precision

tracking control of the transfer system is required. However, tracking performance is

normally limited by time delays and time lags introduced by communication, A/D

D/A conversion, dynamics of control device, control structural interaction (CSI) [74]

and noise in the feedback loop. Those limitations require individual examination and

careful compensation.

In 2011, Gao et al proposed a robust actuator controller for RTHS based on H1

theory which, for the first time, considered noise, disturbance and model uncertainty

e↵ects in actuator control [42], [43], [44]. This H1 controller is designed by trading

o↵ tracking performance and control robustness, giving the user the power to meet

the testing needs. However, as indicated in chapter 4, when the noise/signal ratio in
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the system is high within the frequency range of interest, the sensor noise may be

amplified, possibly resulting in a deterioration in performance.

The robust integrated actuator control algorithm proposed herein integrates the

most e↵ective features of the methods discussed. To reduce the noise impact, the

linear quadratic estimation (LQE) scheme is included. For greater flexibility and

higher accuracy during testing, an additional feedforward block minimizes any small

residual time delay/lag. Further, it is proved analytically that RIAC has the same

stability characteristics as the H1 algorithm. A step-by-step design and implementa-

tion procedure for RIAC is suggested based on the needs of a particular user. RIAC

is implemented on two experimental setups, and both simulation and experimental

studies demonstrate the e�cacy of the RIAC. RIAC is found to significantly reduce

the impact of noise as compared to an H1 design, and to improve the phase response

e↵ectively. To further validate the RIAC method, RTHS is performed using a three

story steel building as the numerical substructure and an MR damper as the physical

specimen. Two very di↵erent experimental setups are used to demonstrate the ver-

satility of RIAC. The results indicate that the RIAC is a very e↵ective and accurate

method for imposing boundary condition in RTHS.

5.1 RTHS Formulation

In RTHS, a structure system is divided into numerical and experimental sub-

structures. The numerical substructure contains the well-understood components

and leaves the hard-to-model components in the physical setup. An illustration of a

hybrid simulation is shown in Fig. 5.1. A three story building equipped with damp-

ing device is separated into a 3 DOF shear model in the numerical portion and the

damping device is physically tested in the lab by attaching it to an actuator.

The interaction between experimental substructure and numerical substructure

through actuator control is shown in Fig. 5.2. Such interaction has di↵erent layers:

i) an inner loop PID control is used in most manufacturer provided software that
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Figure 5.1.: RTHS System Concept

Figure 5.2.: Numerical-Experimental Interaction in RTHS

stabilized the actuator; ii) the outer loop control algorithm grantees desired response

from numerical codes is implemented appropriately; and, iii) the force feedback loop

between experimental substructure and numerical substructure.

The equation of motion for the numerical substructure is:

MN ẍ+ CN ẋ+KNx+ FE(x, ẋ) = �M�ẍg (5.1)
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where MN , CN , KN indicates mass, damping and sti↵ness matrices in the numer-

ical substructure. FE is the measured force from the experimental substructure and

ẍg is the earthquake acceleration record.

A typical RTHS implementation is as follows:

1. For initial time step, i = 1:

Calculate initial numerical response from Eq 5.1 and get x
1

, ẋ
1

given xg,1 and

F
1

E = [0].

Set xd,1 = x
1

.

2. For time step i, (i > 1):

Impose desired response xd,i�1

through outer loop control algorithm to transfer

system (hydraulic actuator) with command signal xc,i

3. Actuator executes command signal, achieves real response xm,i to attached spec-

imen, then measure experimental restoring force Fi
E due to actuator motion.

4. Calculate numerical response xi, ẋi using integration scheme with given xg,i+1

and Fi
E

Set xd,i = xi.

5. Set i = i+ 1, go to step 2.

The accuracy between desired boundary condition [xd, ẋd] with the transfer system

in step 2 and 3 dominates the fidelity of the RTHS. Here, the outer loop control

algorithm is designed based on the assumption that the plant (the actuator model)

contains both the hydraulic actuator and the internal PID loop together, and can be

considered as a linear time invariant system.

5.2 Actuator Dynamic Model

As stated in chapter 3, the proportional gain controlled hydraulic actuator trans-

fer function can be linearized between output displacement xm and command xd. The
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system can be represented in block diagram as shown in Fig. 5.3 [70]. Several impor-

tant assumptions have been made in this mathematical model: (1) fluid properties

are constant; (2) servo-valves are not saturated; (3) supply pressure is much greater

than the load pressure; (4) friction force can be modeled as viscous damping; and (5)

main stage spool opening is proportional to pilot stage flow. These assumptions are

typically acceptable due to the relatively low frequency and small amplitude nature

of RTHS.

Figure 5.3.: Hydraulic Actuator with Inner Control Loop

Table 5.1.: Servo-Hydraulic System Parameters

kv Valve Flow Gain Kc Valve Pressure Gain
⌧ Servo-valve Time Delay Constant Cl Piston leakage coe�cient
A Piston Area Vt Fluid Volume
Kp Internal Controller Proportional Gain �e E↵ective Bulk Modulus
Kvp Pilot Stage Valve Flow Gain m System and Piston Mass
c System and Actuator Damping k System and Actuator Sti↵ness

The linearized hydraulic system is derived as a fourth order transfer function

directly from the block diagram Fig. 5.3:

Gx
m

,x
d

=
Xm(s)

Xd(s)
=

Z
0

P
1

s4 + P
2

s3 + P
3

s2 + P
4

s+ P
5

(5.2)
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where,

Z
0

= KpKvpKcKvA (5.3)

Ka = Vt/4�e (5.4)

P
1

= Ka⌧m (5.5)

P
2

= Ka⌧c+ ⌧Clm+Kam (5.6)

P
3

= Ka⌧k + ⌧Clc+Kac+ A2⌧ +mCl (5.7)

P
4

= ⌧Clk +Kak + A2 + Clc (5.8)

P
5

= Z
0

Kp + Clk (5.9)

Parameters Z
0

, P
1

, P
2

, P
3

, P
4

, P
5

can be identified through complex function curve

fitting and will be fully addressed in Section 5.4.

5.2.1 Noise Sources in the Hydraulic System

As stated in chapter 4, noise in the actuator control system can limit the perfor-

mance of control algorithms. Noise in the hydraulic actuation system normally comes

from two sources. One is the mechanical and fluid vibration in hydraulic actuation

components and the other is the electrical noise due to power sources, ground loops,

etc. Table 5.2 listed all common sources of hydraulic actuation noise. More detailed

information is discussed in [88] and [89]. Those noise sources are very hard to distin-

guish and defeat individually during testing. To achieve control robustness, impact

of noise should always be carefully studied [90].

Table 5.2.: Noise Sources in Hydraulic Actuation System

Mechanical Vibration Fluid Vibration Electrical Noise

Structural impact and Friction Hydraulic impact Power line disturbances
Rotary imbalance Hydraulic fluid pump Externally conducted noise
Hydraulic valve and cylinder Cavitation induced vibration Transmitted noise
Pipeline and Tank resonance Turbulent flow and vortex Ground loops
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5.3 RIAC Algorithm

The Robust Integrated Actuator Control strategy uses H1 optimization to design

the core controller to meet the needs of the user. H1 allows for a trade-o↵ between

system performance and its robustness. To further improve control performance for

RTHS applications, a Linear Quadratic Estimator (LQE) is used to reduce measure-

ment uncertainty. In the final setup, one feed forward block is used in such a way

that it does not a↵ect the stability of the feedback system, but does enhance tracking

performance. The entire system is shown in Fig. 5.4. The H1 block is designed in

the continuous Laplace domain, and the LQE and feedforward blocks are designed in

the discrete z domain.

Figure 5.4.: Robusted Integrated Actuator Control (RIAC) Block Diagram

5.3.1 H1ontrol Algorithm

Gao et al [42], [43], [44] first introduced robust H1 control into actuator control

for RTHS. The feedback block diagram with the H1 algorithm is shown in Fig. 5.5.
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Figure 5.5.: H1 Feedback Control Block Diagram

For a typical feedback control system, the sensitivity function S
0

and complemen-

tary sensitivity function T
0

(same as I/O transfer function) are given as

S
0

(s) =(1 +Gp(s)K(s))�1 (5.10)

T
0

(s) =1� S
0

(s) =
GP (s)K(s)

1 +GP (s)K(s)
(5.11)

xm(t) =T
0

(xd(t)� n(t)) + S
0

GPd(t) (5.12)

where, n(t) is system measurement noise and d(t) is system processing disturbance.

s = j! indicates as equation in frequency domain (written in upper case), time

domain functions in terms of t are written in lower case.

For the RTHS implementation, the input tracking signal xd(t) should be imposed

on the actuator accurately. Thus, the I/O transfer function T
0

(s) should be close

to unity over the relevant control frequency (low frequency), and close to 0 at high

frequency where noise/disturbance signal is dominant. An desired open loop transfer

function W
0

(s) should be designed according to such requirements. H1 algorithm is

used to design the optimal controller K(s) that assures the system open loop transfer

function GK closely meets the target function W
0

(s).



85

W
0

(s) can be written in state space form W
0

(s) = ss[Aw, Bw, Cw, Dw]. Controller

K(s) is defined as K(s) = GcGd, where direct inverse compensation Gc(s) is designed

as Gc(s) = W
0

(s)/Gx
m

,x
d

. And Gd(s) is obtained from H1 optimization.

(Aw � BwP�1D⇤
wCw)⇤X +X(Aw � BwP�1D⇤

wCw)

�XBwP�1B⇤
wXC⇤

w(I �D⇤
wP

�1D⇤
w)Cw = 0

(5.13)

(Aw � BwT�1D⇤
wCw)Z + Z(Aw � BwT�1D⇤

wCw)⇤

�ZCwT�1C⇤
wZBw(I �D⇤

wT
�1D⇤

w)B
⇤
w = 0

(5.14)

P = I +D⇤
wDw, T = I +DwD

⇤
w (5.15)

Thus, X and Z can be obtained by solving two generalized algebraic Riccati equations,

Eqs. 5.13 and 5.14, where (⇤) denotes the complex conjugate transpose of one matrix.

To obtain Gd, H1 optimization:

������

2

4Gd(I �W
0

Gd)�1L̃�1

(I �W
0

Gd)�1L̃�1

3

5

������
1

 � (5.16)

L̃ = T�1/2 + T�1/2Cw(sI � Aw � UCw)
�1U (5.17)

where

U = �(ZC⇤
w +BwD

⇤
w)T

�1 (5.18)

The constructed controller Gd in state space form is:

2

6666664

AG
d

BG
d

CG
d

DG
d

3

7777775
=

2

6666664

Aw � BwV + �2W ⇤�1

1

ZC⇤
w(Cw �DwV )

�2W ⇤�1

1

ZC⇤
w

B⇤
wX

�D⇤
w

3

7777775
(5.19)

where, W ⇤
1

= I + (XZ � �2I) and V = P�1(D⇤
wCw +B⇤

wX).
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The performance of H1 compensation largely depends the design of W
0

. Fig. 5.6

shows three di↵erent H1 optimization results and their corresponding performance

under W
0,A,B,C for plant G, is described by:

G =
1.422⇥ 108

s4 + 282.875s3 + 6.2817⇥ 104s2 + 5.7227⇥ 106s+ 1.4128⇥ 108
(5.20)

It is illustrated that design A is the most aggressive controller among the three and

tracking can perform up to 200 Hz. However, high frequency noise attenuates only

slightly even up to 1 kHz. Alternatively, design C is e↵ective in depressing noise

influence in tracking, but the acceptable tracking performance is only acceptable to

30 Hz. Thus, it is clear that there is a trade-o↵ between performance and sensitivity.

In a real world experiment, those limitations can make it impossible to perform a

successful test.

5.3.2 Linear Quadratic Estimation

Control accuracy is compromised when noise content in the feedback measurement

is high. This phenomenon is more di�cult to tackle using H1 optimization when

the noise frequency is at or close to the frequency of the control signal. To reduce

noise in the actuator displacement measurement, the Linear Quadratic Estimator

(LQE), also known as Kalman filter method is implemented to estimate the actuator

displacement [91]. A discrete actuator system with processing disturbance d(t) and

measurement noise n(t) is written in discrete state space form:

xP (k + 1) = AdxP (k) + Bdu(k) + d(k) (5.21)

yp(k + 1) = CdxP (k) + n(k) (5.22)

where, system state space matrices Ad, Bd, Cd, are converted to discrete state space

from actuator model described in Eq. 5.2, [xp(k)] is the plant state vector and yp(k)

is direct measured displacement from the actuator’s internal LVDT.
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Figure 5.6.: H1 Control Performance under Di↵erent Open Loop W
0

Design

For each time step k, the Linear Quadratic Estimation (LQE), is formulated as:

(i) Time update:

x̂�
P (k + 1) = AdxP (k) + Bdu(k) (5.23)

P�
K (k + 1) = AdP

�
K (k)AT

d +Q (5.24)
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(ii) Measurement update:

Kk(k + 1) = P�
K (k + 1)(CdP

�
K (k + 1)CT +R)�1 (5.25)

x̂P (k + 1) = x̂�
P (k + 1) +Kk(k + 1)(yP (k)� Cdx̂

�
P (k + 1)) (5.26)

PK(k + 1) = (I �Kk(K + 1)Cd)P
�
K (k + 1) (5.27)

ŷP (k + 1) = Cdx̂P (k + 1) (5.28)

where PK is the Kalman filter error covariance matrix, Kk is the Kalman filter

gain, Q is the predefined processing disturbance matrix and R is the prede-

fined measurement noise. Q/R ratio determines the estimator weights on plant

output and system measurement.

(iii) Set k = k + 1, go to step (i).

5.3.3 Inverse Compensation

Because actuator delay/lag is critical for RTHS, when the small residual delay/lag

is found in experimental implementation after H1 controller, an additional block

dedicated to small time delay/lag is integrated in RIAC. The inverse compensation

algorithm proposed by Chen [35], where the system delay/lag is assumed to be con-

stant for the entire frequency range. The compensated system after H1 is modeled

as a first order system:

Ga(z) =
z

↵ · z � (↵� 1)
(5.29)

The open loop inverse compensation is the direct inverse of Gd(z):

Ka(z) =
↵ · z � (↵� 1)

z
(5.30)
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5.3.4 Stability analysis

From Fig. 5.4, it is clear that the feedforward block does not interact with H1

feedback loop, and the system after loop shaping control can be written in a discrete

transfer function as:

Gss = Ka ⇥
K(z)Gx

m

,x
c

(z)

1 +K(z)Gx
m

,x
c

(z)
(5.31)

=
↵ · z � (↵� 1)

z
⇥ K(z)Gx

m

,x
c

(z)

1 +K(z)Gx
m

,x
c

(z)
(5.32)

From Eq. 5.32, Gss is determined by H1 feedback control design and is irrelevant

to the ↵ value in feed forward design. Since the H1 controller is designed based on

fitting the desired open loop target function W
0

of the feedback system, closed loop

stability is guaranteed from section 5.3.1. The pole locations for the RIAC control

system Fig. 5.5 and the H1 control system Fig. 5.6 stay the same and are inside of

the unit circle Fig. 5.7, indicating that RIAC maintains the stability characteristics

of the H1 design. In this example, Gss is designed W
0,A in previous loop shaping

illustration case and it is assumed that the estimator does not a↵ect the system

characteristics. Since this proof is general and irrelevant to actuator model G or W
0

choice, detail information of G and W
0,A is not presented.
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Figure 5.7.: Pole Positions for RIAC System and H1 System under the Same W
0

5.4 Experimental Verification

The design procedure of RIAC is divided into three main stages (Fig. 5.8): sys-

tem identification, controller design and experimental tuning. Here two experimental

setups are used to demonstrate the procedure and performance of the controller:

Setup A. one large capacity but relatively slow actuator of 2500 kN, and Setup B.

a small scale fast actuator. RTHS is performed using a three story steel building as

the numerical substructure and an MR damper as the physical specimen. Since the

capacity of the actuator in Setup A is significantly larger than the MR damper max-

imum force, the nonlinearity of the MR damper is negligible to the hydraulic system

during testing. In Setup B, an MR damper nonlinearity should also be considered as

part of the actuator dynamics during control.
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 I. Pretest and System ID 

I.1 System ID Test 
Run a band-limited white noise as open 
loop input and store measurement data. 

 

I.2 Offline System ID 
Generate frequency response and use curve 

fitting method to get plant model 

I.3 Noise Test 
Run a zero command to the open loop 

system and restore data 

II.1   Inner loop controller Design 
 

Design inner loop  controller  

II.2 Noise Impact Analysis 
Build simulation with noise in the feedback 

II.2 LQE Design 
Design LQE based on plant model and 

noise impact 

 III. Experimental Tuning 

II. Controller Design 

III.1 Experimental Validation 
Apply  Controller and LQE 

experimentally 

III.3 Tuning 
Tune feedforward block until desired result 

achieved 

III.2 Residual Delay/Lag Analysis 
Analyze system residual delay/lag after 

control 

Figure 5.8.: Flow Chart for Implementing RIAC Design and Validation Test
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5.4.1 Control Validation on Setup A

Test setup A, the loading system shown in Fig. 5.9 is located in School of Civil

Engineering, Harbin Institute Technology (HIT), China and its maximum loading

capacity is over 2500 kN. The loading system is constrained in the vertical direction

and the MTS Flex GT (Model 793.00) system software controls the actuator through

an inner PID loop shown in Fig. 5.3. It supports up to 8 servo-valves and the

internal LVDT in each actuator can be measured at a maximum rate of 6000Hz using

16 bit resolution. The hydraulic system is also equipped with two accumulators which

supply flow to reach larger the short term velocities, when needed. The saturation

velocity limit in this setup is around 90 mm/s.

An outer loop control and external command is applied through MATLAB R� com-

patible real time interface hardware dSpace 1104 (SN. 127174). This system is also

used as the DAQ system which supports five A/D, D/A channels (one at 16 bit and

four at 12 bit resolution) to be sampled simultaneously. The sampling frequency in

this test is 1024 Hz.

The magneto-rheological (MR) damper is made by LORD company (RD-1055-3).

The MR damper is operated with external excitation current 0.0 and 1.0 Amps for

passive o↵ and passive on condition with a maximum force capacity of 2.5 kN at 1

Amps.

In Setup A, the loading capacity of the actuator is very large compared to the MR

damper maximum force. The hydraulic system is identified without MR damper at-

tached using a 0-100Hz BLWN input signal. The time domain and frequency domain

response is shown in Fig. 5.10 and 5.11, respectively. The fitted system frequency

response is also found in Fig. 5.11, and the plant can be written as a fourth order

transfer function given by:

Gx
m

,x
c

,A =
1.5⇥ 108

s4 + 281s3 + 6.6⇥ 104s2 + 6.0⇥ 106s+ 1.5⇥ 108
(5.33)
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Figure 5.9.: Experimental Setup for a Large Scale MTS Loading Frame with MR
Damper Attached

2.2 2.4 2.6 2.8 3 3.2 3.4
−1

−0.5

0

0.5

1

time(sec)

di
sp

la
ce

m
en

t(m
m

)

 

 
Input
Measured

Figure 5.10.: Open Loop System Input and Output for System ID

Fig. 5.11 indicates noise power spectrum density in the hydraulic system. There

is a significant peak around 50Hz which is the electric circuit frequency in China. For

H1 design, W
0

is chosen as:

W0(A) =
1.1⇥ 1017

s6 + 5152s5 + 9.8⇥ 106s4 + 8.6⇥ 109s3 + 3.6⇥ 1012s2 + 6.9⇥ 1014s+ 4.4⇥ 1016
(5.34)
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Figure 5.11.: Input-Output System Identification and Noise Analysis: System A
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The desired open loop transfer functionsW
0

, open loop transfer function after control

Gx
m

.x
c

,AK and H1 closed loop are illustrated in Fig. 5.12. The noise at 50 Hz is

present in the desired tracking frequency (flat region in Fig. 5.12) range, thus, it is

necessary to use LQE for noise mitigation in the feedback measurement. A comparison

is made between two controllers in simulation considering noise in the feedback loop.

Case 1 is the original H1 design and case 2 consider LQE (RIAC). In Fig. 5.13,

for case 1, the noise 50 Hz is observed and well as another peak at 120 Hz is also

amplified due to dynamics in the control gain K. However, both the 50 Hz and 120

Hz peaks have been greatly depressed using RIAC (case 2).

An additional small time delay of Td = 1.5 millisecond is found during further

tuning. The feed forward compensation parameter is defined as ↵ = Tdfs, where fs is

sampling frequency during testing. A comparison between the RIAC algorithm and

the original H1 design with the same desired open loop W
0

is shown in Fig. 5.14

using a BLWN with a bandwidth 25 Hz. Further experimental validation is shown

in the same figure using bandwidth only up to 12 Hz which considers the hydraulic

fluid velocity limitation. The comparison results show that the experimental result

matches the RIAC simulation.

5.4.2 Control Validation on Setup B

The small scale loading frame shown in Fig. 5.15 is located in Intelligent Infras-

tructure System Laboratory (IISL), Purdue University. This hydraulic system has

the maximum loading capacity of 10 kN (velocity limit). The actuator in the loading

frame is equipped with an internal LVDT and is controlled by SC6000 controller as

the inner PID loop. The external command is applied through a high performance

Speedgoat/xPC (Speedgoat GmbH, 2011) real-time kernel. High-resolution, high ac-

curacy 18-bit analog I/O boards are integrated into this digital control system that

supports up to 32 di↵erential simultaneous A/D channels and 8 D/A channels, with

a minimum I/O latency of less than 5 µs for all channels.



96

10−1 100 101 102 103

10−4

10−3

10−2

10−1

100

101

102

M
ag

ni
tu

de
 (a

bs
)

 

 

Frequency  (Hz)

Designed open loop W0
Closed loop T0
Open loop Gx

m
,x

c
,A*K

Figure 5.12.: H1 Feedback Loop Design, System A

The magneto-rheological (MR) damper is made by LORD company (RD-8041-

1). Specified peak to peak damper force is greater than 2000N when subjected to

a velocity of 1.97 in/sec (5 cm/sec) and 1 Amps current input. The MR damper is

operated with external excitation current 0.0 and 1.0 Amps for passive o↵ and passive

on conditions. A LORD Wonder Box device provides closed-loop current control that

operates as an interface device between DAQ output and MR damper. The output

current with the Wonder Box will be 0.0 A when the control input is approximately

0.4-0.6 V, and is linearly proportional to the input voltage above.

In setup B, the loading capacity of the actuator is at the same order of magnitude

as the MR damper maximum force. Thus, the MR damper operating condition a↵ects

the response and properties of the hydraulic system. The hydraulic system is identified

with MR damper on/o↵ condition [38], [39] using 0-100Hz BLWN and time domain
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Figure 5.13.: Simulation Comparsion: System measurement PSD Due to Feedback
Noise, System A

response is compared in Fig. 5.16. Similarly, the plant can be written in a fourth

order transfer function as Eq. 5.35 - Eq. 5.37, comparison between experimental and

estimation frequency response is in Fig. 5.15.

Gx
m

,x
c

,OFF,b =
3.12⇥ 109

s4 + 517.47s3 + 3.008⇥ 105s2 + 5.49⇥ 107s+ 3.17⇥ 109
(5.35)

Gx
m

,x
c

,ON,b =
4.70⇥ 109

s4 + 639.55s3 + 3.50⇥ 105s2 + 7.51⇥ 107s+ 4.79⇥ 109
(5.36)

Gx
m

,x
c

,AV G,b =
3.91⇥ 109

s4 + 578.51s3 + 3.25⇥ 105s2 + 6.50⇥ 107s+ 3.98⇥ 109
(5.37)

And the loop shaping design for setup B is:

W
0(B)

=
1.13⇥ 108

s3 + 250s2 + 1.08⇥ 105s+ 2⇥ 106
(5.38)
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Figure 5.14.: Control Simulation and Experimental Performance, System A

Similarly, noise content is defined as displacement response (LVDT signal) mea-

sured with zero input to the inner loop. The actuator feedback signal is well grounded,

and in this case there is no significant peak shown in noise power spectrum density

plot in Fig. 5.17. Thus, the desired open loop W
0

is designed to be more aggressive

as in Fig. 5.18. The e�cacy of LQE in RIAC algorithm is demonstrated through a

comparison study similar to that done with setup A where measured noise is added

to the feedback loop for both H1 control case and RIAC control case. The power

spectrum density of measured system outputs of both systems are compared in Fig.

5.19. Measurement noise impact is significantly depressed by RIAC same as found in

setup A.

An additional time delay Td = 4 msec is found during tuning. The feedforward

compensation parameter is the same as defined before ↵ = Tdfs. Fig. 5.20 demon-

strates the comparison between simulation of a 30 Hz BLWN tracking using RIAC,
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Figure 5.15.: Experimental Setup for a Small Scale Actuator with MR damper At-
tached, System B
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Figure 5.16.: Open Loop System Input and Output For MR damper On/O↵ condition,
System B

H1 and an experimental test of 25 Hz BLWN. The feed forward block helps mitigate

any residual delay in the original H1 design.
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Figure 5.17.: Input-Output System Identification and Noise Analysis, System B
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Figure 5.18.: H1 Feedback Loop Design, System B
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Figure 5.19.: Simulation Comparsion: System Measurement PSD Due to Feedback
Noise, System B
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Figure 5.20.: Control Simulation and Experimental Performance, System B
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5.5 Real Time Hybrid Simulation Results

The RTHS application studied for validating RIAC algorithm is shown in Fig.

5.1. The target structure is a three story steel frame equipped with an MR damper

on the first floor for earthquake response mitigation [83]. The numerical component

is the three story frame identified from a physical setup located in HIT and the MR

damper is tested experimentally. The restoring force in Eq. 5.1 is the force produced

by the MR damper. Three earthquake records are tested using RTHS.

The three story frame is lightly damped and the modes of the structure are at

2.89 Hz, 8.069 and 12.286 Hz, respectively and the experimentally identified mass,

sti↵ness and damping matrices of the structure are:

MN =

2

6664

419.5 4.4 2.2

4.4 364.5 10.0

2.2 10.0 319.4

3

7775
kg ,

CN =

2

6664

88.1 �4.1 �1.8

�4.1 74.3 �4.5

�1.8 �4.5 61.2

3

7775
N/(m/s) ,

KN =

2

6664

143.3 �72.1 3.7

�72.1 130.6 �60.7

3.7 �60.1 54.7

3

7775
⇥ 104 N/m

(5.39)

In RTHS validation, three di↵erent earthquake records are implemented as the

excitation including 0.5 scaled El-Centro earthquake, 0.35 scaled Kobe earthquake

and full scale Morgan earthquake. MR damper is set as on and o↵ mode for each
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Figure 5.21.: Experimental and Identified Structural Frequency Response

test, respectively. To quantitatively analyze control performance of RIAC algorithm,

four error indicators are considered here:

J
1

=

r
⌃n(Dm �Dd)2

n
= RMS(De) (5.40)

J
2

=

r
⌃n(Dm �Dd)2

n
/

r
⌃nD2

d

n
= RMS(De)/RMS(Dd) (5.41)

J
3

=

r
⌃n(Dm �Dd)2

n
/max(Dd) = RMS(De)/max(Dd) (5.42)

where, Dm is measured displacement, Dd is desired displacement and De = Dm �Dd

is the tracking error.

Table 5.3 listed quantitative errors for each cases under Eq. 5.40 - 5.42. The

overall results are good during testing on experimental setup A. However, for MR

damper passive o↵ case, the desired motion of actuator exceeds its velocity limit

at 90 mm/s. Therefore, passive on cases perform significantly better compared to

passive o↵ cases. Fig. 5.22 illustrated displacement tracking performance in passive

on case in setup A, and also the displacement tracking and velocity saturation during

passive o↵ tests as in Fig. 5.23.
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(a) 0.35 scale Kobe earthquake, passive on
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Figure 5.22.: RTHS results, System A

Table 5.3.: Error indices for all cases

Setup A Setup B
Earthquake Record J1 J2 J3 J1 J2 J3
El Centrol Passive On 0.0440 0.0306 0.0090 0.0361 0.0736 0.0181
El Centrol Passive O↵ 0.0634 0.0615 0.0093 0.0652 0.0705 0.0137
Morgan Passive On 0.043 0.0353 0.0075 0.0474 0.0732 0.0139
Morgan Passive O↵ 0.1163 0.0872 0.0135 0.0344 0.0228 0.0054
Kobe Passive On 0.0387 0.0330 0.0092 0.0389 0.0789 0.0159
Kobe Passive O↵ 0.3234 0.2048 0.0334 0.0434 0.0208 0.0064
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Figure 5.23.: RTHS results for System A with Velocity Saturation

To demonstrate the RIAC controller performance on another setup, RTHS tests

have been implemented on setup B shown in Fig. 5.24. Tracking results match well

(Fig. 5.24(a) - 5.24(c)) for all cases, and tracking errors are showing in Fig. 5.25(a)

- 5.25(d). Quantitative results listed in Table 5.3 illustrated the consistency between

all six tests on setup B.
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(a) 0.5 scale El-Centro earthquake, passive on
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(b) 0.35 scale Kobe earthquake, passive o↵
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(c) Full scale Morgan earthquake, passive o↵
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Figure 5.24.: RTHS results, System B



108

45 50 55 60 65 70
−4
−2

0
2
4

di
sp

la
cm

en
t (

m
m

)

 

 

44 45 46 47 48 49 50
−5

0

5

time (sec)

 

 
desired displacement
tracking error

(a) 0.5 scale El-Centro earthquake, passive on,
tracking error

55 60 65 70 75

−5

0

5

di
sp

la
cm

en
t (

m
m

)

 

 

57 58 59 60 61 62

−5

0

5

time (sec)

 

 

desired displacement
tracking error

(b) 0.35 scale Kobe earthquake, passive o↵, track-
ing error

65 70 75

−5

0

5

 

 

67 68 69 70

−5

0

5

time (sec)

di
sp

la
cm

en
t (

m
m

)

 

 

desired displacement
tracking error

(c) Full scale Morgan earthquake, passive o↵,
tracking error

45 50 55 60

−2
0
2

 

 

43 44 45 46 47

−2
0
2

time (sec)

di
sp

la
cm

en
t (

m
m

)

 

 

desired displacement
tracking error

(d) Full scale Morgan earthquake, passive on,
tracking error

Figure 5.25.: RTHS tracking errors, System B
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5.6 Conclusions

The need to achieve accurate boundary condition synchronization is strongly

linked to the success of RTHS test. Most of the recent research has focused on time

delay compensation and hydraulic system dynamics. Model uncertainties and noise

present in the hydraulic system has not been carefully considered in the design of the

actuator controller previously. A new algorithm for actuator control is proposed in

this chapter. By integrating the most e↵ective feature to develop a flexible and versa-

tile closed loop control system, the new robust integrated actuator control algorithm

meets the needs of the RTHS user. The limitations of the original H1 design are

overcome, while the robust stability is preserved. In both simulation and experimen-

tal results, the RIAC significantly reduced noise impact on the closed loop system,

especially when the noise peak is in the desired control frequency range. RIAC en-

ables the user to fully consider the system dynamics as well as the uncertainty (error

or measurement noise) and still establish a design yielding highly accurate tracking.

Test results discussed in the chapter indicated that RIAC is appropriate and e↵ec-

tive for controlling both large and small, slow and fast systems and is very accurate

and e↵ective for RTHS. The tracking results achieved in both setups demonstrates

feasibility and accuracy of RIAC.
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6. INTEGRATION ALGORITHM IN RTHS

As indicated in chapter 2, in hybrid simulation, the execution of the i+ 1th step dis-

placement is implemented through several small sub-step increments, and the steady

state response of the specimen restoring force at the i + 1th step is available at the

final sub-step. However, the implementation of RTHS is on an RTOS platform which

is normally executed at one single fixed rate, no sub-step data acquisition is allowed.

Therefore, the response of the experimental substructure is not available instanta-

neously. In RTHS, the restoring force is measured at the beginning of the RTHS

i + 1 step which is the response of the ith step displacement. For example, even for

computing response at the first time step, the restoring force is zero since no input

has yet been sent to the experimental substructure. However, the true restoring force

should be R(x
1

, ẋ
1

).

Consequently, a unit delay, as shown in Fig. 6.1, exists in the experimental force

measurement. This delay is normally considered as a portion of the total computa-

tional delay [52]. Once the transfer system lag is compensated properly to enforce

the boundary conditions accurately with almost zero delay, the e↵ect of this com-

putational delay dominates the stability and accuracy of RTHS. This e↵ect is most

pronounced for sti↵, lightly-damped structures that may have relatively high natural

frequencies associated with the first few dominant modes (potentially higher than the

common RTHS execution rates of 1 - 4 kHz) where this delay can lead to instability

of the RTHS closed loop. Even for stable RTHS, the presence of even small compu-

tational delays can have detrimental e↵ect on the accuracy of the results. Further, as

some researchers are focusing on the fidelity of RTHS results, there is a need to use

larger, more sophisticated numerical models within RTHS. Such high-fidelity models

often take more time to run than the conventional RTHS execution rate of 1024 Hz,
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creating a need for exploring RTHS at lower execution rates and consequently higher

computational delays.

Earthquake Structure Response 

Complete Simulation/Complete Physical Test 

Earthquake NUM Structure Response 

EXP Structure 

step response 
  step restoring force 

for        step earthquake 

HS/RTHS Implementation 

thi
thi

( 1)thi �

            iteration  1i i �

Figure 6.1.: Schematic Drawing for Traditional Simulation/Shake Table Test and
RTHS

Many integration schemes have been used in RTHS, including both explicit and

implicit methods. Due to the need for fast computation, most of the integration

schemes developed for RTHS are explicit. Some explicit algorithms are uncondi-

tionally stable and are not a↵ected by the highest natural frequency of the struc-

ture [21]; [45]; [46]; [36]. However, when the computational delay is considered, the

stability condition for the integration scheme may be a↵ected leading to constrains

on the integration step size. Other methods, such as predictor-corrector methods are,

also some of the numerical integration techniques used to solve ordinary di↵erential

equations. There are some predictor-corrector based numerical integration algorithms

that help reduce delays in RTHS. However, they are more focused on the delay in

the transfer system rather than the inherent delay in RTHS [48]. Some implicit inte-

gration algorithms that have been investigated by researchers include an equivalent

force control for solving nonlinear equations of motion [49] and HHT-↵ method with

fixed number of substep iteration [50] which provides stable experimental results for
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RTHS. However, the aforementioned HHT-↵ method requires numerical-experimental

information exchange at each substep, where the substep displacement commands is

calculated based on the measured restoring force from the previous substep [51].

In this chapter, computational delay is evaluated analytically using di↵erent in-

tegration algorithms, including the Newmark-� algorithm, CR algorithm, a discrete

state-space method and the conventional Runge-Kutta Method. The stability char-

acteristics of RTHS closed loop using these integration schemes are studied here and

compared to a no delay/pure simulation case. The results indicate that computational

delay in RTHS a↵ects the stability and accuracy of the test, and are also dependent

on the partitioning between the experimental and numerical substructures.

6.1 Computational Delay in RTHS

In this section, computation delay is described and discussed in detail. Several

integration algorithms developed for RTHS are listed. The e↵ect of computational

delay is analyzed by comparing the stability characteristics of the RTHS closed loop

using di↵erent integration algorithms. Some assumptions are made for the analysis:

1) mass contains only in the numerical portion, experimental mass is ignored; 2)

Transfer system (hydraulic actuator) that links the numerical and experimental sub-

structures is considered to be perfectly controlled, desired displacement is assumed

to be accurately imposed to experimental substructure; 3) Reference system is con-

sidered to be linear time invariant (LTI), including both numerical and experimental

substructure; 4) Since multiple DOFs (MDOFs) case analysis can be decomposed

into several decoupled single DOF cases, theoretical stability characteristics are only

derived for SDOF systems.

Structural dynamics equation of motion:

Mẍ+ Cẋ+Kx = �M�ẍg (6.1)
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where M, C, K are entire system mass, damping, sti↵ness matrices, and ẍg indicates

earthquake excitation. We can write the equation of motion of an RTHS in the form:

Mẍ+ CN ẋ+KNx+ FE(x, ẋ) = �M�ẍg (6.2)

where the superscript ( )N and ( )E denote the portions in numerical and experimental

substructures, and FE denotes the measured force in experimental substructure.

RTHS typically follows the steps below:

For initial time step, i = 1

Step 1. Calculate initial numerical response x
1

, given xg,1 and F
1

= 0 .

For time step, i > 1

Step 2. Impose displacement xi�1

, calculated from previous time step (i � 1) to

test specimen and measure experimental measured force FE(xi�1

, ẋi�1

).

Step 3. Calculate numerical response (xi, ẋi)use integration scheme given xg,i and

FE
i�1

.

Step 4. Set i = i+ 1, go to step 2.

In step 2, the desired displacement xi�1

should be accurately imposed using the

transfer system (hydraulic actuator). In this step, researchers normally assume a

delay/lag resulting from actuator dynamics and compensate for it with extrapolation.

However, even when perfect tracking in the transfer system is achieved, where the

desired displacement xi�1

can be implemented simultaneously and force measurement

FE is available and accurate at time step i, the measured force obtained from step i

is FE(xi�1

, ẋi�1

). Consider an LTI system, the discrete equation of motion for RTHS

with perfect tracking can then be written:

Mẍi + CN ẋi +KNxi = �M�ẍg,i � CEẋi�1

�KExi�1

(6.3)
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It is obvious that xi�1

6= xi, ẋi�1

6= ẋi, thus, Eq. 6.3 is not automatically equivalent

to Eq. 6.1.

6.2 Integration Stability with Computational Delay

To understand the di↵erences introduced by the computational delay, di↵erent

algorithms used for the numerical model are studied in the following sections. Math-

ematical presentations for both pure simulation or RTHS are derived individually for:

Newmark-� (NB) method (central di↵erence (CD) method and averaged acceleration

(AA) method), Chen-Ricles (CR) method, Runge-Kutta (RK) method, discrete state

space method (Tustin’s) method.

6.2.1 Newmark-�ethod

Newmark � algorithm is well known and discussed in many textbooks in structural

dynamics, the brief derivation is presented. Consider the SDOF case in 6.1, the

explicitly calculated displacement, velocity and acceleration are:

ẋi = ˙xi�1

+�t[(1� �) ¨xi�1

+ �ẍi] (6.4)

xi = xi�1

+�t ˙xi�1

+ (1� 2�)/2�t2 ¨xi�1

+ ��t2ẍi (6.5)

ẍi =
�Kxi�1

� C⇤ ˙xi�1

�M⇤ ¨xi�1

M̂
(6.6)

where, C⇤ = (K�t + C), M⇤ = [�tC(1� �) +K(1� 2�)/2�t2, M̂ = M +�t�C +

K��t2

Assuming no excitation force ẍg,i = 0, displacement, velocity and acceleration

between two adjacent time steps can be related in a recursive form:

Xi = ANBXi�1

(6.7)
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where, ANB is the amplification matrix, Xi = [xi, ẋi, ẍi]T is the system state.

ANB =

2

6664

1� ��t2K/M̂ �t� ��t2C⇤/M̂ (1� 2�)�t2/2� ��t2M⇤/M̂

�K��t/M̂ 1� ��tC⇤/M̂ (1� �)�t� ��tM⇤/M̂

�K/M̂ �C⇤/M̂ �M⇤/M̂

3

7775
(6.8)

Consider RTHS with unit delay, solving the finite di↵erence equation using Newmark-

� integration as in Eq. 6.3, the Eq.6.5 and 6.4 preserves but the acceleration calcu-

lation is slightly di↵erent

ẍi =
�Kxi�1

� C⇤
R ˙xi�1

�M⇤
R ¨xi�1

M̂R

(6.9)

where, C⇤
R = (KN�t + C), M⇤

R = [�tCN(1 � �) + KN(1 � 2�)/2�t2, M̂R = M +

�t�CN +KN��t2.

Based on Eq.6.4, 6.5, 6.9, same amplification matrix in RTHS can be written in a

recursive form:

Xi = ANB,RXi�1

(6.10)

ANB,R =

2

6664

1� ��t2K/M̂R �t� ��t2C⇤
R/M̂R (1� 2�)�t2/2� ��t2M⇤

R/M̂R

�K��t/M̂R 1� ��tC⇤
R/M̂ (1� �)�t� ��tM⇤

R/M̂R

�K/M̂R �C⇤
R/M̂R �M⇤

R/M̂R

3

7775
(6.11)

Central di↵erence method

Newmark-� method is equivalent to Central Di↵erence (CD) method when � = 0,

� = 1/2. The evaluation of RTHS integration stability is based on the comparison of

spectral radii between Eq. 6.8, Eq. 6.11 with � = 0, � = 1/2.

In Fig. 6.2 and 6.3, the x axis is the normalized integration time interval ⌦ = ! ·dt,

with ! indicating the natural frequency of the SDOF structure. Results indicate

that for the undamped case, due to the computational delay, any partitioning ratio
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Figure 6.2.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Central Di↵erence, ⇣ = 0
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Figure 6.3.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Central Di↵erence, ⇣ = 0.01

results an unstable RTHS, showing as the maximum spectral radius larger than the

unit value, this conclusion extended the conclusion in [87] which majorly focused on

experimental delay/lag . Any type of delay/lag in RTHS system is equivalent to add

negative damping to structure. For the undamped case, any negative damping makes

RTHS loop unstable.

When the system is lightly damped, stability is preserved until ⌦ = 2 for entire

system integration. In RTHS, when computational delay occurs, the stability range

for ⌦ is largely reduced. From the curves in Fig. 6.3, it shows that partition rate
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also changes the stability characteristics. Generally, the larger partitioning rate, the

smaller tolerance for ⌦.

Average acceleration method

Newmark-� method is proven to be stable when 2�  �  1/2, Newmark-�

method is equivalent to averaged acceleration method for � = 1/4, � = 1/2. Similarly,

spectral radii are used as a stability criterion.
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Figure 6.4.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Average Acceleration, ⇣ = 0
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Figure 6.5.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Average Acceleration, ⇣ = 0.01
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The average acceleration method is unconditional stable for entire system inte-

gration. However, for RTHS case, it is unstable for no damping structure, similar

as central di↵erence method. For lightly damped structure, the stability range for ⌦

decreases largely as well.

6.2.2 CR method

Another direct integration algorithm developed after Chen and Ricles [36] is de-

veloped in discrete transfer function form under control theory.

The Laplace transformation of Eq. 6.1 is:

Ms2X(s) + 2CsX(s) +KX(s) = �MXg(s) (6.12)

G(s) =
X(s)

Xg(s)
=

1

Ms2 + Cs+K
=

1

(s2 + 2⇣!ns+ !2

n)M
(6.13)

where, s = j! which is the variable in Laplace domain; X(s) and Xg(s) is Laplace

transform of structural displacement x(t) and earthquake excitation ẍg(t), G(s) is the

transfer function in frequency domain. Pole location for Eq. 6.13 is calculated:

p
1,2 = �⇣ · !n ± i!n ·

p
(1� ⇣2) (6.14)

where i =
p
�1. Using Tustin’s method for discretization:

z = es�t =
1 + s ·�t/2

1� s ·�t/2
(6.15)

Pole locations for the discrete system using Tustin method are:

pz,1,2 =
2 + (�⇣ ± i

p
1� ⇣2)!n�t

2� (�⇣ ± i
p

1� ⇣2)!n�t
(6.16)
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CR integration assumes:

ẋi+1

= ẋi + ↵
1

·�tẍi (6.17)

xi+1

= xi +�t · ẋi + ↵
2

·�t2ẍi (6.18)

Substitute Eqs. 6.18, 6.17 into Eq. 6.16 and solve for ↵
1

and ↵
2

:

↵
1

= ↵
2

=
4

4 + 4⇣!n�t+ !2

n�t2
(6.19)

Write Eqs. 6.17 and 6.18 into recursive form, assuming to external force (xg,i = 0):

ACR =

2

6664

1 �t �t2 · ↵

0 1 �↵

�K/M �(C +K�t)/M �(C ·�t · ↵+K ·�t2 · ↵)/M

3

7775
(6.20)

Similarly, solving the equation for Eq. 6.3:

ACR,R =

2

6664

1 �t �t2 · ↵

0 1 �↵

�K/MN �(C +KN�t)/MN �(CN ·�t · ↵+KN ·�t2 · ↵)/M

3

7775
(6.21)

Compare the spectral radii for ordinary simulation and RTHS case for stability anal-

ysis.

Similarly, the plots prove that CR method is unconditional stable for entire

structure. However, when computational delay exist, RTHS stability characteristics

changed significantly.

6.2.3 Discrete state space method

In control engineering, state space representation is a mathematical model of a

physical system as a set of input, output and state variables related by first-order dif-
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Figure 6.6.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, CR algorithm, ⇣ = 0
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Figure 6.7.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, CR algorithm, ⇣ = 0.01

ferential equations. For continuous linear time invariant (LTI) systems, the standard

continuous state-space representation is given below:

ẋ = Ax+Bu (6.22)

y = Cx+Du (6.23)

where, x is the vector (n ⇥ 1) of state, u is the vector (p ⇥ 1) of input and y is the

vector (q ⇥ 1) of output. A is the system matrix (n ⇥ n) (same as amplification
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matrix), B is the input matrix (n ⇥ p), C is the output matrix q ⇥ n, and D is the

feedforward matrix q ⇥ p.

Using state space representation for Eq. 6.1

Ẋ = ASX +BSU (6.24)

Y = CSX +DSU (6.25)

where U = ẍg,

AS =

2

4 0 1

�K/M �C/M

3

5BS =

2

4 0

�1

3

5X =

2

4 x

ẋ

3

5

CS =

2

6664

1 0

0 1

�K/M �C/M

3

7775
DS =

2

6664

0

0

�1

3

7775
Y =

2

6664

x

ẋ

ẍ

3

7775

Regarding to time step value �t, the amplification matrix can be written into discrete

form:

X(k + 1) = eAS

�tX(k) + A�1

S (eAS

�t � I)BSu(k) (6.26)

Using Tustin’s method to discretize continuous state space representation:

eAS

�t = (I +
1

2
AS�t)(I � 1

2
AS�t)�1 (6.27)

Eq. 6.27 is the discretized amplification matrix.

ADSS =

2

4 1 1

2

�t

�1

2

�tK/M �1

2

�tC/M + 1

3

5

2

4 1 �1

2

�t

1

2

�tK/M 1

2

�tC/M + 1

3

5
�1

(6.28)

BDSS = A�1

S (ADSS � I)BS (6.29)
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Use continuous state space representation for RTHS formulation as in Eq. 6.2:

Ẋ = ARX +BRUR (6.30)

Y = CRX +DRU (6.31)

where UR = ẍg + FE , recall FE = KEx+ CE ẋ

AR =

2

4 0 1

�KN/M �CN/M

3

5BR =

2

4 0

�1

3

5X =

2

4 x

ẋ

3

5

CR =

2

6664

1 0

0 1

�KN/M �CN/M

3

7775
DR =

2

6664

0

0

�1

3

7775
Y =

2

6664

x

ẋ

ẍ

3

7775

Consider experimental force for no earthquake excitation case, where UR = FE. The

amplification matrix is:

ADSSR = A⇤
DSS +B⇤

DSS

h
�KE/M �CE/M

i
(6.32)

where,

A⇤
DSS =

2

4 1 1

2

�t

�1

2

�tKN/M �1

2

�tCN/M + 1

3

5

2

4 1 �1

2

�t

1

2

�tKN/M 1

2

�tCN/M + 1

3

5
�1

B⇤
DSS = A�1

R (A⇤
DSS � I)BR

The spectral radii is also used for stability analysis, the comparisons between sim-

ulation of the entire system and the RTHS systems are illustrated in Fig. 6.8 and

6.9.

6.2.4 Runge-Kutta method

The Runge-Kutta (RK) integration method is considered as a single-step method

that evolves the solution from Xi�1

to Xi, without requiring information from the
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Figure 6.8.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Discrete Stat Space using Tustin’s method, ⇣ = 0
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Figure 6.9.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Discrete Stat Space using Tustin’s method, ⇣ = 0.01

previous time step. The classic 4th order RK method uses intermediate stages with

information and interpolation of excitation at i�1 and i time steps and preserves the

4th order accuracy. However, in RTHS, due to the nature that external experimental

force from experimental substructure measurement FE has unit time delay and FE
i is

not available, this computational delay should be considered in numerical integration.
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ẏ = h(y, t)

k
1

= h(yi, ti)

k
2

= h(yi +�t/2k
1

, ti +�t/2)

k
3

= h(yi +�t/2k
2

, ti +�t/2)

k
4

= h(yi +�tk
3

, ti +�t)

yi+1

= yi +�t(b
1

k
1

+ b
2

k
2

+ b
3

k
3

+ b
4

k
4

)

Reconsider the state space form of reference structure in Eq. 6.24.

Ẋ = ASX +BSU (6.33)

Y = CSX +DSU (6.34)

where U = ẍg,

AS =

2

4 0 1

�K/M �C/M

3

5BS =

2

4 0

�1

3

5X =

2

4 x

ẋ

3

5

˙X
(i+1),1 = k

1

= ASXi +BSUi

˙X
(i+1),2 = k

2

= AS(Xi +�t/2k
1

) + BS(Ui + Ui+1

)/2

˙X
(i+1),3 = k

3

= AS(Xi +�t/2k
2

) + BS(Ui + Ui+1

)/2

˙X
(i+1),4 = k

4

= AS(Xi +�tk
3

) + BSUi+1

Xi+1

= Xi +�t/6(k
1

+ 2k
2

+ 2k
3

+ k
4

) (6.35)
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Assuming no earthquake excitation (Ui = 0).

˙X
(i+1),1 = k

1

= ASXi (6.36)

˙X
(i+1),2 = k

2

= AS(Xi +�t/2k
1

) (6.37)

˙X
(i+1),3 = k

3

= AS(Xi +�t/2k
2

) (6.38)

˙X
(i+1),4 = k

4

= AS(Xi +�tk
3

) (6.39)

Xi+1

= Xi +�t/6(k
1

+ 2k
2

+ 2k
3

+ k
4

) (6.40)

The amplification matrix in RK is:

ARK = I +�t/6(AS,1 + AS,2 + AS,3 + AS,4) (6.41)

AS,1 = AS (6.42)

AS,2 = AS + AS ·�t/2AS,1 (6.43)

AS,3 = AS + AS ·�t/2AS,2 (6.44)

AS,4 = AS + AS ·�tAS,3 (6.45)

Consider RTHS with unit delay, solving Eq. 6.3 without earthquake excitation:

˙X
(i+1),1 = k

1

= ASXi +BSUR,i

˙X
(i+1),2 = k

2

= AS(Xi +�t/2k
1

) + BS(UR,i + UR,i+1

)/2

˙X
(i+1),3 = k

3

= AS(Xi +�t/2k
2

) + BS(UR,i + UR,i+1

)/2

˙X
(i+1),4 = k

4

= AS(Xi +�tk
3

) + BSUR,i+1

The amplification matrix in RTHS is :

ARKR =

2

40 I

0 I

3

5+

2

4 0 0

AR BR

3

5 (6.46)
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where

AR = I +�t/6(AR,1 + AR,2 + AR,3 + AR,4)

AR,1 =

2

4 0 1

�KN/M �CN/M

3

5 , BR,1 =

2

4 0 1

�KE/M �CE/M

3

5

AR,2 = AR,1 +�t/2A2

R,1 � BR,1/2, BR,2 = �t/2AR,1BR,1 +BR,1/2

AR,3 = AR,1 +�t/2AR,2AR,1 � BR,1/2, BR,3 = �t/2AR,1BR,2 +BR,1/2

AR,4 = AR,1 +�tAR,3AR,1 � BR,1, BR,4 = �tAR,1BR,2
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Figure 6.10.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Runge Kutta algorithm, ⇣ = 0
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Figure 6.11.: Spectral Radii Comparison between Conventional Numerical Integration
and RTHS, Runge Kutta algorithm, ⇣ = 0.01

6.3 Conclusion

This chapter discussed several widely used integration method in structural dy-

namics, and compared their stability in the entire system simulation and in RTHS

simulation. The results indicate computation delay in RTHS changes the stability

characteristics in integration scheme. For an undamped structure, any partition rate

results in unstable RTHS loop, and for lightly damped structure, the stable ⌦ range

(equivalent to sampling intervals) is largely reduced to keep the closed loop stable.

Also, larger partitioning rates has more restrictions on the selection of the sampling

intervals. This chapter extended the conclusion made in [87], when transfer system

control is accurate, computational delay in RTHS a↵ects the loop stability.
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7. MODIFIED RUNGE-KUTTA INTEGRATION ALGORITHM

FOR RTHS

A modified Runge-Kutta (MRK) integration scheme is proposed in this chapter con-

sisting of three computational stages, 1) a pseudo experimental response is calculated

by solving the equation of motion using the force measured at both time steps i and

i� 1 and 2) a pseudo feedback force is predicted at the time step i+ 1 using pseudo

response from stage 1; and 3), the corrected system response is calculated by solv-

ing the equation of motion again using the predicted feedback force for time step

i+ 1 combined with the measured experimental force at time step i. This procedure

for modifying this algorithm can be applied to other existing integration schemes

by repeating stages 1 to 3. This MRK method can be would fall into the class of

model-based predictor-corrector integration method modified specifically to compen-

sate for the inherent unit delay in RTHS. The performance of the MRK algorithm,

proposed here, is theoretically examined and is shown to have improved the stabil-

ity and accuracy of RTHS compared to regular integration schemes. For illustrating

the capabilities of the proposed algorithm, an example is considered using a lightly

damped SDOF structure with di↵erent cases of partitioning of sti↵ness in experimen-

tal substructure considered. A moment resisting frame is used as the experimental

substructure for experimental verification of the MRK algorithm, with a fixed sti↵ness

partition ratio in the experimental substructure to illustrate the improved accuracy

obtained using MRK.

7.1 Modified Runge-Kutta Integration Algorithm

The MRK integration algorithm is built on the classic Runge-Kutta method and

it is aimed to minimize the stability issue brought by computational delay described
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in chapter 6. The mathematical formulation of MRK is derived in this chapter, and

a theoretical analysis is performed by comparing stability characteristics of classic

Runge Kutta algorithm in reference structure simulation and stability characteris-

tics of MRK in RTHS. First the formulation is derived in single degree of freedom

(SDOF) case and then is extended to multiple degrees of freedom (MDOF). It is

concluded that, compared to results in chapter 6, MRK largely improves the stability

performance of RTHS due to the computational delay.

Recall structural dynamics equation of motion and RTHS dynamics equation of

motion:

Mẍ+ Cẋ+Kx = �M�ẍg (7.1)

Mẍ+ CN ẋ+KNx+ ⇤FE(x, ẋ) = �M�ẍg (7.2)

where the superscript ( )N and ( )E denote the portions in numerical and experimental

substructures, and FE denotes the measured force in experimental substructure.

7.1.1 Single Degree of Freedom Case

Consider an RTHS test, also with assuming perfect tracking in experiment. A flow

chart using regular Runge-Kutta integration in computational experiment is shown in

Fig. 7.1. It is realized that the time step in the measured experimental force FE
i�1

and

FE
i used as external force in computation does not match excitation earthquake record

ẍg,i and ẍg,i+1

. To solve this unit step delay in the measured force FE, the pseudo

measured force is predicted after first calculation loop using the calculated response

xi+1

. Since this next time step response is calculated under delayed experimental

force, this response is labeled as pseudo response and written in x̃i+1

.

This pseudo measured force is predicted using known specimen initial sti↵ness

and damping:

F̃E
i+1

= KEx̃i+1

+KE ˜̇xi+1

(7.3)
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Together with measured experimental force at current step, FE
i and F̃E

i+1

used

as external force in computation finally match excitation earthquake record ẍg,i and

ẍg,i+1

. Then the second Runge-Kutta iteration are performed to calculate the exact

next step response xi+1

. A detailed flow chart for using MRK in RTHS is listed in

Fig. 7.2

Figure 7.1.: Flow Chart for Conventional Runge-Kutta Integration in RTHS

Figure 7.2.: Flow Chart of Modified Runge-Kutta Integration in RTHS
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Recall the structural equation of motion solved using the conventional RK:

˜̇X
(i+1),1 = k̃

1

= ASXi +BSUi

˜̇X
(i+1),2 = k̃

2

= AS(Xi +�t/2k
1

) + BS(Ui + Ui+1

)/2

˜̇X
(i+1),3 = k̃

3

= AS(Xi +�t/2k
2

) + BS(Ui + Ui+1

)/2

˜̇X
(i+1),4 = k̃

4

= AS(Xi +�tk
3

) + BSUi+1

X̃i+1

= Xi +�t/6(k̃
1

+ 2k̃
2

+ 2k̃
3

+ k̃
4

) (7.4)

The response of the structure is calculated using conventional Runge-Kutta, using

two time step inputs Ui and Ui+1

. Consider free response case, where earthquake

excitation, ẍg = 0. Then the RK integration depends on two time steps of measured

force Ui = FE
i�1

, Ui+1

= FE
i . Thus, the exact response using the predicted pseudo

force Ũi+1

= F̃E
i+1

and measured force Ũi = FE
i should be less a↵ected by the accuracy

of F̃E
i+1

.

Ẋ
(i+1),1 = k

1

= ASXi +BSŨi

Ẋ
(i+1),2 = k

2

= AS(Xi +�t/2k
1

) + BS(Ũi + Ũi+1

)/2

Ẋ
(i+1),3 = k

3

= AS(Xi +�t/2k
2

) + BS(Ũi + Ũi+1

)/2

Ẋ
(i+1),4 = k

4

= AS(Xi +�tk
3

) + BSŨi+1

Xi+1

= Xi +�t/6(k
1

+ 2k
2

+ 2k
3

+ k
4

) (7.5)

Write the MRK integration for RTHS in a recursive manner:

AMRKR =

2

4 0 I

A2

R � BR �ARBR

3

5 (7.6)
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where

AR = I +�t/6(AR,1 +AR,2 +AR,3 +AR,4)

BR = �t/6(BR,1 +BR,2 +BR,3 +BR,4)

AR,1 =

2

4 0 1

�KN/M �CN/M

3

5 , BR,1 =

2

4 0 1

�KE/M �CE/M

3

5

AR,2 = AR,1 +�t/2A2

R,1 �BR,1/2, BR,2 = �t/2AR,1BR,1 +BR,1/2

AR,3 = AR,1 +�t/2AR,2AR,1 �BR,1/2, BR,3 = �t/2AR,1BR,2 +BR,1/2

AR,4 = AR,1 +�tAR,3AR,1 �BR,1, BR,4 = �tAR,1BR,2

Recall the amplification matrix in RK is:

ARK = I +�t/6(AS,1 + AS,2 + AS,3 + AS,4) (7.7)

AS,1 = AS (7.8)

AS,2 = AS + AS ·�t/2AS,1 (7.9)

AS,3 = AS + AS ·�t/2AS,2 (7.10)

AS,4 = AS + AS ·�tAS,3 (7.11)

where,

AS =

2

4 0 1

�K/M �C/M

3

5

The spectral radii for the MRK method are plotted in FIG. 7.3 and 7.4. It

can be concluded that, compared to results in chapter 6, MRK largely improves the

stability performance of RTHS in the presence of computational delay. This algorithm

can be considered as a model-based predictor-corrector method, which compensates

specifically the inherent unit delay in RTHS. However, the e↵ect of model accuracy

(KE, CE) and specimen nonlinear dynamics needs further analysis.
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7.1.2 Multi-Degrees of Freedom Case

For MDOF cases, two di↵erent methods are considered. One is the direct numer-

ical integration approach and the other one is a modal analysis method using modal

transformations.

The state space form for MDOF reference systems:

Ẋ = AMX +BMU (7.12)

Y = CMX +DMU (7.13)
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Figure 7.3.: Spectral Radii Comparison between Entire Simulation and RTHS, Mod-
ified Runge Kutta algorithm, ⇣ = 0
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where U = ẍg,

AM =

2

4 0 1

�M�1K �M�1C

3

5BM =

2

4 0

��

3

5X =

2

4 D

Ḋ

3

5

where, D is the vector for MDOF displacement and Ḋ is vector of MDOF system

velocity, � is N⇥1 vector of one, N is the number of all freedom. M , C, K are global

mass, damping, sti↵ness matrices for reference structure.

Use classic RK for numerical integration fir reference structure:

Ẋ
(i+1),1 = k

1

= AMXi +BMUi

Ẋ
(i+1),2 = k

2

= AM(Xi +�t/2k
1

) + BM(Ui + Ui+1

)/2

Ẋ
(i+1),3 = k

3

= AM(Xi +�t/2k
2

) + BM(Ui + Ui+1

)/2

Ẋ
(i+1),4 = k

4

= AM(Xi +�tk
3

) + BMUi+1

Ẋi+1

= Xi +�t/6(k
1

+ 2k
2

+ 2k
3

+ k
4

) (7.14)

Similar as SDOF case, the form using direct integration method is straight for-

ward.

FE = KEDJ +KEḊJ (7.15)

where J = j
1

, j
2

, ...jn indicates the global degree freedom in reference structural

matrices and CE and KE are local damping and sti↵ness matrices for experimental

substructure in RTHS.

The state space form for MDOF RTHS systems:

Ẋ = AM,RX +BM,RU (7.16)
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where U = [ẍg, FE]

AM,R =

2

4 0 1

�M�1KN �M�1CN

3

5BM,R =

2

4 0 0

�� �M�1⇤

3

5X =

2

4 D

Ḋ

3

5

where, CN , KN are global mass, damping, sti↵ness matrices for numerical substruc-

ture in RTHS, ⇤ is the Lagrange multiplier (N ⇥ 1 vector) has the form of all zeros

and only ⇤j
n

= 1, jn indicates the DOFs linked with experimental substructure.

For the first step, calculate pseudo response:

˜̇X
(i+1),1 = k̃

1

= AM,RXi +BM,RUi

˜̇X
(i+1),2 = k̃

2

= AM,R(Xi +�t/2k
1

) + BM,R(Ui + Ui+1

)/2

˜̇X
(i+1),3 = k̃

3

= AM,R(Xi +�t/2k
2

) + BM,R(Ui + Ui+1

)/2

˜̇X
(i+1),4 = k̃

4

= AM,R(Xi +�tk
3

) + BM,RUi+1

X̃i+1

= Xi +�t/6(k̃
1

+ 2k̃
2

+ 2k̃
3

+ k̃
4

) (7.17)

Calculate the pseudo experimental force:

F̃E
i+1

= KED̃i+1,J +KE ˜̇Di+1,J (7.18)

Calculate the exact response, with Ũi = [ẍg,i, F̃E
i ] :

Ẋ
(i+1),1 = k

1

= AM,RXi +BM,RŨi

Ẋ
(i+1),2 = k

2

= AM,R(Xi +�t/2k
1

) + BM,R(Ũi + Ũi+1

)/2

Ẋ
(i+1),3 = k

3

= AM,R(Xi +�t/2k
2

) + BM,R(Ũi + Ũi+1

)/2

Ẋ
(i+1),4 = k

4

= AM,R(Xi +�tk
3

) + BM,RŨi+1
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Xi+1

= Xi +�t/6(k
1

+ 2k
2

+ 2k
3

+ k
4

) (7.19)

In the reference structure, define a modal matrix � in which each column is an

eigenvector of the matrix.

� =
h
'
1

'
2

'
3

... 'N

i
(7.20)

Consider free vibration response for MDOF system:

MẌ +KX = 0

X = 'cos(!t� ✓)

Ẍ = �'!2 · cos(!t� ✓)

[�M!2 +K]' · cos(!t� ✓) = 0

!2M' = K' (7.21)

where !’s are known as the natural frequencies of the system, for the ith natural

frequency:

[�!2

(i)M +K]'
(i) = 0 (7.22)

The solution '
(i) represents the ith mode shape corresponding to the ith natural

frequency.

[M ] = �TM� (7.23)

[K] = �TK� (7.24)
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where [M ] is the modal mass matrix and [K] is the modal sti↵ness matrix. Using

modal transformation, assuming X = �q, where q is the system response in modal

coordinate.

MẌ +KX = �M�ẍg (7.25)

M�q̈ +K�q = �M�ẍg (7.26)

�TM�q̈ + �TK�q = ��TM�ẍg (7.27)

Substitute Eqs. 7.23 and 7.24 into Eq. 7.27, then the modal form for structural

response is:

[M ]q̈ + [K]q = ��TM�ẍg (7.28)

It can be seen that [M ] and [K] can be decoupled for each modal degree of freedom

in to several SDOF systems, similarly, if structural damping matrix C is proportional

to structural mass matrix and sti↵ness matrix M and K, such as C = ↵MM +↵KK.

Then the structure with damping can be written as:

[M ]q̈ + [C]q̇ + [K]q = ��TM�ẍg (7.29)

where [C] = �TC�. Consider RTHS form for structural response:

Mẍ+ CN ẋ+KNx = �M�ẍg � ⇤FE(x, ẋ) (7.30)

Assume X = �q. substitute into 7.30,

MẌ +KX = �M�ẍg

M�q̈ +K�q = �M�ẍg

�TM�q̈ + �TCN�q̇ + �TKN�q = ��TM�ẍg � �T⇤FE(x, ẋ)

[M ]q̈ + [CN ]q̇ + [KN ]q = ��TM�ẍg � �T⇤FE(x, ẋ)
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Each modal degree freedom can be viewed as a SDOF system and solved using a SDOF

numerical integration method. The stability and accuracy of the MDOF system is

determined by the highest natural frequency !N and the sampling interval �t.

7.1.3 Robustness analysis of MRK in RTHS

The MRK algorithm utilizes a psuedo measured force from Eq. 7.3 using a high

fidelity model of the experimental substructure, i.e. no modeling error in KE, CE.

Therefore, the e↵ect of modeling error in the experimental substructure and the ef-

fect of specimen nonlinearity on the performance of this method should be examined.

Assuming that the true sti↵ness of the experimental substructure is KE
t and mod-

eling error only exists in the specimen sti↵ness (with estimated sti↵ness KE
est), the

equivalent sti↵ness can be written as K = KN
est +KE

est and the amplification matrix

for MRK with modeling error in RTHS can be derived as before.

As two illustrative examples, Fig. 7.5 and 7.6 represent the most critical cases of

partitioning ratio 90% (PK = 0.9) and 0% respectively, with 1% damping ratio in both

systems. The investigated modeling errors are ±(10%, 20%, 30%, 40%) of the true

specimen sti↵ness KE
t . Results with sti↵ness over-estimation and under-estimation

distribute evenly about the reference line (MRK with no error). It is observed that

the under-estimation of specimen sti↵ness (KE
est < KE

t ) potentially may destabilize

the RTHS closed loop when there is no damping in the system. However, the results

are still significantly better compared to other conventional integration schemes (c.f.

Fig. 6.4). For lightly damped system, the stability of the RTHS is preserved and the

performance is similar to MRK with no error. Inevitably, solution accuracy is also

largely a↵ected by modeling error. However, this may not be due to MRK itself, but

because of the existence of modeling error in general.

The e↵ect of specimen nonlinearity is also studied. Up to 80% sti↵ness degradation

(equivalent system with K = KN
est + KE

est with KE
t = 0.2KE

est) is analyzed for 90%

partitioning ratio (PK = 0.9). Fig. 7.7 shows the spectral radii for sti↵ness degrading
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Figure 7.6.: Spectral Radii comparison for MRK with Modeling Error, Damping
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(sti↵ness over estimation), for a system with no damping. It is evident that the RTHS

closed loop stability is still preserved even with 80% sti↵ness degradation.
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7.2 Numerical Examples

This chapter provides several numerical examples to understand the performance

of the MRK integration scheme in RTHS. Three cases are studied, including A) un-

damped SDOF system with sti↵ness partitioned into numerical and experimental

substructures; B) lightly damped SDOF system with sti↵ness partitioned into nu-

merical and experimental substructures; and C), one 9 DOF structure with a single

DOF experimental substructure.

For the SDOF, the general numerical examples are simulated in MATLAB r

SIMULINK as shown in Fig. 7.8. In Numerical Sub block, di↵erent integration al-

gorithm are evaluated. MRK performance are compared with traditional integration

methods discussed in chapter 6, including: central di↵erence method and average

acceleration method using Newmark-�, CR method, discrete state space method and

classical Runge-Kutta method. In the Experimental Sub block, since integration sta-

bility and accuracy may be a↵ected by partitioning ratios in RTHS, di↵erent partition

ratios are studied and simulated. The unit delay block is added after force generated

in experimental substructure to break the algebraic loop and also to simulate the

computational delay in real test scenario.
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For the MDOF case, the e↵ects of a) di↵erent sampling rates, b) di↵erent parti-

tioning ratios, and c) di↵erent partitioning DOFs are analyzed to understand MRK

integration performance in MDOF RTHS.
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7.2.1 Single DOF RTHS

Schematic diagram for SDOF RTHS simulation is shown in Fig. 7.8. The reference

structure has m = 155.6 Kg, k = 1.05⇥ 105 N/m, damping ratio is 0.00 (undamped

structure) and 0.01 (lightly damped structure) same as discussed in chapter. 6. Sam-

pling frequency are chosen at 1024 Hz and 512 Hz.

The accuracy of each integration algorithm is quantified using RMS error indica-

tor. Introduce root mean square error (RMS) indicator:

ERMS =

r
⌃l(DRTHS �DRef )2

l
/

s
⌃lD2

Ref

l
= RMS(De)/RMS(DRef ) (7.31)

Performance for di↵erent integration algorithm in di↵erent RTHS cases are listed

from Table 7.1 7.4, where ’UNS’ in the table indicates this simulation is unstable.

Results from Table 7.1 matches the analytic plots (Fig. 6.2, 6.4, 6.6, 6.8, 6.10)

in Chapter 6. For an undamped reference structure, the unit delay can destroy the

stability of the entire RTHS.

For a lightly damped structure (⇣ = 0.01), when smaller partition ratio is chosen

(0.1, 0.3), the stability is preserved, however, the accuracy is a↵ected using other

traditional algorithms. Sampling frequency can a↵ect the accuracy if compare Table

7.2 and 7.4.

The MRK algorithm, in all scenario in these two numerical examples, matches

well with reference solution. The accuracy is a↵ected by partition rate, damping ratio

and sampling rate as well. The worst performance among all scenarios are undamped

reference structure with 90% sti↵ness in experimental substructure, sampled at 512

Hz. This finding is demonstrated earlier in Fig. 7.3 and 7.4.
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Table 7.1.: RMS Error for All Integration Method in SDOF RTHS, 512 Hz, Damping
⇣ = 0

Partition Rate CD-NB AA-NB CR DSS RK MRK
10 % UNS UNS UNS UNS UNS 0.0121
30 % UNS UNS UNS UNS UNS 0.0323
50 % UNS UNS UNS UNS UNS 0.0530
70 % UNS UNS UNS UNS UNS 0.0737
90 % UNS UNS UNS UNS UNS 0.0944

Table 7.2.: RMS Error for All Integration Method in SDOF RTHS, 512 Hz, Damping
⇣ = 1%

Partition Rate CD-NB AA-NB CR DSS RK MRK
10 % 0.1838 0.1833 0.1950 0.1833 0.1833 0.0007
30 % 0.9485 0.9419 0.9920 0.9419 0.9506 0.0020
50 % UNS UNS UNS UNS UNS 0.0032
70 % UNS UNS UNS UNS UNS 0.0045
90 % UNS UNS UNS UNS UNS 0.0057

Table 7.3.: RMS Error for All Integration Method in SDOF RTHS, 1024 Hz, Damping
⇣ = 0

Partition Rate CD-NB AA-NB CR DSS RK MRK
10 % UNS UNS UNS UNS UNS 0.0027
30 % UNS UNS UNS UNS UNS 0.0080
50 % UNS UNS UNS UNS UNS 0.0133
70 % UNS UNS UNS UNS UNS 0.0185
90 % UNS UNS UNS UNS UNS 0.0238

Table 7.4.: RMS Error for All Integration Method in SDOF RTHS, 1024 Hz, Damping
⇣ = 1%

Partition Rate CD-NB AA-NB CR DSS RK MRK
10 % 0.0848 0.0836 0.0837 0.0836 0.0835 0.0002
30 % 0.3069 0.3045 0.3049 0.3045 0.3049 0.0005
50 % 0.6645 0.6587 0.6603 0.6587 0.6600 0.0008
70 % UNS UNS UNS UNS UNS 0.0011
90 % UNS UNS UNS UNS UNS 0.0015
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7.2.2 Multiple DOFs RTHS

For MDOF example, the reference structure is the 9 story moment resisting frame

picked from benchmark control problems for seismically excited nonlinear buildings

[96]. The structure is 45.73 m by 45.73 m in plan (5 bays in both N-S and E-W

directions) and 37.19 m in elevation. Detail information of this benchmark structure

is described in Fig. 7.21. Originally, the finite element model of the benchmark

structure has 198 DOFs, such model has been condensed into lumped mass shear

model of 9 DOFs [97].

The condensed model has M, C, K matrices as following (units in kg, N ·s/m and

N/m):

M =

2

6666666666666666666664

1010 0 0 0 0 0 0 0 0

0 989 0 0 0 0 0 0 0

0 0 989 0 0 0 0 0 0

0 0 0 989 0 0 0 0 0

0 0 0 0 989 0 0 0 0

0 0 0 0 0 989 0 0 0

0 0 0 0 0 0 989 0 0

0 0 0 0 0 0 0 989 0

0 0 0 0 0 0 0 0 1070

3

7777777777777777777775

⇥ 103

C =

2

6666666666666666666664

0.952 �0.387 �0.074 �0.029 �0.014 �0.008 �0.005 �0.003 �0.003

�0.387 1.072 �0.347 �0.066 �0.026 �0.014 �0.008 �0.005 �0.004

�0.074 �0.347 1.021 �0.329 �0.063 �0.026 �0.013 �0.008 �0.006

�0.029 �0.066 �0.329 0.967 �0.313 �0.061 �0.024 �0.013 �0.010

�0.014 �0.026 �0.063 �0.313 0.909 �0.295 �0.054 �0.022 �0.015

�0.008 �0.014 �0.026 �0.061 �0.295 0.821 �0.249 �0.049 �0.026

�0.005 �0.008 �0.013 �0.024 �0.054 �0.249 0.736 �0.241 �0.060

�0.003 �0.005 �0.008 �0.013 �0.022 �0.049 �0.241 0.674 �0.255

�0.003 �0.004 �0.006 �0.010 �0.015 �0.026 �0.060 �0.255 0.458

3

7777777777777777777775

⇥ 106
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K =

2

6666666666666666666664

6.225 �4.35 0 0 0 0 0 0 0

�4.354 8.627 �4.273 0 0 0 0 0 0

0 �4.273 7.809 �3.535 0 0 0 0 0

0 0 �3.535 6.980 �3.444 0 0 0 0

0 0 0 �3.444 6.448 �3.003 0 0 0

0 0 0 0 �3.003 5.087 �2.084 0 0

0 0 0 0 0 �2.084 3.912 �1.827 0

0 0 0 0 0 0 �1.827 3.493 �1.671

0 0 0 0 0 0 0 �1.671 1.671

3

7777777777777777777775

⇥ 108

Figure 7.21.: 9 Story Reference Building in Benchmark Control, N-S MRF
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The experimental substructure in MDOF case is chosen from one column to 6

columns (is equivalent to one bay) in the section plan (36 columns in each floor),

this is equivalent to partition rate from 1/36 (2.78 %) to 1/6 (16.67 %). The RTHS

numerical examples in this section evaluates MRK performance for di↵erent partition

rates and partitioned at di↵erent floors. Performance for MRK in 9 DOF structure is

listed in Table 7.5 and 7.6 for sampling rate 512 Hz and 1024 Hz, respectively. It is

illustrated that for partition rate up to 16.67%, RMS error in MRK is smaller than

0.02% for sampling rate of 512 Hz and 0.01% in for sampling rate of 512 Hz. The

e↵ect of partition rate (1/36 to 1/6) does not occur significantly in this example.
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7.3 Experimental Validation

Actual experimental RTHS is also conducted to demonstrate the e↵ectiveness

of using modified Runge-Kutta integration algorithm over conventional integration.

The experimental substructure chosen is a steel frame located in the Intelligent In-

frastructure System Laboratory https://engineering.purdue.edu/IISL/ located

at Purdue University shown in Fig. 7.31.

Figure 7.31.: Experimental Substructure Setup for RTHS Validation

The sti↵ness of the experimental substructure KE is identified through a prede-

fined displacement test, KE is identified as 8.25 kips/in (1444.7 kN/m) as shown in

Fig. 7.32. The actuator attached has a maximum force capacity of 2 kips (8.82k

kN), which limited the maximum displacement response of the RTHS under 0.25 inch

(6.35 mm). The structure’s dynamic properties are identified using a hammer test,

with results shown in Fig. 7.33. The structure is highly damped with damping ratio

⇣E of 5.54%. Note that experimental mass ME of the structure is 80.3 lb (36.4 kg),

which is negligible compared to MN noted in Table 7.7.

Four di↵erent RTHS cases are designed with natural frequencies of 0.5 Hz, 1 Hz,

1.5 Hz and 2 Hz. Each is excited with both El-Centro and Kobe earthquakes, and

the earthquake intensities in both cases were chosen in order to keep the response

displacement under 0.2 inch. In each case, 2/3 of the structural sti↵ness is assumed

https://engineering.purdue.edu/IISL/


163

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−2000

−1500

−1000

−500

0

500

1000

1500

2000

displacemen(in)

fo
rc

e(
lb

)

0 20 40 60 80 100 120 140
−2000

−1500

−1000

−500

0

500

1000

1500

2000

time(sec)

fo
rc

e(
lb

)

 

 

measured
curve fitted result,
stiffness 8.2529 kips/in

Figure 7.32.: Experimental Sti↵ness Identification for RTHS
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structure in the three cases was set to 2%. Test parameter details are shown in Table

7.7, and in the following expressions:

KN = 0.5KE, PK = 67% (7.32)

MN = (KE +KN)/!2 �ME (7.33)

CN = 2⇣
p
KM � CE (7.34)

K = KN +KE (7.35)

C = CN + CE (7.36)

M = (KE +KN)/!2 (7.37)

where ! is the natural frequency of the reference structure in rad/s. RTHS results are

further compared to a simulation of the reference structure, with structural properties

M,C,K. Sampling frequency is kept at 1024 Hz for RTHS and 2048 for reference

structure simulation.

Table 7.7.: Partition Mass Damping and Sti↵ness for Experimental Validation

EQ Intensity f = !/2⇡ MN CN KN ME CE KE

Units Hz 103 Lb kips/in · s kips/in 103 Lb kips/in · s kips/in
3% 0.5 53 0.15 4.12 0.081 0.005 8.25
4% 1.0 13.3 0.073 4.12 0.081 0.005 8.25
5% 1.5 5.9 0.047 4.12 0.081 0.005 8.25
7% 2.0 3.3 0.033 4.12 0.081 0.005 8.25

In addition to inner PID control loop, the actuator is controlled using the robust

integration actuator control (RIAC) algorithm as the external control loop [82]. The

RIAC uses the H1 as feedback core controller, Kalman filter to minimize e↵ect of

noise on feedback measurement and a delay compensation block for online tuning.

Tracking performance of band limited white noise signal of 10 Hz bandwidth using

RIAC algorithm is shown in Fig. 7.34. The time delay of the actuator after RIAC

is shown to be under 1 msec which indicates that the actuator lag is of a similar

magnitude compared to the unit computation delay.
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Three integration methods, Newmark-� (with � = 0.5 and � = 0.25), conventional

Runge-Kutta and the modified Runge-Kutta, are examined with this RTHS setup.

The RTHS results from these cases are presented in Fig. 7.35 and 7.36. The CR

method and the discrete state-space method yields very similar responses compared

to the Newmark-� and the conventional RK method, and therefore were omitted from

these plots. All these results are generated using the same actuator control algorithm

and testing took place on the same day.

Table 7.8.: Experimental RTHS Error Comparison: El-Centro Earthquake

f = !/2⇡ ⌦ Error using NB Error using RK Error using MRK
0.5 Hz 0.0031 7.24% 5.62% 3.16%
1.0 Hz 0.0061 4.5% 3.65% 1.76%
1.5 Hz 0.0092 12.67% 12.4% 4.48 %
2.0 Hz 0.0123 11.86% 12.91% 3.37%

Table 7.9.: Experimental RTHS Error Comparison: Kobe Earthquake

f = !/2⇡ ⌦ Error using NB Error using RK Error using MRK
0.5 Hz 0.0031 7.65% 6.68% 3.97%
1.0 Hz 0.0061 6.39% 5.11% 2.42%
1.5 Hz 0.0092 12.27% 11.12% 4.11 %
2.0 Hz 0.0123 30.69% 28.28% 7.44%

It is clear from the responses in Fig. 7.35 and 7.36 that the proposed MRK method

performs far better than any of the conventional integration schemes. Computed

values of the RMS error are listed in Tables 7.8 and 7.9. In general the errors are

lower for low natural frequencies of the reference structure and increase for higher

natural frequencies. As demonstrated in the numerical examples, RTHS with RK, CR

and NB integration algorithm yields unstable results with PK = 0.7 at ⌦ = 0.025, in

the experimental validation. For the case where the reference structure has a natural

frequency at 2 Hz, RTHS with conventional integration is only marginally stable and

thus, it was decided not to continue increasing the natural frequency of the reference

structure. However, for RTHS using MRK, the test is extended to reference structures
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with natural frequencies of 2.5 Hz (⌦ = 0.0153) and 3 Hz (⌦ = 0.0184) (shown in

Figures 7.35(e) and 7.35(f)) without any concerns of instability.

Compared to simulated RTHS results, the errors in the actual RTHS are observed

to be slightly higher because of the inexact enforcement of the boundary conditions

and the underlying complexity of RTHS. Factors such as two feedback loops (force

feedback in RTHS and displacement feedback in actuator control), noise and system

uncertainties (such as actuator dynamics and test specimen variabilities) also a↵ect

the accuracy of RTHS results. Nevertheless, all the results indicate that the RTHS

performance is a↵ected negatively in the presence of a single-step computational delay

and that performance is significantly improved by using the MRK algorithm.
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(c) RTHS Results: fn = 1.5 Hz

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

di
sp
la
ce
m
en
t(i
nc
h)

6 7 8 9 10 11 12
−0.1

−0.05

0

0.05

0.1

time(sec)

di
sp
la
ce
m
en
t(i
nc
h)

 

 

NB RTHS AA
RK RTHS
MRK RTHS
Entire (Baseline)

(d) RTHS Results: fn = 2 Hz
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Figure 7.35.: Experimental RTHS: El-Centro Earthquake
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(c) RTHS Results: fn = 1.5 Hz
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Figure 7.36.: Experimental RTHS: Kobe Earthquake
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7.4 Conclusion

An inherent unit delay exists in the force measurement of the experimental sub-

structure in RTHS due to the sequential order of communication between the numer-

ical and experimental substructures and this may cause instability or performance

degradation of the test. To explicitly evaluate the e↵ect of this unit delay, di↵erent

integration algorithms were employed in this study. Compared to pure simulation,

both analytical and simulation results indicate that, the unit delay in the closed

loop RTHS a↵ects the stability and is highly dependent upon integration step size,

structure natural frequency and structure partitioning ratio. Therefore, a modified

Runge-Kutta integration algorithm is proposed to predict the feedback force measure-

ment and minimize the e↵ect of this inherent delay. The MRK integration includes

three computation stages, 1) pseudo response calculation, 2) prediction of the mea-

sured force and 3) corrected response calculation. Results illustrate that the modified

Runge-Kutta improves the performance of RTHS. Further, a robustness analysis,

considering modeling error in the experimental substructure, demonstrates that only

under-estimation of structure sti↵ness (specimen sti↵ening) may a↵ect MRK stability

for the undamped case. For lightly damped structures with high partitioning ratio,

the MRK method is shown to be robust for up to 40% modeling error. Experimental

RTHS is also implemented to verify the e↵ectiveness of the modified Runge-Kutta

integration algorithm over conventional integration algorithms. A moment resisting

frame with a large sti↵ness is tested as the experimental substructure in RTHS. Re-

sults indicated that the modified Runge-Kutta algorithm improves the accuracy of

the RTHS and extends the stability limit of the test. It may be noted that, this

method can directly be applied to other existing integration algorithms by adapting

the three computation stages to that method in a similar manner as shown here.
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8. NONLINEAR STRUCTURAL MODELS

In hybrid simulation, one attractive benefit of is that only the critical component must

be fabricated and tested, the remainder of the structure can be numerically modeled.

Therefore it is intuitive to choose auxiliary devices (MR dampers, base isolation, etc.)

as the experimental substructure, because the functionality of those devices (normally

for vibration control purposes) is unique and quite distinguishable from the structural

components. However, for evaluating structures in which a given component (column,

bridge pier, structural connection) may be used in multiple instances in the structure,

one might take the approach of using a limited number of the repeated components

as the critical physical specimens and leave the rest in the simulation. Therefore,

the modeling error of these similar components may contribute significantly to the

global response, and a↵ect the fidelity of a RTHS. Thus, during hybrid simulation, if

the numerical model of those nonlinear components can be updated according to the

measure response from the experimental substructure, the fidelity of the experiment

can be improved.

To describe such nonlinear behavior and enable model updating in hybrid simula-

tion, a proper nonlinear model should be selected. Commonly used nonlinear models

describe steel hysteresis can be categorized into two groups, one is named phenomeno-

logical model, in which macro mechanical behavior (displacement-force hysteresis and

energy dissipation) is captured and described through di↵erential equations. How-

ever, the associated parameters may not have physical meaning, therefore information

cannot be transmitted from one test specimen to another. In addition, the initial con-

ditions for model parameters cannot be estimated without physical testing. Another

group is the constitutive model which is associated with the constitutive relation-

ship (strain-stress relationship) of structural materials. The initial parameters of

these models can be estimated from material test, with higher accuracy expected.
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To consider the capabilities and limitations for their use in hybrid simulation, both

phenomenological models and constitutive models are investigated in this chapter.

8.1 Structural Phenomenological Model

One of the commonly used hysteretic phenomenological models is the Bouc-Wen

model, which was first proposed by Bouc [98] and then modified by Wen [99]. Ever

since, variations on the Bouc-Wen model have been introduced to capture more com-

plex material hysteresis such as pinching and degrading [100], [101], [102]. Those

models have been validated experimentally and shown to be applicable to represent

inelastic steel nonlinearity several decades [103], [104]. Two Bouc-Wen models are

considered, including its general form and an extended form.

8.1.1 General Bouc-Wen Model

The classic Bouc-Wen model (denoted here as the General BW, or GBW in the

manuscript) model stated in Eq. 8.1 and 8.2.

RGBW (xE, z) = ↵GBWkGBWxE + (1� ↵)kGBW z (8.1)

ż = AGBW ẋE � �GBW |ẋE||z|nGBW

�1z � �GBW ẋE|z|nGBW (8.2)

where kGBW is the sti↵ness coe�cient and 0  ↵GBW  1 determines the level of

nonlinearity, ↵GBW = 1 indicates the system is purely linear and ↵GBW = 1 indicates

the system is purely hysteretic. AGBW , �GBW , nGBW , �GBW govern the shape of

the hysteresis loop. The hysteretic shape change with each parameter is illustrated

in Fig. 8.1, and the results indicate that several parameters may contribute to the

same shape change simultaneously. Thus, it is very hard to distinguish betwen the

change resulting from each parameter. the simulation, the baseline parameter set is:

[↵GBW = 0.35; �GBW = 0.5; �GBW = 1.7; AGBW = 15, KGBW = 35, nGBW = 1.7]. In
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the simulation, only the indicated parameter value changes, the rest is kept to be the

same as the baseline value.

−0.4 −0.2 0 0.2 0.4
−100

−50

0

50

100

normalized disp

no
rm

al
iz

ed
 fo

rc
e

 

 

αGBW=0.35
αGBW=0.15
αGBW=0.3
αGBW=0.4
αGBW=0.55

(a) ↵GBW Change

−0.4 −0.2 0 0.2 0.4
−100

−50

0

50

100

normalized disp

no
rm

al
iz

ed
 fo

rc
e

 

 

βGBW=1.7
βGBW=0.5
βGBW=1
βGBW=2
βGBW=2.5

(b) �GBW Change

−0.4 −0.2 0 0.2 0.4
−80

−60

−40

−20

0

20

40

60

80

normalized disp

no
rm

al
iz

ed
 fo

rc
e

 

 

γGBW=0.5
γGBW=0.2
γGBW=0.3
γGBW=0.7
γGBW=0.8

(c) �GBW Change

−0.4 −0.2 0 0.2 0.4
−150

−100

−50

0

50

100

150

normalized disp

no
rm

al
iz

ed
 fo

rc
e

 

 

KGBW=35
KGBW=15
KGBW=25
KGBW=45
KGBW=55

(d) KGBW Change

−0.4 −0.2 0 0.2 0.4
−100

−50

0

50

100

normalized disp

no
rm

al
iz

ed
 fo

rc
e

 

 

nGBW=1.7
nGBW=1
nGBW=1.3
nGBW=2
nGBW=2.5

(e) nGBW Change

−0.4 −0.2 0 0.2 0.4
−100

−50

0

50

100

normalized disp

no
rm

al
iz

ed
 fo

rc
e

 

 

AGBW=15
AGBW=5
AGBW=10
AGBW=20
AGBW=25

(f) AGBW Change

Figure 8.1.: Hysteretic Shape Change to Each Parameter
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8.1.2 Bouc-Wen-Baber-Noori model

In order to capture a greater variety of material behavior, an extended Bouc-Wen-

Baber-Noori model [105], [100] model (denoted here as the Extended BW, or EBW)

is considered, this model includes pinching and degradation e↵ects of a structure

component, represented in Eqs. 8.3 - 8.11.

REBW (xE, z) = ↵EBWkEBWxE + (1� ↵)kEBW z (8.3)

↵EBW and kEBW have similar definitions as ↵GBW and kGBW in the GBW.

ż = h(z){ ẋ
E � ⌫(")(�EBW |ẋE||z|nEBW

�1z + �EBW ẋE|z|nEBW

⌘(")
} (8.4)

and, response duration and severity is measured by "(t) which is proportional to

energy dissipation E(t) in Eq. 8.5.

E(t) =

Z
(1� ↵EBW )kEBW zẋEdt, "(t) =

Z
zẋEdt (8.5)

⌫(") = 1 + �⌫B2

" (8.6)

⌘(") = 1 + �⌘B2

" (8.7)

where ⌫ and ⌘ are degradation shape function, and �⌫EBW , �⌘EBW are degradation

parameters. To describe the pinching function, h(z) is given by Eq. 8.8-8.11.

h(z) = 1� ⇣
1B2

e�[z·sgn(ẋE

)�q
EBW

z
x

E

]

2/⇣22B2 (8.8)

⇣
1

(") = ⇣sB2

(1� e�p
EBW

") (8.9)
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⇣
2

(") = ( EBW + �
 B2

")(�EBW + ⇣
1

) (8.10)

zxE = [
1

⌫(")(�EBW + �EBW )
]

1
n

EBW (8.11)

The parameters �EBW , ⇣sEBW , pEBW , qEBW ,  EBW , and �
 EBW are involved in

describing the pinching e↵ect. pEBW measures the initial drop of the slope, ⇣sEBW

describe the total slip,  EBW is a parameter that contributes to the amount of pinch-

ing. �
 EBW specifies for the desired rate of pinching.
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Figure 8.2.: Hysteretic Shape Change to General Nonlinear Parameters

As in the analysis in the GBW case, the change of the hysteretic shape in EBW to

each model parameter is investigated. Fig. 8.2 illustrates the changes in the hysteretic

shape due to general nonlinear parameters ↵EBW , kEBW , and nEBW . In Fig. 8.3, the

degrading behavior dominated by �EBW , �EBW , �⌫EBW , and �⌘EBW is presented. in

Fig. 8.4, the pinching shape change to the parameters associated is demonstrated.
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Figure 8.3.: Hysteretic Shape Change to Degrading Parameters

The simulation is built with a baseline parameter set with initial values: [↵EBW =

0.16, kEBW = 12, �EBW = 2, nEBW = 2, �⌘EBW = 0.06, �⌫EBW = 0.08, qEBW = 0.001,

�EBW = 1, ⇣sEBW = 0.88, pEBW = 1,  EBW = 0.2, �
 EBW = 0.005, �EBW = 0.2].

In the simulation, only the indicated parameter value changes, the rest is kept to be

the same as the baseline value. Each parameter varies up to ±40% of its baseline

value, results indicate the sensitivity of each parameter is not the same. For model

updating or system identification purpose, the convergence can be a↵ected.
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Figure 8.4.: Hysteretic Shape Change to Pinching Parameters

8.2 Structural Constitutive Model

Constitutive models integrate material properties in representing structural behav-

ior. These models can provide information to assess component damage level, and

structural serviceability and reliability. Therefore, it is tempting to study the feasi-
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bility of model updating algorithms with these constitutive models. In this section,

to be compatible with the widely used hybrid simulation numerical solver platform

OpenSees, two material models steel01 (bilinear model) and steel02 (Menegotto-Pinto

model) are discussed.

8.2.1 Steel Bilinear Model

The most basic model for yielding steel is the bilinear model, as in Fig. 8.5. The

strain-hardening coe�cient bs is the ratio of the post-yield tangent modulus betwee

Ep and the initial elastic modulus E. If only considers the isotropic hardening, the

simplified bilinear model can be described as:

Ep = bs · E (8.12)

8.2.2 Steel Mengotto-Pinto Model

Menegotto and Pinto [106] established a nonlinear model to describe the stress-

strain behavior of the reinforcing steel, later this model modified by Filippou et

al. [107] which includes isotropic strain hardening. This Menegotto-Pinto can generate

smooth hysteresis shape which can closer represent the experimental results than the

bilinear curve. The empirical form of the model is:

�⇤ = b · ✏⇤ + (1� b) · ✏⇤

1 + ✏R

1/R

(8.13)

where, ✏⇤ = ✏�✏
rev

✏0�✏
rev

, �⇤ = ���
rev

�0��
rev

Tangent modulus:

Etan =
��

�✏
=

�
0

� �rev

✏
0

� ✏rev
· ��

⇤

�✏⇤
(8.14)

where: ��⇤

�✏⇤ = b+ [ 1�b
(1+✏⇤R)

1/R ] · [1� ✏⇤R

1+✏⇤R ].
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Figure 8.5.: Steel Bilinear Model

The hysteresis loop in the Megetto Pinto model is described by four asymptotes

and the curve transition between them. The first two straight line asymptotes are

represented with slope E(a), indicating the initial material Young’s Modulus. The

origins of these asymptotes are at the strain reversal points (A and C in the Figure

8.6(a) and 8.6(b)), which stress and strain are �rev and ✏rev, these points are recorded

during loading history. The other two asymptotes are with slope of Etan, indicate the

material sti↵ness after hardening. b descirbes the hardening ratio between E(a) and

Etan. The intersection of the asympototes with di↵erent slopes (point B) are at the

point with stress and strain of �
0

and ✏
0

, where �
0

, ✏
0

,�rev and ✏rev are updated after

each strain reversal.



180

The curve transition from two linear asymptote with di↵erent slopes is represented

by curvature parameter R, this curved transition preserves a close representation of

the Bauschinger e↵ect.

In Fig. 8.6(b), R is dependent on the absolute strain di↵erence between the current

asymptote intersection point (point B) and the previous loading history (minimum

or maximum strain reversal point) depending on whether the strain is decreasing or

increasing, respectively.

For Steel02 in OpenSees, R is defined as:

R(⇠) = R
0

(1� cR
1

· ⇠
cR

2

+ ⇠
) (8.15)

where, R
0

is the value of the parameter R during first loading, and cR
1

and cR
2

. ✏

can be expressed as:

⇠ = |✏
m � ✏

0

✏y
| (8.16)

where, ✏m is the strain at the previous maximum or minimum strain reversal point

depending on whether the current strain is increasing or decreasing, respectively.

A shift of �
0

and ✏
0

is proposed to account for isotropic hardening, [107]:

a. If the incremental strain changes from positive to negative:

�N = 1 + a
1

(
✏max � ✏min

2 · a
2

· ✏y
)0.8 (8.17)

✏
0

=
��y�N + Etan✏y�N � �rev + E · ✏rev

E � Etan
(8.18)

�
0

= ��y ·�N + Etan · (✏
0

+ ✏y ·�N) (8.19)
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b. If the incremental strain changes from negative to positive:

�P = 1 + a
3

(
✏max � ✏min

2 · a
4

· ✏y
)0.8 (8.20)

✏
0

=
�y�P + Etan✏y�P � �rev + E · ✏rev

E � Etan
(8.21)

�
0

= �y ·�P + Etan · (✏
0

� ✏y ·�P ) (8.22)

a
1

, a
2

, a
3

, and a
4

are isotropic hardening parameters. From previous studies

that a
1

, a
2

, a
3

, and a
4

must be determined through curve fitting of the model with

experimental results [94]. Default values are a
1

= a
3

= 0 and a
2

= a
4

= 55 in

OpenSees, and ✏max and ✏min are the maximum and minimum strain at the reversal

points.

Therefore, parameters for Menegotto-Pinto model are: E, b, ✏y, R0

, cR
1

, cR
2

, a
1

,

a
2

, a
3

, and a
4

. A global simulation is built to understand the hysteretic shape change

to each parameter, as in Fig. 8.7. The physical meaning of E, b, and ✏ to the hysteretic

shape change is quite clear, and parameters R
0

, cR
1

, cR
2

parameters only associated

to the hysteretic shape. Therefore, Menegotto-Pinto is an attractive model which

represent steel Bauschinger e↵ect more accurately (compare to the bilinear model),

meanwhile, it can deliver a relative accurate initial guess of a component behavior

(dominated by E, b and ✏) as compared to phenomenological model. However, as

stated earlier, the memory of the past loading history is stored as switch functions with

flag indications, the implementation of online model updating or recursive updating

method would be quite di�cult.
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(a) Menegotto-Pinto Hysteresis

(b) Definition of Curvature Parameter

Figure 8.6.: Steel Menegotto-Pinto steel model [94]
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Figure 8.7.: Hysteretic Shape Change to Menegotto-Pinto Parameters
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8.3 Conclusion

Several widely used nonlinear models are described and discussed in this section.

Phenomenological models are capable of capturing the hysteretic shape of a structural

component. One major drawback of these models is that the parameters do not have

physical meaning, therefore, it is very di�cult to start any model updating process

with a reasonable initial guess. Also, knowledge of previous component models and

test results cannot be transmitted to a new specimen. In addition, in Bouc-Wen

models, the hysteretic shape is more sensitive to some parameters. This can a↵ect

model updating convergence.

Steel constitutive models including the bilinear model and the Menegotto-Pinto

model are discussed. Both models are dominated by material properties such as

the Young’s modulus, the yield strain, and the strain-hardening ratio. There are

shape parameters in the Menegotto-Pinto model to capture the Bauchinger e↵ect of

a steel component. However, the Menegotto-Pinto model is associated with memory

of loading history, this has been simplified with flag indications in computational

implementation. Therefore, computational execution of the Menegotto-Pinto model

is equivalent to piece-wise function, it is di�cult to incorporate online (recursive)

model updating algorithms.
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9. HYBRID SIMULATION WITH MODEL UPDATING

FORMULATION AND NUMERICAL ANALYSIS

As stated in chapter 8, generally, a given component (column, bridge pier, structural

connection) may be used in multiple instances in one structure, in hybrid simulation,

one might take the approach of using a limited number of the repeated components

as the critical physical specimens and leave the rest in the numerical substructure.

Rather than only exchanging information at the interface (displacement, acceleration

or restoring force) as in the conventional hybrid simulation, in hybrid simulation

with model updating (HSMU), model information can also be extracted from the

response of the experimental substructure. Such model information can then be used

to improve the representation of similar components in the numerical model.

Kwon et al. [56] first introduced the concept of representing an entire structure

with several key physical components, and modifying their numerical models using

the physical response in real-time. The numerical model used in simulation consisted

of a collection of Bouc-Wen models with predetermined parameters. During HS, a

weighting factor was identified for each Bouc-Wen model until the summation of their

weighted responses matched the measured physical response. Thus, the accuracy of

this approach highly depends on the chosen initial collection of Bouc-Wen models.

In the subsequent two years, several techniques to apply model updating in HS have

been developed, mostly in the unscented Kalman filter family. Those approaches

include using the constrained unscented Kalman filter (CUKF) in RTHS [108], [109]

and the unscented Kalman filter (UKF) algorithm in HS [58] and RTHS [110] to

identify Bouc-Wen model parameters. Experimental results in the aforementioned

work demonstrate the feasibility of model updating in hybrid simulation and the

associated improvement in testing accuracy.
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Although HSMU has been experimentally validated, an evaluation of the limi-

tations of HSMU has not yet been performed. For HSMU, online model updating

algorithms require knowledge of the excitation to the experimental substructure as

well as its response to identify the model parameters. This excitation normally takes

the form of a structural response which is already filtered (the structure itself is a

filter) and likely contains limited frequency information, especially on examining the

dynamic system where specimen response is rate dependent. In HS, the identification

information is more related to amplitude where the loading does not contain frequency

content with low speed execution. While in RTHS, the information maybe related to

both amplitude and frequency. Other possible limitations relate to the varying level

of complexity of the nonlinear models to be identified. In addition, parameter con-

vergence in model updating can a↵ect the behavior of other numerical components

which receives model updating parameters in real time. Clearly, the performance

of the chosen model updating algorithm with respect to such challenges should be

carefully examined prior to implementing model updating in hybrid simulation.

(a) Rocking Frame with Connection
Plates [112]
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(b) Concept of HSMU

Figure 9.1.: Numerical Example

In this chapter, HSMU is validated and evaluated through a numerical study, rep-

resenting a practical design shown in Fig. 9.1(a) from [111]. This case study is based

on a NEES (Network for Earthquake Engineering Simulation) project [112], where
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Deierlein et al. [113] proposed a self-centering frame concept with post-tensioned (PT)

strands in two linear frames, linked with three energy dissipation shear plates. In the

discussion of the RTHSMU simulation, we define the specimen model as a virtual

nonlinear experimental substructure to be loaded based on the structural response

in the RTHS, which in this case is simply the upper shear plate. The nonlinear be-

havior of the specimen model is represented using Bouc-Wen models with di↵erent

levels of complexity. The other two plates with the same nominal design are included

within the numerical substructure, each defined to be a target model. The initial

parameters of the target models are unknown (selected parameters are far away from

the specimen model) and are expected to be updated using information about the

specimen model acquired during the hybrid simulation. The CUKF is used as the

online nonlinear model identification method.

This HSMU simulation (Fig. 9.1(b)) includes: the numerical substructure con-

sisting of frames with PT strands, and target model which is updated with real-time

parameters; an experimental substructure which only consists of the specimen model;

and the online model updating algorithm. The performance of HSMU simulation is

first presented at the global level, where the self-centering frame behavior is compared

to baseline simulation results without any modeling errors in either the target model

or the specimen model, and then discussed thoroughly on the component level in

terms of the model updating. The evaluation and validation of the model updating

performance considers the following: richness of the input (broadband signal, struc-

tural response, sinusoidal signal, etc.), complexity of the target model, and selected

tunable variables in the model updating algorithm.

9.1 Hybrid Simulation with Model Updating

Consider the equation of motion for a reference structural with nonlinear compo-

nents in conventional simulation written as:

Mẍ+ Cẋ+Kx+R(x, ẋ, ✓R) = �M�ẍg (9.1)
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where M, C, K are the linear mass, damping, sti↵ness matrices of the reference struc-

ture, R(x, ẋ, ✓R)) is the restoring force provided by the nonlinear components, ✓R

are the parameters of the nonlinear components, x, ẋ and ẍ are structural responses

(displacement, velocity, acceleration), and ẍg denotes earthquake excitation.

We write the equations of motion for hybrid simulation in the form:

MN ẍN + CN ẋN +KNxN + FE(xE, ẋE) +RN(xN , ẋN , ✓R) = �M�ẍg (9.2)

MEẍE + CEẋE +KExE +RE(xE, ẋE) = FE(xE, ẋE) (9.3)

where the superscript ( )N and ( )E denote the portions of the reference structure in-

cluded in the numerical and experimental substructures respectively, M = ME+MN ,

C = CE + CN , K = KE +KN . FE denotes the measured force in the experimental

substructure. This representation of the reference structure. The fidelity of hybrid

simulation is based on how accurately Eq. 9.2 and 9.3 represent the Eq. 9.1 when

implemented.

To focus on the analysis of the impact of model updating, we assume boundary

condition continuity is preserved (xE = xN and ẋE = ẋN). Because it is relatively

straightforward to identify the properties of a linear structure ME, CE, KE prior to

testing, the accuracy of the hybrid simulation depends mainly on the ratio of RN/R

and the modeling error in RN(xN , ẋN , ✓R). In many past hybrid simulation stud-

ies such as those with isolated dampers as the physical components, the nonlinear

restoring force is dominated by those and RE >> RN . However, when the physi-

cal specimen is selected to include structural components that are used in multiple

instances within a structure, the limited number of specimen selected for physical

experimentation means that a significant portion of the nonlinear behavior resides in

the numerical substructure (RN >> RE) and there maybe modeling errors present
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in RN . Thus, the modified formulation of hybrid simulation which includes model

updating is:

MN ẍN + CN ẋN +KNxN + FE(xE, ẋE) +RN(xN , ẋN , ✓̃R) = �M�ẍg (9.4)

MEẍE + CEẋE +KExE +RE(xE, ẋE) = FE(xE, ẋE) (9.5)

✓̃R =  (RE, xE, ẋE, ✓
 

) (9.6)

where  indicates the model updating is performed in real-time, ✓
 

is the parameter

being updated through the chosen model updating algorithm, ✓̃R is the recursively

identified nonlinear model parameters that minimize the associated cost function.

The numerical restoring force RN(xN , ẋN , ✓̃R) is adapting in real-time based on the

physical responses.

9.2 Constrained Unscented Kalman Filter Algorithm

One popular class of system identification methods that can readily be imple-

mented in real-time is the Kalman filter (KF) family. To minimize the expected mean

square error of the cost function, the KF estimates the state vector with an optimal

gain which can flexibly handle trade-o↵s between identification accuracy and robust-

ness due to measurement noise and system uncertainties [114], [115]. The original KF

algorithm works for linear systems, the extended Kalman Filter (EKF) [116] and the

Unscented Kalman Filter (UKF) [117] were developed subsequently for nonlinear sys-

tems. With the EKF the estimation is optimized based on linear approximations of

the nonlinear system through a Jacobian Matrix, while UKF uses the unscented trans-

formation (UT). A large amount of e↵ort has been dedicated to comparing the perfor-

mance of EKF and UKF, with conclusions that vary based on the degree of nonlinear-

ity in the selected model and the application of interest [115], [118], [119], [120], [121].
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One significant benefit of using UKF is that no Jacobian matrix is needed which

avoids the possibility of errors in the derivation. The UKF is extended from esti-

mating the state vector to parameter identification, and has been applied to estimate

Bouc-Wen model parameter sets [57] through numerical validation. The result indi-

cate that the UKF can be used e↵ectively for nonlinear structural identification, and

further extensions consider experimental validation in [122]. This approach continues

to be recognized as being e↵ective for online HS applications [58], [110].

In the Bouc-Wen model series, certain model parameters have physical meaning,

such as ↵B,i which determines the severity of structure nonlinearity and has a range

limit of 0  ↵B,i  1, kB,i is the initial linear sti↵ness of the component which

should be non-negative. Thus, the nonlinear system identification problem becomes

a parameter estimation with interval constraints. The CUKF algorithm has been

developed for state estimation with interval constraints, and has been experimentally

validated in structural testing applications involving the Bouc-Wen model in RTHS

[108], turbofan engines states estimation [123], and tire force, velocity etc. estimation

for vehicles [124].

Consider a stochastic nonlinear discrete-time dynamic system:

✓k = F (✓k�1

, uk�1

, k � 1) + wk�1

(9.7)

yk = H(✓k, k) + vk (9.8)

where F and H are process and observation models. For a parameter estimation

problem, ✓k�1

is the system parameter vector. Assume for all k  1, input uk,

measurement yk , and the PDFs of ⇢(✓
0

), ⇢(w), ⇢(v) are known. Also, w and v

are the process noise and measurement noise, with zero mean and known variances,

represented by Q and R. ✓
0

is the initial condition (guess) of the parameter estimation

vector.

For the state and parameter estimation problem, the goal is to determine the set of

✓k that maximizes the profit function J(✓k) = ⇢(✓k|(y
1

...yk)). For a nonlinear system,
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the optimization of J cannot be represented by its mean ✓̂k|k and covariance P ✓|✓
k|k as

in the linear KF. Thus, UT is used to best approximate the mean and covariance of

yk with its nonlinear transformation yk = H(✓k, k). The UT is based on projecting

the current estimation set ✓k to an additional 2L sigma points (L is the number of pa-

rameter to be identified) ⇥k, the mean ⇥̂k =
Pj=2L

0

�j,k⇥j,k with weighting factors �j

(j = 1..2L), and
PL

j=1

�j = 1. Unlike the UKF, CUKF projects the sigma points with

interval constraints named the interval constraint unscented transformation (ICUT),

assuming the given interval constraints dk  ✓k  dk:

⇥k =✓̂k11⇥2L+1

+ [0L⇥1

!
1,kcol1[(P

x|x
k|k )

1/2]...+ !L,kcolL[(P
✓|✓
k|k )

1/2]

� !L+1,kcolL+1

[(P ✓|✓
k|k )

1/2]...� !
2L+1,kcol2L+1

[(P ✓|✓
k|k )

1/2]]

where, (·)1/2 denotes the Cholesky square root and �C is predefined ICUT parameter

�C > �L. For i = 1...2L and j = 1...2L, !jj,k =min(colj(⌦)), ⌦ is defined:

⌦(i, j) =

8
>>><

>>>:

p
L+ �C , if Ui, j = 0,

min(
p
L+ �C ,

e
i,k

�x̂
i,k

U
i,j

), if Ui,j > 0,

min(
p
L+ �C ,

d
i,k

�x̂
i,k

U
i,j

), if Ui,j < 0,

where U = [(P ✓✓
k )1/2,�(P ✓✓

k )1/2], and the time varying weights �k = [�
0,k...�2L+1,k]

given by:

�
0,k = bk, �j,k = ak!i,j + bk (9.9)

ak =
2�C � 1

2(L+ �C)(
PL

j=1

!j,k � (2L+ 1)
p
L+ �C)

(9.10)

bk =
1

2(L+ �C)
� 2�C � 1

2
p
L+ �C(

PL
j=1

!j,k � (2L+ 1)
p
L+ �C)

(9.11)

The ICUT procedure above is then defined using:

[�k,⇥k] = �ICUT (✓̂k, P
xx
k , dk, ek, L,�C) (9.12)
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Once we have defined the ICUT, the forecast step is given as:

[�k�1

,⇥k�1|k�1

] = �ICUT (✓̂k, P
✓✓
k , dk, ek, L,�C) (9.13)

⇥j,k|k�1

= F (⇥k�1|k�1

, uk�1

, k � 1) + wk�1

(9.14)

✓̂k|k�1

=
2LX

j=0

�j,k�1

⇥j,k|k�1

(9.15)

P ✓✓
k|k�1

=
2LX

j=0

�j,k�1

[⇥j,k|k�1

� ✓̂k|k�1

][⇥j,k|k�1

� ✓̂k|k�1

]T +Qk�1

(9.16)

[�k,⇥k|k�1

] = �ICUT (✓̂k|k�1

, P ✓✓
k|k�1

, dk, ek, L,�C) (9.17)

Yj,k|k�1

= H(⇥j,k|k�1

, k) (9.18)

ŷk|k�1

=
2LX

j=0

�j,kYj,k|k�1

(9.19)

P yy
k|k�1

=
2LX

j=0

�j,k[Yj,k|k�1

� ŷk|k�1

][Yj,k|k�1

� ŷk|k�1

]T +Rk (9.20)

P ✓y
k|k�1

=
2LX

j=0

�j,k[⇥j,k|k�1

� ✓̂k|k�1

][Yj,k|k�1

� ŷk|k�1

]T (9.21)

P ✓✓
k|k�1

is the forecast error covariance, P yy
k|k�1

is the innovation covariance, P ✓y
k|k�1

is

the cross covariance. Similar to classic KF update, the estimate step (also known as

data assimilation step) is defined:

Kk = P ✓y
k|k�1

(P yy
k|k�1

)�1 (9.22)

✓̂k|k = Kk(yk � ŷk|k�1

) (9.23)

P ✓✓
k|k = P ✓✓

k|k�1

�KkP
yy
k|k�1

KT
k (9.24)

whereKk is the Kalman gain matrix and P ✓✓
k|k is the data-assimilation error-covariance.

In summary, to apply the CUKF user-defined parameters include the initial guess

of the parameter vector ✓
0

, the ICUT parameter �C , the process noise variance Q
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and measurement noise variance R. The choices of those parameters may a↵ect the

accuracy of system identification as discussed subsequently.

9.3 Numerical Example

The numerical example for demonstrating HSMU is a controlled, self-centering

frame proposed by Deierlein et al, [111], [2], [113], [3] which is composed of two steel

frames, vertical post tension strands in both frames, and the two frames are linked

by three identical shear connection as shown in Fig. 9.1(a). The design concept is

as follows: 1) the steel frames with post tension strands act as a two stage linear

(bilinear) frame determined by the initial force in the strands and the top displace-

ment; 2) the vertical post-tension strands provide the self-centering force; and, 3) the

replaceable shear connection plates dissipate energy during dynamic loading. It is

considered to be a very practical application of hybrid simulation analysis because

the bilinear behavior of the frames with PT strands can be isolated in the numerical

substructure. Meanwhile, model updating is beneficial since all the connection plates

are identical and experience similar loading paths.

To demonstrate the HSMU approach, the structure is represented with a bilinear

frame model and GBW/EBW models as presented in chapter 8. The simplified model

responses are compared to the OpenSees finite element model available within the

NEES data repository [112]. The resulting comparison is provided in Fig. 9.2, and

indicates a slight di↵erence in the hysteresis behavior (see Fig. 9.2(b) and 9.2(d)).

At very large displacements the shear plate will deform out-of-plane and this type of

hysteresis is not captured by the BW model family. Here the parameters for both the

GBW and EBW models are determined through genetic algorithms by minimizing

the error between the BW model response and finite element model response. The

nominal values of each parameter are listed in Table 9.1 and 9.2. The simplified model

with this nominal parameter set are assumed in the sequel as the reference solution in

the following analysis which also defines the true parameters for the specimen model.
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Simplified model (Bilinear Frame with GBW)
FE Model of the rocking Frame

(a) Frame Response using GBW model
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General Bouc−Wen Model
FE Model of Connection Plate

(b) Connection Plate Response using
GBW model
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Simplified model (Bilinear Frame with EBW)
FE Model of the rocking Frame

(c) Frame Response using EBW model
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EBW model

Figure 9.2.: Comparison between GBW/EBW Model and FEM Responses

HSMU e�ciency is qualitatively demonstrated through a simulation of the case

study following the concept described in Fig. 9.1(b). In this HSMU simulation the

third story connection plate is assumed to be loaded as the experimental substructure

in hybrid simulation, and also modeled using the specimen model parameter (model

with nominal parameters) with its input and response available for system identi-

fication. The other two plates (known as the target models) have initial modeling

errors as they are modeled using BW models with 50% error in each parameters.

This model will adopt the estimated parameter sets generated by the model updat-

ing algorithm. The HSMU results are compared to both a) the baseline simulation

result (reference solution) where no modeling error is assumed and b) a simula-
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tion representative of conventional hybrid simulation, where only the third story

connection plate (specimen model) is accurately loaded and the two remaining plates

are modeled numerically with erroneous parameters (50% error) and do not adopt

the updated parameters.

The entire self-centering system (two frames, PT strands and connection plates)

is simulated using a scaled El-Centro earthquake excitation, and a comparison of the

results is shown in Fig. 9.3. It is clear that significant error exists in the global

response (top displacement-moment of the self-centering frame) using conventional

hybrid simulation when there is modeling error in the target model. The HSMU

response initially exhibits the same conditions as the conventional hybrid simulation,

however, after several seconds it converges to the baseline solution as in Fig. 9.3(b).

For the EBW model, the convergence is achieved even faster, inside of 1 second,

with the initial model parameters placed 50% away from the true parameters. This

result indicates the attractive benefit o↵ered by HSMU which improves the hybrid

simulation accuracy without the need for testing all instances of components with

modeling uncertainties. This general finding has also been reported in [56], [108],

[58], [110].
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Figure 9.3.: Comparison between Baseline Solution, Conventional RTHS and
RTHSMU

9.4 Model Sensitivity Study

The accuracy of the system identification will first depend on the sensitivity of

the system response to each parameter in the model. As stated earlier, in Bouc-Wen

models, hysteretic behavior has di↵erent sensitivity to di↵erent parameters, it would

be di�cult to obtain a good estimate of the global solution if each of the model

parameters do not participate in the response. Therefore, a sensitivity analysis for

model parameters are needed. Such an analysis is normally implemented numerically
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based on the variation of a given parameter set (base value) to determine the quanti-

tative change in the output. This is known as a local sensitivity analysis when each

parameter is considered in isolation. When all of the parameters vary simultaneously

in a given range, and the ranking of each is evaluated, it is referred to as a global sen-

sitivity analysis. Because the analysis is performed numerically, the result (sensitivity

ranking) depends on the choice of the base value set. The base value sets chosen in

this analysis are determined using the finite element model of the shear plate and is

demonstrated in Fig. 9.2(b) and 9.2(d).

9.4.1 General Bouc-Wen Model Sensitivity Study

The predetermined base values of the GBW are in Table 9.1. In both local and

global analyses, a driving input consisting of a 0.5 Hz sine wave is used and the

hysteretic behavior of the BW model with the base value set is demonstrated in

Fig. 9.4(a). In the local sensitivity analysis, each single parameter gradually changes

within the range of [0.5 1.5] of its base value and the remaining parameters retain

their base values. Fig. 9.4(b) demonstrates the variation in the system response as a

result of the change in several parameters. The results are represented in terms of the

associated RMS error, and the local sensitivity ranking can be calculated accordingly

as shown in Table 9.1.

The RMS error is defined as:

ERMS =

r
⌃n

i (RV �RBase)2

n
/

r
⌃n

i (RBase)2

n
(9.25)

In the global sensitivity analysis, all parameters vary simultaneously. Sobol indices

[125] are used for evaluate parameter global sensitivity, as suggested in [103].

Consider an integralable function f(x) defined in Im which can be represented as:
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f(x) = f
0

+
LX

s=1

LX

i1<...<i
s

fi1...is(xi1 , ..., xi
s

) (9.26)

f(x) = f
0

+
X

i

fi(xi) +
X

i<j

fij(xi, xj) + ...+ f
12...n(x1

, x
2

, ..., xL) (9.27)

where, L is the number of parameters involved. The total summation is 2L. As-

sume Eq.9.26 is the ANOVA representation of f(x), also called decomposition into

summands of di↵erent dimensions [126], the square integral of f(x) is:

Z
f 2(x)dx� f 2

0

=
LX

s=1

LX

i1<...<i
s

f 2

i1...isdxi11...dxi
s

(9.28)

Assume constant D =
R
f 2(x)dx � f 2

0

, Di1...is =
R
f 2

i1...isdxi11...dxi
s

are called vari-

ances.

D =
LX

s=1

LX

i1<...<i
s

Di1...is (9.29)

Then the global sensitivity index is defined as:

D =
LX

s=1

LX

i1<...<i
s

Di1...is (9.30)

The integer s is often called the order or the dimension of the index. All the si1...is are

non-negative and their summation equals one. For each sensitivity analysis, 2L � 1

indices are calculated and the e↵ect of one single parameter Si can be defined as:

Sj = 1�
X

i
k

6=j

Si1...is (9.31)

In the global sensitivity analysis, a Monte Carlo simulation of 4000 runs are imple-

mented with each parameter selected randomly within [0.5 1.5] range of its base value,

and the input signal remains the same as in the local sensitivity analysis. The result

of Sj of each parameter in the GBW is listed in Table 9.1.
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Table 9.1.: General Bouc-Wen Model Sensitivity Ranking

Parameter Base Value Local Ranking Si Global Ranking
↵GBW 0.35 5 7.96 % 5
kGBW 35 2 31.8% 1
AGBW 15 3 10.39% 4
�GBW 1.7 4 18.04% 3
nGBW 1.7 1 28.31% 2
�GBW 0.5 6 2.45% 6
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Figure 9.4.: General Bouc-Wen Model Sensitivity

9.4.2 Extended Bouc-Wen Model Sensitivity Study

The local and global sensitivity analysis are similarly conducted using EBW

model, an input of 0.5 Hz, and the hysteretic behavior of the base value set is demon-

strated in Fig. 9.5(a). The predetermined base values of the extended Bouc-Wen

model are shown in Table 9.2 and the resulting local sensitivity plot is shown in Fig.

9.5(b) with a variation of ±50% in each parameter. The results of the EBW model are

summarized in Table 9.2. As stated in chapter 8, for phenomenological models, initial

parameters can have large error compared to the true estimation, thus, assuming 50%

error in each parameter is reasonable.

The sensitivity analysis of the GBW indicates that each parameter contributed

more evenly to the global response, which indicates that a parameter identification
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Figure 9.5.: Extended Bouc-Wen Model Sensitivity

Table 9.2.: Extended Bouc-Wen Model Sensitivity Ranking

Parameter Base Value Local Ranking Si Global Ranking
↵EBW 0.03 4 0.0941 4
kEBW 291.67 2 0.39 1
�EBW 4.98 3 0.14 3
nEBW 1.41 1 0.18 2
�⌘EBW 0.33 6 0.0283 7
�⌫EBW 0.12 5 0.0421 5
qEBW 0.011 9 0.0139 10
�EBW 0.089 7 0.0024 12
⇣sEBW 0.13 8 0.0212 9
pEBW 0.023 10 0.0226 8
 EBW 0.64 11 0.0031 11
�
 EBW 0.016 12 0.0313 6
�EBW 0.18 13 0.001 13

performed using the GBW model will result in relatively more accurate parameters.

With the EBW model, specific parameters, kEBW , nEBW , �EBW , ↵EBW , �⌫EBW ,

�⌘EBW are shown to be more dominant in the hysteretic response, and thus accurate

identification of the entire parameter set may be challenging in some cases.
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9.5 Model Updating Performance in HSMU

The success of HSMU depends on the model updating performance. Besides

typical factors to be considered in the model updating accuracy analysis, including

parameter initial condition ✓
0

, model updating algorithm variable (Q, R and �c etc.

for CUKF), other concerns specific to HSMU should be examined. One limitation of

HSMU is the incomplete excitation that is important for system identification [127].

Model 
Updating 

Estimation 

Reference 
Model 

Time Varying 
Model 

Accepts 
Update 

Model from 
System ID 

(Input B) 
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E3: RMS error between 𝑉𝑌𝑚𝑒𝑠and 𝑉𝑌𝑖𝑑  

Figure 9.6.: Local Accuracy Measures for HSMU

9.5.1 Model Updating Accuracy with Di↵erent Inputs

In HSMU, the specimen to be identified is driven by the local structural response

which is a combination of several sinusoidal signals with irregular amplitudes at the

structures dominant modes. Meanwhile, the target model adopts structural param-
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eters in real-time, and also generates the response of that model to a given input.

Thus, it is important to evaluate HSMU feasibility through 1) understanding the ef-

fect of information richness (frequency and amplitude) on identification performance,

2) assessment of the time-varying model output accuracy that adopts the online es-

timation parameter set, and 3) validating the accuracy of HSMU using an alternate

excitation. For hybrid simulation applications, the specimen is normally not rate

dependent (frequency irrelevant), information richness is more related to amplitude.

Three levels of accuracy measures are proposed, as shown in Fig. 9.6, Error

indicator 1 (E1) evaluates the estimation output error between CUKF estimated

output (Yest) and the reference model output (measurement Ymes), E2 indicates the

model updating output error between the time varying model response (Yid) and

the reference model output (Ymes), which is the main indicator to judge the HSMU

success. Both E1 and E2 are calculated after model updating algorithm runs 4 sec

assuming steady state solution achieved. E3 is defined with an alternate input which

is sent to A) the specimen model (with true parameter) and B) a new model with

identified parameter (after model updating procedure), to compute the error between

V Ymes and V Yid, representing the system identification error.

Three input signals are considered in the excitation completeness analysis (Table

9.3).

Table 9.3.: Simulation Cases for Di↵erent Inputs

Case No. Excitation A Excitation B
A Structural response after earthquake BLWN
B 0.1 Hz sine wave with amplitude 1 inch BLWN
C 0.1 Hz sine wave with amplitude 0.1 inch BLWN
D 0.1, 0.5, 3 Hz sine wave with amplitude 1 inch each BLWN
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General Bouc-Wen Model

The nominal (true) parameter for the GBW case is given in Table 9.1. The

erroneous initial condition used in the target model for model updating has 50% over-

estimation in each value. The results shown in the excitation completeness analysis

are computed using the best possible combination of Q, R, �C later in the chapter.

Table 9.4.: Error Indices for Excitation Completeness Analysis, GBW

Cases E
1

E
2

E
3

A 0.32% 0.57% 2.0 %
B 1.23% 1.23% 9.33 %
C 2.01% 2.41% 22.9 %
D 3.57% 3.55% 2.02%

The model updating results with GBW are shown in Fig. 9.7 - 9.10 and the

quantitative indices are in Table 9.4. For both case A (BLWN) and D (structural

response), all three errors are quite small. If the excitation information provides

su�cient information in identifying component hysteresis, system estimation error

E3 is reduced. However, for simulation with single sinusoidal input (case B and C),

both E1 and E2 have small value which illustrates the CUKF algorithm is able to

estimate a set of model parameters that satisfy the minimum error tolerance, and the

time-varying target model using the identified parameter sets Yid provides an accurate

response as compared to Ymes. However, the E3 error is much larger using an alternate

validation signal (BLWN in these cases). Specially in case B, where the excitation

peak displacement is much smaller (0.3 inch) compared to the validation signal peak

of 8 inch, the system identification error E3 is the largest. With the incomplete

excitation, the model updating algorithm generates a local optimal solution specific

to the excitation, which cannot represent the component behavior in general. Thus,

it is concluded that not all hybrid simulation cases are suitable for incorporating

model updating, and some numerical simulation about model updating behavior in a

specific hybrid simulation with a specific component model should be examined. This
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phenomenon is expected to be even more dominant in RTHS if the specimen model

is rate dependent, such as the MR damper.

Fig. 9.11 shows the parameter convergence. Cases A and D are assumed to have

settled to its global optimal solution indicated by E3. However, although the solution

converges after 5 seconds, the final parameters are di↵erent from the nominal set.

This result may be due to the known fact that the solution of Bouc-Wen model is

not unique, as discussed in [128], [129]. Meanwhile, if the excitation signal is not

complete, the parameter set is likely to oscillate periodically and not truly converge,

as in case C. This is related to both the excitation signal incompleteness and also the

choice of di↵erent model updating parameter, Q, R, �c, etc. Thus, a model updating

parameter study is discussed later.
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Figure 9.11.: Parameter Convergence for Excitation Completeness Analysis, General
BW model

Extended Bouc-Wen Model

A similar study is performed using the EBW model and a 50% over estimation

in each parameter is used. The performance of the model updating procedure for

the EBW is shown in Fig. 9.12 - 9.15, and the quantitative indices are in Table 9.5.

For the EBW model, only the first six parameters which have higher rank in the

sensitivity analysis are considered in the parameter convergence analysis in Fig. 9.16.
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Table 9.5.: Error Indices for Excitation Completeness Analysis, EBW

Cases E
1

E
2

E
3

A 0.29% 0.916% 6.64%
B 0.46763% 0.7632% 27.4%
C 0.32% 1.63% 7.4%
D 0.48% 0.57% 2.308%

Similar conclusions can be made from EBW model analysis, results indicate es-

timated error indicator E2 and model updating output error index E
2

are small for

all simulation cases. Larger system identification error E3 is observed for limited

excitation signal B and C. When the excitation peak is much smaller compared to

the validation signal peak, the estimation accuracy is low. Also, larger system identi-

fication error is observed in case A (6.64%) as compared to the one in GBW (2.0%).

In this case, the identified parameter set does not converge to the nominal values.

There are a couple of possible reasons for this. First, the EBW model with the same

hysteresis behavior may be represented by several global solutions (i.e. the solution

is not unique). Second, based on the sensitivity analysis, the contribution of the less

sensitive parameter is less than 1% using the specific base value set. It is challeng-

ing to estimate those parameters that participate to a lesser extent in the response

using any system identification algorithm, thus the true parameter set (true global

solution) is very challenging to reach. However, even with limited input information

and residual error in the parameter estimation, the system identification error (E3)

here is still considered to be quite tolerable for most purposes.
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(a) Parameter Convergence - Case A
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(c) Parameter Convergence - Case C
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(d) Parameter Convergence - Case D

Figure 9.16.: Parameter Convergence for Excitation Completeness Analysis, Ex-
tended BW Model

Generally for hybrid simulation applications, if the initial numerical model is

su�ciently accurate, model updating may not be necessary. For those cases where the

initial model is less predictable and may be far away from the true behavior yielding

more than 20% error, HSMU will improve the performance of the hybrid simulation

in practice even though some estimation error may be present. Also, the choice

between using a simpler model (GBW) or a more complex model (EBW) should be

made with these challenges in mind. Relevant factors include the di↵erent physical

specimen properties, the richness of the excitation and the participation of various
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model parameters, etc. are worth taking into consideration in the hybrid simulation

planning stage.

9.5.2 Parameter Study of the Model Updating Algorithm

To examine the e↵ects of the CUKF parameters (noise covariance matrices Q,

R, initial parameter guess ⇥
0

and parameter determine UT weighting �) on model

updating accuracy, we focus on case A with an initial excitation A of 0-1 Hz BLWN.

The three errors defined in the excitation completeness study are computed. Both the

GBW and EBW are considered, bur because the conclusion are found to be similar

for both GBW and EBW, only GBW case is discussed.

E↵ect of Q and R Parameters on Model Updating Performance

For all methods in KF family, the error covariance matrices Q and R governs

the accuracy and robustness of the estimation. Q is the process noise covariance

for state estimation, and in the parameter estimation case Q dominates the rate of

convergence in identifying the parameters. R is the measurement noise covariance,

and in the identification case study R value sets the tolerable error (error threshold)

between CUKF output estimation Yest and the measurement Ymes.

Without loss of generality, for this parametric study the measurement noise co-

variance is defined as R = 10Rf and the process noise covariance matrix takes the

form of a diagonal matrix as:

Q = 10Qf ⇥

0

BBBBBB@

✓
0

(1) 0 · · · 0

0 ✓
0

(2) · · · 0
...

...
. . .

...

0 0 · · · ✓
0

(L)

1

CCCCCCA

Thus, the e↵ect of the matrices Q and R is further simplified using the process

noise factor Qf and the measurement noise factor Rf , where the ✓0 is the initial guess
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of the parameter set which acts as a weighting factor based on the possible scale of

each parameter.

To examine the e↵ect of the input on the choice of Q and R, two BLWN input

cases are considered as indicated in Table 9.6 and Fig. 9.17(a). The results are shown

in Fig. 9.17 for the GBW case and demonstrate that the accuracy of model updating

(E3) depends strongly on the choice of Qf . A smaller Qf yields faster convergence

(less variation in each parameter with time), and the steady state value of Qf is

reached around Qf = �7 for both input cases. Trade-o↵s in accuracy occur when

using larger Rf values for all error indices as shown in Fig. 9.17(c). For small Rf

values Qf may need tuning, as with Rf = �1, only a few cases, Qf = �7,�6,�5

(solid blue line in Fig 9.17(b).) run successfully. A similar trend is obtained with

case A2 when Rf = 1 (solid red line).

In the EBW case, a significant trend is also observed in the estimation output error

indicator E1 as shown in Fig. 9.18(a). For larger Qf E1 is reduced to under 2% for

Rf = 0. When Rf is larger, a di↵erence is present but to a lesser degree. The pattern

in the model updating error indicator (E3) is less clear (Fig. 9.18(b)). As in the

excitation incompleteness analysis conducted in the prior section, the global minima

may be di�cult to reach. Thus, the final parameter sets obtained with di↵erent Qf

may be a↵ected by the choice of Qf and Rf , and are simply several local minima.

In general, an increase in Rf indicates a higher tolerance for estimation error and

thus the model updating process tends to be more stable. The results here indicate

that there is a co-dependence between Rf and Qf , and it is worth mentioning that,

depending on the test purpose and scenario (level of model uncertainty, convergence

speed requirement, input signal and output signal magnitude), the absolute value of

Rf and Qf should be carefully examined.
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Table 9.6.: Simulation Cases for Q and R Analysis

Case No. Signal Rf range Qf range
A1 (GBW) 0-1 Hz BLWN [-1 : 1: 2] [-12 : 1: -5]
A2 (GBW) 0-3 Hz BLWN [1: 1 : 4] [-12 : 1: -5]
A1 (EBW) 0-1 Hz BLWN [0: 1: 3] [-12 : 1: -5]
A2 (EBW) 0-3 Hz BLWN [0: 1 : 3] [-12 : 1: -5]
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Figure 9.17.: Q and R e↵ect on estimation accuracy, General BW model
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Figure 9.18.: Q and R e↵ect on estimation accuracy, Extended BW model

E↵ect of Initial Guess ✓
0

Parameter on Model Updating Performance

In examining the performance of the model updating procedure, another question

to address is how the estimation stability and accuracy may be a↵ected by the initial

guess (initial condition). To perform this analysis we use an initial guess factor Fg

which ✓
0

is defined as ✓
0

= Fg · ✓e, where ✓e is the nominal values of the model

parameter. Fg is chosen from 0.2 to 2.2, where Fg = 0.2 indicates the initial guess
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in each parameter is 1/5 of its nominal value and Fg = 2.2 indicates 120% over

estimation in each model parameter.

Five representative models with Fg=[0.2, 0.6, 1.4, 1.8, 2.2] and the exact model

(Fg=1.0) are excited using a sinusoidal input, exhibiting a variety of hysteretic be-

haviors as demonstrated in Fig. 9.19(a). The output errors between these erroneous

models and the exact models are listed in Table 9.7. It is clear that the chosen BW

initial conditions produce a broad range of hysteretic behaviors and are significant

di↵erent from the exact model performance.

However, although the initial guesses may be very far away (100% over estimation)

from the exact solution, the CUKF model updating accuracy is not a↵ected greatly

as shown in Fig. 9.19(b). Another variable specific to CUKF algorithm �C , which

defines the interval constrained unscented transformation (ICUT) as in Eq. 9.10

and 9.11. From simulation, �C is found to have little influence to model updating

performance, thus, is not further discussed.

Another variable specific to CUKF algorithm �C , which defines the interval con-

strained unscented transformation (ICUT) as in Eq. 9.10 and 9.11. Known �C +L >

0, for the GBW model, L = 6, �C > �6, we use �C values ranging from -5 to 1 and

perform the model updating procedure. The results are shown in Fig. 9.21 for the

GBW , which demonstrate that �C has little influence on the estimation accuracy in

each index.

Table 9.7.: Representative Model Cases

Case Error in Response (GBW) Error in Response (EBW)
Fg=0.2 93.7% 77%
Fg=0.6 52.98% 34.04%
Fg=1 0 0
Fg=1.4 42.76% 28.16%
Fg=1.8 63.94% 51.66%
Fg=2.2 78.42% 72.01%
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9.6 Conclusion

HSMU performance is analyzed using a numerical example considering a practical

case study with three identical energy dissipation plates in a structural system. In

this simulation, one of these plates is identified as the experimental substructure in

hybrid simulation, although it is simulated here, and the other two instances are in

the numerical model. However, with unknown properties of the plates a large error

in the global response would result. In simulation, HSMU reduces these errors by

utilizing identified, real-time model parameters in the target model. The study leads

to the following conclusions for implementation of such a model updating procedure.

1) HSMU results in improved accuracy in hybrid simulation when the initial target

model behavior di↵ers significantly from the true response. If the target model

is relatively accurate, it may not always be necessary to implement model up-

dating. Additionally, the initial guess of the target model parameter for CUKF

does not significantly a↵ect the stability and convergence of the updating pro-

cedure, which indicates that HSMU is likely to be successful even with a large

initial error in the target model.

2) The accuracy of the model identification procedure depends on the richness

of the information (frequency content) in the structural response as this is the

input to the physical specimen. HSMU is not applicable in all situations because

reaching the local minimum requires that the system is fully excited. Also, the

excitation incompleteness may cause parameter oscillation in identification and

not truly converge.

3) The target model complexity should be selected based on the conceptual speci-

men physical properties. All of the parameters in the model should participate

su�ciently in the resulting model behavior. Otherwise, the system identification

algorithm is hindered in its ability to estimate the true parameter set, resulting

in residual errors.
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Other conclusions from this work relate to the CUKF in general. The selection of

process noise matrix Q and measurement noise matrix R combination has a large

influence on estimation accuracy. Larger R indicates a larger tolerance on error

between estimation and measurement, thus the procedure is more robust. Larger Q

indicates a slower convergence on estimated parameter, and thus a more accurate

solution in general. The combination of Q and R should be carefully studied before

implementing CUKF.
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10. LOCAL EVALUATION OF HYBRID SIMULATION WITH

MODEL UPDATING

As discussed in chapter 8, the commonly used nonlinear models can be categorized

into two groups, one is the phenomenological model, where macro mechanical behav-

ior (displacement-force hysteresis and energy dissipation) is captured and described

through di↵erential equations. The other is the constitutive model which is associat-

ing with the constitutive relationship of structural materials. In the previous studies,

the phenomenological Bouc-Wen model and Bouc-Wen-Baber-Noori model have been

adopted widely among recent online model updating applications. Wu et al. applied

the unscented Kalman Filter (UKF) to identify di↵erent Bouc-Wen model with de-

grading and pinching behavior, and validated with numerical examples [57]. Song et

al. further extended this study to experimental study [122]. The Bouc-Wen model was

first introduced in HSMU by Kwon et al. [56]. In the test, the numerical substructure

had several identical components. The model of each component was a collection of

Bouc-Wen models with di↵erent predetermined parameter sets. During model updat-

ing, a weighting factor was identified for each Bouc-Wen model until the summation

of their weighted responses matched the measured response from the physical speci-

men. Thus, the accuracy of this approach depends on the selected initial collection

of Bouc-Wen models. Later, identification directly on model parameters were inte-

grated into hybrid simulation, where Hashemi et al. and Saho et al. implemented

the unscented Kalman Filter algorithm in identifying the Bouc-Wen parameters of

structural frame, and Wu et al. applied the constrained unscented Kalman Filter

algorithm in identifying the parameters of a buckling restrained brace [58], [59], [60].

As an alternative to phenomenological models, constitutive relationship provides

a deeper observation on structural components modeling, such as component dam-
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age level, status of structure serviceability and reliability. Furthermore, the tested

components and its counterpart in numerical simulation do not need to be identi-

cal in geometry. Hazem and Elnashai first proposed a hybrid simulation framework

with finite element software ZeusNL [61]. The finite element software is linked to a

model updating algorithm such as genetic algorithms or neural network to identify

the parameter of constitutive bilinear steel model and nonlinear concrete model [62].

This framework has been validated with numerical examples and o✏ine experimental

data, [63].

In this chapter, the HSMU approach is implemented and evaluated through an

experimental study. The reference structure in the study is a five story structure

with identical columns on each floor. In hybrid simulation, the first story is tested

physically while the remaining stories are included in the numerical substructure.

Two series of hybrid simulation tests are conducted. First, in case I, the entire

frame is modeled with five decoupled Bouc-Wen models, parameters in each Bouc-

Wen model are assumed to be identical. The parameters of the Bouc-Wen model

are identified using measured response (displacement and force) from the physical

specimen. Similarly, in the other case (namely the case II), the numerical stories are

constructed in OpenSees with a bilinear steel model. A single story frame model is also

established with OpenSees, where the steel material properties are identified using

the physical specimen response. In this chapter, the model updating performance in

HSMU is discussed. The estimation accuracy for both cases is presented, and the

updated model responses are compared to the initial model. Parameters convergence

due to incomplete excitation is continue discussed for both cases.

10.1 Model Updating Implementation for HSMU

In this experimental study, the entire structure is a five story steel frame, shown in

Fig. 10.1(a), all five stories are identical. For each floor, a lumped mass of 23.2 kg is

concentrated on the top plate, four columns (ASTM A36 steel, cold rolled) are fixed
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to the top and bottom plate, with e↵ective length of 170.2 mm, the initial sti↵ness

per floor is 1.82 ⇥ 105 N/m. The drawing of a typical story is shown in Fig. 10.2. In

hybrid simulation, only the first story frame is tested physically (Fig. 10.1(b)), and

the rest of the stories are modeled in the numerical substructure.

(a) Entire structure (b) Experimental Substructure

Figure 10.1.: Entire Structure and the Physical First Story in HSMU

Figure 10.2.: Drawing of a Typical Story

As stated earlier, recall the formulation of HSMU is defined as:

MN ẍN + CN ẋN +KNxN + FE(xE, ẋE) +RN(xN , ẋN , ✓̃R) = �M�ẍg (10.1)
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MEẍE + CEẋE +KExE +RE(xE, ẋE) = FE(xE, ẋE) (10.2)

✓̃R =  (RE, xE, ẋE, ✓
 

) (10.3)

where the superscripts ( )N and ( )E denote the portions of the reference structure in-

cluded in the numerical and experimental substructures, respectively,M = ME+MN ,

C = CE + CN , K = KE +KN . FE denotes the measured force in the experimental

substructure.  indicates the model updating is performed in real-time, ✓
 

is the

parameter being updated through the chosen model updating algorithm, ✓̃R is the

recursively identified nonlinear model parameters that minimize the associated cost

function. The numerical restoring force RN(xN , ẋN , ✓̃R) is adapting in real-time based

on the physical responses. In this section, two types of numerical substructures are

developed for the model updating study, one is with a phenomenological Bouc-Wen

model and the other is with a constitutive steel material model.

In this chapter, the selected model updating algorithm is also the Constrained

Unscented Kalman Filter (CUKF), whose formulation is presented in the chapter 9.

The discrete implementation of CUKF in HSMU on the kth step is shown in Fig.

10.3.
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10.1.1 Formulation and Implementation of HSMU Case I

In HSMU case I, the physical substructure is first modeled with the phenomeno-

logical Bouc-Wen-Baber-Noori model [105], [100], as indicated before, here is also

denoted as EBW model. This model can capture the pinching and degradation ef-

fects in a structure component, represented by Eq. 10.4 - 10.12 also is discussed in

chapter 8.

REBW (xE, z) = ↵EBWkEBWxE + (1� ↵)kEBW z (10.4)

ż = h(z){ ẋ
E � ⌫(")(�EBW |ẋE||z|nEBW

�1z + �EBW ẋE|z|nEBW

⌘(")
} (10.5)

where kEBW is the sti↵ness coe�cient and 0  ↵EBW  1 determines the level of

nonlinearity, ↵GBW = 1 indicates the system is purely linear and ↵GBW = 1 indicates

the system is purely hysteretic. In the energy dissipation E(t), response duration and

severity is measured by "(t).

E(t) =

Z
(1� ↵EBW )kEBW zẋEdt, "(t) =

Z
zẋEdt (10.6)

⌫(") = 1 + �⌫B2

" (10.7)

⌘(") = 1 + �⌘B2

" (10.8)

where ⌫(") and ⌘(") are degradation shape function, and �⌫EBW , �⌘EBW are degrada-

tion parameters. To describe the pinching function, h(z) is given by:

h(z) = 1� ⇣
1B2

e�[z·sgn(ẋE

)�q
EBW

z
x

E

]

2/⇣22B2 (10.9)

⇣
1

(") = ⇣sB2

(1� e�p
EBW

") (10.10)

⇣
2

(") = ( EBW + �
 B2

")(�EBW + ⇣
1

) (10.11)

zxE = [
1

⌫(")(�EBW + �EBW )
]

1
n

EBW (10.12)
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The parameters �EBW , ⇣sEBW , pEBW , qEBW ,  EBW , and �
 EBW are involved in

describing the pinching e↵ect. pEBW quantifies the initial drop of the slope, ⇣sEBW

relates to the total slip,  EBW is a parameter that contributes to the amount of

pinching. �
 EBW specifies for the desired rate of pinching. Detail discussion of the

hysteretic shape change to each parameter can also be found in chapter 8.

For EBW model updating, the model updating algorithm and numerical substruc-

ture are both realized in a Matlab program. Thus, the hysteresis model is modified

into nonlinear dynamic form as in Eq. 10.13 and 10.14. where yk is the model esti-

mated hysteresis force at the kth step, ✓(k) = [↵, k, �, n, �⌘, �⌫ , q, �, ⇣s, p,  , � , �,

" z]T , u(k) = [xE(k) ẋE(k)].

✓̇
(

k) = [0
1⇥14

, ✓
15

u
2

, h(✓
15

){u2�(1+✓6✓14)(�|u2||✓15|✓4�1✓15+✓8u2|✓15|✓4
1+✓6✓14

}]T .

✓k = ✓k�1

+ ✓̇k · dt+ wk (10.13)

yk = ✓
1

✓
2

u
1

+ (1� ✓
1

)✓
2

✓
15

+ vk (10.14)

Recall, the equation of motion of a multistory frame is:

Mẍ+ Cẋ+R(x, ✓R1

) = �M�ẍg (10.15)

Here, in a MDOF, the restoring force at each level can be computed using several

independent phenomenological EBW models R(xi, ✓), where xi is the relative dis-

placement for the EBW model, ✓ is the EBW parameter set identified at each step.

R(x, ✓) =

2

6666664

R(x
1

, ✓)�R(x
2

� x
1

, ✓̃)

R(x
2

, ✓)�R(x
3

� x
2

, ✓̃)

...

R(x
5

, ✓)

3

7777775

In HSMU case I, with the first story as the experimental substructure:

Mẍ+ Cẋ+RN(x, ✓̂R1

) = �M�ẍg �RE (10.16)
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at the kth step, the physical restoring force RE(k) and displacement x
1

(k) can be

measured, based CUKF, an estimated EBW model parameter set is available ✓̂(k),

with the estimated EBW model force is r(x
1

(k), ✓(k)). Therefore, numerical restoring

force RN at kth step is

RN(xi(k), ✓(k)) =

2

6666664

�R(x
2

(k)� x
1

(k), ✓(k))

R(x
2

(k), ✓(k))�R(x
3

(k)� x
2

(k), ✓(k))

...

R(x
5

(k), ✓(k))

3

7777775

As discussed in chapter 2, the information exchange in HSMU requires a coor-

dinator and communication between physical components, numerical components,

and model updating components. The coordinator program used here is the HyTest

platform [69]. Fig. 10.4 shows the communication and information exchange in the

HSMU case I. Both the model updating algorithm and the numerical substructure

model are implemented in the Matlab code and the external loading to the experi-

mental substructure is implemented by through LabVIEW program. In the Matlab

code, the estimated parameter of the EBW is first identified through CUKF with a

numerical model of the experimental substructure and the measured response RE,

later, the numerical substructure restoring force is calculated using the parameter

✓̃R, by solving the equation of the motion, the structural response is calculated. Dis-

placement at the numerical-experimental boundary is sent to the physical specimen

through LabVIEW. This implementation step is demonstrated in Fig. 10.5.

10.1.2 Formulation and Implementation of HSMU Case II

Unlike HSMU case I, HSMU case II updates a constitutive relationship of a ma-

terial model. Those constitutive model can be implemented in di↵erent commercial

or open source software, or can be implemented by a user defined finite element code.

In this study, the Open System for Earthquake Engineering Simulation (OpenSees)

is selected as the software framework for modeling the numerical substructure, as
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Figure 10.4.: Information exchange and communication in HSMU case I

well as the model of the physical substructure. Therefore, the numerical model of

the physical substructure modeled by OpenSees performs as function OpenSees(✓, u),

where ✓ here also is the parameter to be identified in CUKF, and u is the input to

the OpenSees model, which is the measured displacement of the physical specimen.

As discussed in chapter 8, only considers the isotropic hardening, the simplified

bilinear model can be described as:

Ep = bs · E (10.17)

The parameters describe the hysteretic behavior of a steel component are: initial

young’s modulus E, sti↵ness hardening factor bs, and yield stress �y. In case II,

during HSMU, write the updating algorithm in the form of Eq. 10.13 and 10.14 as:
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Figure 10.5.: Schematic Implementation of HSMU in case I

✓k = ✓k�1

+ ✓̇k · dt+ wk (10.18)

yk = OpenSees(✓k, uk) + vk (10.19)

Similarly as in case I, the coordinator program in case II is the HyTest platform. In

case II, the numerical substructure, model updating components, and the numerical

model of the physical specimen are no longer modeled in the same software. Fig. 10.6

shows the communication and information exchange in the HSMU case II. Besides

the conventional information exchange between a finite element code which governing

the numerical restoring force computation and the physical components, information

between model updating component it self needed to be considered. Because the

model updating components contain 1) a model updating algorithm modeled in Mat-

lab to implement the CUKF optimization, 2) an OpenSees model as a function which

output is to be optimized to match the measured physical restoring force RE with an
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Figure 10.6.: Information exchange and communication in HSMU case II

optimized parameter set ✓, information exchange between the two di↵erent software

is implemented through TCP/IP communication protocol. Because 2⇥ L+ 1 sigma

points are required for the one CUKF optimization, there are 2⇥L+1 sets of ✓̃R sent

to the OpenSees model to calculate the corresponding RE
est for each iteration time

step. This implementation step is demonstrated in Fig. 10.7.
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Figure 10.7.: Schematic Implementation of HSMU in case II

10.2 Initial Model Parameter Estimation

For implementing model updating in hybrid simulation, the CUKF requires an

initial parameter set for the associated model. As indicated in chapter 8, one major

drawback of the phenomenological model is that the parameters do not have physical

meaning, therefore, it is very di�cult to estimate a reasonable initial parameter set.

Also, knowledge on previous component models and test results cannot be transmitted

to a new specimen when geometry changes. Therefore, a quasi-static cyclic test is

conducted to identify the initial parameters of the phenomenological model. The

experimental setup of this cyclic testing is shown in Fig. 10.1(b).

The loading protocol and structural responses of the cyclic tests are demonstrated

in Fig. 10.8. Several parameter sets satisfied the optimization criterion are generated

from o✏ine identification. Those parameters are spread across the range as listed in

Table 10.1. Results indicate the parameter set describe the physical specimen hys-
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teretic behaviors is not unique. In order to perform the UCKF, one initial parameter

set is chosen, also the upper and lower bound for each parameter are determined.
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Figure 10.8.: Cyclic Test and Structural Response
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(b) Constitutive Model Identification

Figure 10.9.: O✏ine Identification Results for Cyclic Testing

For HSMU case II, similar process is conducted to estimate the initial parameter

set for the bilinear model. From the o✏ine identification, also more than one pa-

rameter sets are found to satisfy the optimization criterion. However, the results are

less broadly distributed compared to case I, as listed in Table 10.2. Also, the initial

parameter of the bilinear model can be estimated from the material test, as in Fig.
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Table 10.1.: Model Parameters of EBW

Parameter O✏ine ID Range CUKF Range HSMU Initial Parameter
�v [1.02 2.56] [0 20] 2.31
� [55 168] [0 200] 92.185
� [0.155 0.39] [0 10] 0.94
�⌘ [1.17 4.3] [0 20] 3.1142
↵ [0.07 0.17] [0 1] 0.156
n [1 1.8] [1 3] 1.1833
K [1.4e+5 1.8e+5] [1.0e+5 2.0e+5] 1.55e+5
� [0.03 0.07] [0 0.1] 0.05
&s [0.56 1.41] [0 5] 0.92
 [0.6 1.5] [0 2] 0.94
p [0.015 0.0375] [0 0.05] 0.025
q [0.022 0.07] [0 0.1] 0.045
� [0.13 0.8] [0 1] 0.476

10.10. Due to its physical meaning, the upper and lower bound for each parameter

are less arbitrary.

Figure 10.10.: Steel Material Test Result
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Table 10.2.: Bilinear Model Parameters

Parameter O✏ine ID Range CUKF Range HSMU Initial Parameter
Fy [3.0e+8 5.2e+8] [1.0e+8 8.0e+8] 4.8e+8
E [2.0e+11 2.0e+11] [1.5e+11 3.0e+11] 2.0e+11
bs [0.04 0.15] [0.01 0.8] 0.045

10.3 Model Updating Results in HSMU

In the experimental study, the physical substructure is attached to Shore Western

(SW) actuator as in Fig. 10.11. The actuator is driven by voltage command from

software SW6000 with an embedded PID controller. National Instruments (NI) and

LabVIEW bridges structural dynamic response computation and the data acquisition

hardware. In the loading step, the LabVIEW program receives the displacement

command from the numerical solver, and then converts it into and analog signal to

send to the SW6000.

Figure 10.11.: Experimental Substructure with Actuator

The dynamic excitation to HSMU is a sequential combination of two scaled El-

Centro earthquake (both in amplitude and time) records with di↵erent amplitude.

This excitation is first applied to a shake table (will be discussed in chapter 11), the

shake table implemented ground motion is shown in Fig. 10.12, where the measured

shake table acceleration is used as the structure excitation in hybrid simulation. The

entire excitation lasts 40 seconds, in the first 20 second, acceleration peak is 6.98

m/s2, in the later 20 sec, the acceleration reaches its peak at 18.3 m/s2. The ob-
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jective of using two sequential earthquake excitation as one input is to investigate

1) the HSMU model updating performance on model estimation accuracy, parameter

convergence; and 2) the model updating performance with incomplete excitation. In

this experimental study, the model updating algorithm is taking a smaller excitation

(physical specimen response is small, nonlinear behavior is less significant) and then a

larger excitation (more significant hysteresis) later in the test. During the first 20 sec

(Section one, labeled as S1 in the analysis) the smaller excitation can be considered as

an incomplete excitation because the magnitude is smaller compared to the response

in the later 20 sec (Section two, labeled as S2 in the analysis).
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For both cases, the parameters convergence are presented for the entire time his-

tory (40 sec), period S1 (first 20 sec), and period S2 (later 20 sec), where an RMS

model updating error indicator is used to assess the model updating e↵ectiveness,

defined as:

RMSE =

rPn
i=1

(Rest(i)�Rm(i))2

n
/

rPn
i=1

(Rm(i)�mean(Rm))2

n
(10.20)

where (Rest is either the estimated force from model updating for HSMU, or the

force calculated with a numerical model with initial guess parameter, and Rm is the

measured force. This model updating error indicator is applied also for the entire

time history, S1 period, and S2 period.

10.3.1 HSMU Case I: Model Updating on the Phenomenological Model

In case I, the state vector contains 13 parameters and 2 states as derived earlier.

During model updating, noise and estimation tolerance R is determined at 100 N,

Q=diag[10�6, 10�4, 10�4, 10�5, 10�4.5,10�4, 104, 10�5, 10�6, 10�6, 10�6, 10�6, 10�5,

10�12, 10�12], and P
0

= 10 ⇥ I
15

. Determination of R is related to system noise and

tolerable error between estimation and measurement, Qmatrix is related to the model

uncertainty and sensitivity of each parameter and its magnitude. For example, the

linear sti↵ness of the EBW model can be predetermined before testing with relatively

higher accuracy, thus, it should be associated with a smaller value in the Q matrix.

However, considering the magnitude of the sti↵ness k (1.5 ⇥105), a value of 104

(variance 100 as 1% to its mean value) is reasonable. These model updating related

parameters (Q, R, P
0

) are still determined on a case by case basis. The selection of

R and Q and their e↵ect to model updating performance are discussed in chapter 9.

Trade o↵s exist based on identification program robustness and estimation accuracy

based on previously available data.
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The identification results are illustrated in Fig. 10.13 and 10.14. For the first 20

second (S1), the results confirm that most of the EBWmodel parameters can converge

3 sec after the earthquake starts, where the first peak response occurs. In the later

20 seconds, a larger peak response occurs due to the increased ground excitation,

most of the parameters vary and settle to another optimization. It can be concluded,

in S1, the parameters converged to a local optima. When the the peak amplitude

of the response evolves in S2, the converged parameters can no longer represent the

specimen behavior, therefore the model updating algorithm continues to adjust the

model parameters and bring them to a new converged set.

In the entire time history, the Bouc-Wen model can represent the steel frame

nonlinearity well. The error between model estimation and measured response is

negligible (with RMS error of 3.04%, 3.59%, and 3.34% for S1, S2, and entire time

history), compared to the RMS error in the initial model which is 21.39%, 25.32% and

22.78%, respectively. CUKF shows to be e↵ective on updating the phenomenological

parameters.

10.3.2 HSMU Case II: Model Updating on the Constitutive Model

For case II, as stated earlier, three parameters are identified in the steel bilinear

model. During model updating, noise and estimation tolerance R is determined to be

200 N, Q=diag[10�5, 10�5, 10�7]; P
0

= 10⇥ I
3

, L = 3, and �L = �1. dk and ek is the

lower bound and upper bound of constrained parameters in Table 10.2, because each

parameter has a clear physical meaning, the upper bound and lower bound can be

reasonably determined. In the constitutive model updating, only three parameters

are needed for identification, thus, due to the persistence excitation requirement,

convergence is reached faster after the earthquake starts, as in Fig. 10.15(a).

In S1, the estimated yield stress Fy is reduced from the initial parameter 480N/m2

to 380N/m2, Young’s modulus E and the hardening factor bs did not change. In S2,

when a larger peak response occurs, this convergence is clearly a↵ected, and eventually
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(c) S2: Parameter Convergence

Figure 10.13.: Parameter Convergence for Case I

converged to Fy = 560N/m2 and bs = 0.04. Compared to the material test results

in Fig. 10.10, steel starts to yield at 380N/m2 with initial hardening reduction of

0.2, later around 520N/m2, the associated hardening reduction factor is around 0.05.

The results from HSMU are matching the material test data, in S1, the specimen



245

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−3000

−2000

−1000

0

1000

2000

Disp(m)

Fo
rc

e(
N

)

 

 
Estimated
Measured
Initial Guess

(a) Hysteretic Behavior Comparison

0 5 10 15 20
−2000

0

2000

Fo
rc

e(
N

)

1.5 2 2.5 3 3.5 4 4.5 5
−2000

0

2000

Time(sec)

Fo
rc

e(
N

)

 

 

Estimated
Measured
Initial Guess
Error in Estimation

(b) Identification Time Domain Comparison

−0.02 −0.01 0 0.01 0.02 0.03
−3000

−2000

−1000

0

1000

2000

3000

Disp(m)

Fo
rc

e(
N

)

 

 
Estimated
Measured
Initial Guess

(c) Hysteretic Behavior Comparison

20 25 30 35 40
−2000

0

2000

Fo
rc

e(
N

)

21 22 23 24 25
−2000

0

2000

Time(sec)

Fo
rc

e(
N

)

 

 

Estimated
Measured
Initial Guess
Error in Estimation

(d) Identification Time Domain Comparison

Figure 10.14.: Model Updating Performance Using EBW Model

is yielding at 380N/m2 with the hardening ratio of 0.2, later in S2, the nonlinear

behavior happens in the range around 480� 550N/m2 where the reduction factor is

around 0.05. The final estimation in S2 is closer to the initial guess. Therefore, a

bilinear curve is not su�cient to describe the steel property, and a trilinear behavior

is discovered.

Fig. 10.16 shows the time history comparison between the measured force and the

estimated output, also the error between the two. In S1, frame hysteresis behavior

is improved in HSMU with RMS error of 8.39%, where the initial model yields an

RMS error of 26.41%. This is associated with the first stage bilinear behavior (yield
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at 380N/m2 with the hardening ratio of 0.2) which cannot be captured by the initial

model parameters. In S2, the parameter converges at a new optimal that is closer

to the initial guess (second stage bilinear), therefore, the estimation error in HSMU

is 15.11% which is not improved significantly as the RMS error of 19.85% using the

initial guess parameters. Fig. 10.16(a) illustrates that initial model under estimate

the energy dissipated by the physical component in S1. Later in S2 as shown in

Fig. 10.16(c), both initial model and updated model have similar behavior. This

observation matches the conclusion from chapter 9, if the initial model is relatively

accurate, it may not always be necessary to implement model updating.

In addition, the results illustrate that the model updating performance is more

related to the choice of the model. Comparing model updating accuracy in case I

and II, the RMS error for the entire time history is 3.34 % for case I, and 13.21 % for

case II. Because the EBW model can better capture the steel frame hysteresis than

the bilinear model can. The model accuracy can further a↵ect the fidelity of hybrid

simulation results.

Table 10.3.: RMS Error in Two Model Updating Cases

Error Case Phenomenon Model Constitutive Model
S1: ID Error 3.04% 8.39%
S1: Error with Initial Guess 21.39% 26.41%
S2: ID Error 3.59% 15.11%
S2: Error with Initial Guess 25.23% 19.85%
Entire Time History: ID Error 3.34% 13.21%
Entire Time History: Error with Initial Guess 22.78% 24.51%
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10.4 Conclusion

To understand the model updating performance in HSMU, an experimental study

is conducted. Both a phenomenological Bouc-Wen model and a bilinear steel con-

stitutive model are used for numerical substructure and are updated during hybrid

simulation. Two HSMU platforms and their implementation are presented. The main

conclusions from the experimental study are as follows.

• The HSMU approach has been successfully implemented to both phenomeno-

logical and constitutive models. Results indicate that model response accuracy

has been improved with model updating.

• Most model parameters converge quickly after the peak response occurs in the

time history. This convergence can be the local optimization point for a given

response history and a given model. If the peak response evolves largely later in

the time history, the optimization set can adjust to a new convergence according

to the updating process. A trilinear behavior is observed from model updating

for the steel bilinear model, which matches the observation in the steel material

test.

• The model updating estimation accuracy is largely improved in case I. However,

due to the initial guess is more accurate and can be associated with its physical

meaning in the bilinear model, the improvement in case II is less significant.

Additionally, the bilinear model cannot represent the hysteresis behavior of the

steel frame, the residual error after model updating is larger.

It should be left to the user to weight the trade o↵ between model accuracy

and complexity. Other constitutive models such as Menegotto-Pinto Model which

are represented by structural physical meaning and can also accurately reproduce the

Bauschinger e↵ect are still desired. Thus, di↵erent model updating algorithms should

be investigated in the future.
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11. GLOBAL EVALUATION OF HYBRID SIMULATION WITH

MODEL UPDATING

In the last couple of years, the HSMU concept has been successfully applied and vali-

dated in experimental examples. The assessment of the model updating performance

emphasizes mainly on the local (model level) behavior. Evidence of the improvement

of hybrid simulation fidelity are the model estimation accuracy and the parameter

convergence during HSMU. In those studies, global responses are often compared to

a baseline numerical simulation which may not represent the real response of the

reference system when the structural behavior is highly nonlinear. In this chapter,

to investigate the fidelity of HSMU on a global level, a shake table test is conducted.

Structural displacement and acceleration responses in HSMU are compared with the

measured structural responses in the shake table test. To further illustrate the fidelity

improvement after HSMU, HSMU results are also compared with numerical simula-

tions with the initial model parameters. Such an analysis is conducted for both case I

(HSMU and simulation with phenomenological model) and case II (HSMU and simu-

lation with phenomenological model), and observations on HSMU global performance

using di↵erent models are also presented.

11.1 Shake Table Test Setup

For the shake table testing, the entire five story steel structure is mounted on a

6 DOFs shake table in the Intelligent Infrastructure System Lab. The shake table

is controlled using the SW6000. The maximum stroke of actuators is ± 1.5 inch,

the maximum acceleration is 10.2 g without payload, 3.1 g with 1000 lb payload. In

this study, only the Y axis of the shake table is activated. During the shake table

test, structural acceleration and displacement are measured using accelerometers and



252

LED sensors, as configured in Fig. 11.1. A high resolution data acquisition system

VibPilot is used to acquire the acceleration data at 2048 Hz. A 6D tracking system

Krypton is used to measure the position of LEDs which calculates the 6D position

and dynamic movement of each LED. The sampling rate of the Krypton system is at

60 Hz.

Figure 11.1.: Shake Table Test Configuration

As discussed in chapter 10, the ground excitation for HSMU is a measured accel-

eration response from the shake table test. This implemented shake table motion is a

sequential combination of two scaled El-Centro earthquake records. As stated earlier,

this ground excitation of the structure can be divided into section 1 (first 20 second,
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indicated as S1) and section 2 (last 20 second, indicated as S2). The comparison

between desired excitation input and implemented acceleration of the shake table is

shown in Fig. 11.2.
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Figure 11.2.: Implementation of Shake Table Ground Motion

11.2 Response Comparison between HSMU and Shake Table Test: Sec-

tion I

In this analysis, the shake table test measured responses are compared to HSMU

case I and case II, (in this chapter, they are labeled as HSMU-BW for case I and
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HSMU-BL for Case II). Additionally, computational simulation cases using initial

guess parameters are conducted for each model, results are labeled as SIM-BW and

SIM-BL, respectively. Time histories of displacement and acceleration responses at

each floor are illustrated. In addition, structural displacement profiles and acceler-

ation profiles at several peak responses are presented. The locations of those peaks

are indicated in Fig. 11.2(a) and 11.2(b), labeled from A to I.

Two time domain error indices are introduced to quantify the performance at the

peak responses, as following:

J
1,j =

5X

i=1

xj(i)� xs,j(i)P
5

i=1

xs,j(i)
(11.1)

J
2,j =

5X

i=1

ẍj(i)� ẍs,j(i)P
5

i=1

ẍs,j(i)
(11.2)

where J
1

is the peak displacement error, J
2

is the peak acceleration error, xs indi-

cates measured displacement from shake table test, ẍs indicates measured acceleration

from shake table test, j is the profile case number.

In S1 (0-20 sec), the entire structure is excited with the first sequence of the

El-Centro ground motion, the displacement and the acceleration responses time his-

tory are presented in Fig. 11.11 - 11.15 for each floor. This comparison is between

measured response from the shake table, HSMU-BW, and HSMU-BL. As stated in

chapter 10, the phenomenological model can better capture the specimen hysteresis

behavior, response yielded from HSMU-BW is more accurate and falls on top of the

shake table response, especially for displacement time histories. The bilinear model

cannot capture the Bauschinger e↵ect of each steel frame and it underestimates the

energy dissipated in each hysteresis loop, therefore, some overshoots are observed in

both displacement and acceleration responses in HSMU-BL.

In the displacement profile analysis, in Fig. 11.3, simulation using initial EBW

model parameters (SIM-BW) underestimates the maximum displacement in profile

B, C and D, which is due to the over estimation in energy dissipation. This can be
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demonstrated using hysteresis behavior in Fig. 11.16, in higher floors (2-5), energy

dissipation is significant larger for SIM-BW case than HSMU-BW, therefore the dis-

placement is smaller. In the contrast, simulation using initial bilinear steel model

(SIM-BL) over estimates the maximum drift in case B, C, and D. However, the dif-

ference is less significant. This also can be demonstrated using hysteresis behavior in

Fig. 11.17, HSMU-BL case yields nonlinear behavior up to 3rd and 4th floor, in which

SIM-BL case they are linear due to a larger yield stress Fy = 480 N/m2.

The quantified displacement errors are listed in Table 11.1. Among all cases,

HSMU-BW has the least error (in red) for profile A and C and D, and SIM-BW has

the largest error for all locations (in blue). The improvement is significant after model

updating, total error reduces from 1.526 to 0.1681. Error in the displacement is only

slightly reduced from 0.4492 to 0.4021 as comparing the HSMU-BL with the SIM-BL.

One explanation is that for the bilinear model, the model updating e�ciency is taken

over by the inherent modeling error (the selected model is not su�cient to represent

a certain behavior).

Similarly, measured shake table acceleration responses are compared with HSMU-

BW and HSMU-BL results. With the sampling frequency at 2048 Hz, the measured

acceleration responses contain high frequency components. These high frequency

contents can be contributed by responses from strong axis excitation and twisting

modes, which are not captured using one dimensional model. Also, noise in the

accelerometers is more significant at high frequency, especially when the acceleration

data magnitude is small at the first two stories. In the displacement responses,

observations are similar in which the SIM-BW case underestimates the acceleration

response and SIM-BL yields an overestimates the peaks.

The peak acceleration locations are selected according to locations labeled in Fig.

11.2(a). Fig. 11.4 and Table 11.2 illustrate the acceleration profiles and J
2

errors

for di↵erent cases. HSMU-BL has the best performance for case A and D, also the

total error reduces from 0.75 to 0.41 compared to SIM-BL. The visualization of the

two error indices for di↵erent cases are shown in Fig. 11.10. Among all cases, SIM-
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BW has the largest total error of 1.1526 because it is di�cult to start an accurate

initial guess. HSMU-BW yields a total J
2

error of 0.4531, also confirms the significant

improvement from SIM-BW to HSMU-BW.

In the frequency domain, the power spectrum of displacement at each floor is

compared for all cases, which is shown through Fig. 11.5 - 11.9. The frequency results

indicate that HSMU-BW can accurately estimate the first structural mode, where the

higher modes are lightly more damped compared to the shake table response. But

the improvement still is noticeable as compared to the SIM-BW case, in which higher

modes are largely damped (especially in Fig. 11.8 and 11.9) due to the over estimation

on energy dissipation. For bilinear model, in SIM-BL case, comparing to the shake

table results, the third mode and fourth mode are shifted using the initial guess and

are modified after apply model updating in HSMU. Also in SIM-BW, these higher

modes are less damped compared to the shake table results. The energy dissipation on

higher floors are much more accurate with HSMU-BL. This finding also demonstrate

the e↵ectiveness of model updating on both models.

Table 11.1.: J
1

Peak Displacement Error

Case Profile A Profile B Profile C Profile D Total
HSMU-BL 0.1466 0.0475 0.1583 0.0497 0.4021
HSMU-BW 0.0381 0.0479 0.0373 0.0447 0.1681
SIM-BL 0.0473 0.1360 0.1630 0.1028 0.4492

SIM-BWBN 0.1552 0.3435 0.2959 0.3579 1.1526

Table 11.2.: J
2

Peak Acceleration Error

Case Profile A Profile B Profile C Profile D Total
HSMU-BL 0.0826 0.1212 0.0738 0.1381 0.4157
HSMU-BW 0.1360 0.1400 0.0314 0.1439 0.4513
SIM-BL 0.1066 0.1074 0.2040 0.3333 0.7514
SIM-BW 0.1192 0.3142 0.1543 0.3068 0.8945
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Figure 11.3.: Displacement Profile at Peak Locations
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Figure 11.5.: S1: Frequency Domain Anlaysis Floor 1
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Figure 11.6.: S1: Frequency Domain Anlaysis Floor 2
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Figure 11.7.: S1: Frequency Domain Anlaysis Floor 3
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Figure 11.8.: S1: Frequency Domain Anlaysis Floor 4
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11.3 Response Comparison between HSMU and Shake Table Test: Sec-

tion II

In section II, the steel frame is excited by a larger ground motion in which the

peak reaches 18.3 m2/s. The first story frame experienced a peak drift at 21.5 sec,

labeled as location E. Later after E, a residual drift of 11.2 mm appears at the first

floor, as shown in 11.26. This residual drift in the first floor also leads to residual drift

in the higher floors, in Fig. 11.27 - 11.30. However, neither HSMU-BW nor HSMU-

BW can capture such residual drift in the responses. Some possible explanations can

be 1) deficiency in the connection manufacturing; 2) a fixed-end simplification of the

connection is not su�cient; and 3) the inertia e↵ect is numerical applied. Further

studies to improve the residual drift prediction using simulation model are needed.

J
1

index reaches its maximum at peak location F for all cases, which is the first

response peak (in the reverse direction) after the residual drift occurred at E. This can

also be visualized in Fig. 11.19. In displacement profile G-I, because the residual drift

of 11.2mm always exists, the index value does not yield much meaningful information.

The hysteresis behavior comparison for BW model is shown in Fig. 11.31, clear

improvement is shown for upper stories which indicates the e↵ectiveness of model

updating on this phenomenological model. For bilinear model, the hysteresis behavior

comparison is shown in Fig 11.32. Because the nonlinear parameter Fy and bs bounced

back close to the initial guess value, the hysteresis behavior is similar for floor 2-5.

Results are more informative in the acceleration responses comparison, where the

time histories are more accurate. From Fig. 11.26 - 11.30, HSMU-BW can better

match the measured acceleration, where HSMU-BL yields overshoots at several peak

responses. These observations are also shown in the quantification analysis, larger

errors are presented for peak locations F, G, H, I in HSMU-BL, as compared to

HSMU-BW. HSMU-BW yields the smallest error in J
2

(with total error 0.6642) which

indicates the responses are more accurate. This error is reduced from 1.5968 as

in the SIM-BW, which has the largest error among all the cases. Combining with
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the observations in chapter 10, it shows that the model updating process is very

e↵ective for the phenomenological model and can be adaptive to di↵erent excitation

amplitudes.

The improvement in bilinear model updating is also observed, in which the total J
2

error improves from 1.43 as in SIM-BL to 0.95 as in HSMU-BL. This improvement is

more significant compared to the results in S1 (first 20 secs). Because the parameters

are close in SIM-BL and HSMU-BL, the main reason of the improvement of HSMU

fidelity is that the first floor response of the HSMU-BL is the physical measurement

from the experimental substructure. Even the bilinear model cannot capture the

Bauschinger e↵ect well for upper stories, the critical first floor response is the true

response from the specimen.

Frequency domain analysis are also carried on for all cases during S2, similar

findings are illustrated as in S1, through Fig. 11.21 - 11.25. The frequency results

indicate that HSMU-BW can accurately estimate the first structural mode. In SIM-

BW case the higher modes are largely damped (especially in Fig. 11.8 and 11.9)

which is the evidence of the overestimation on energy dissipation. For bilinear model,

after apply model updating in HSMU, the performance on higher modes are improved

compared to SIM-BW.

Table 11.3.: S2: J
1

Peak Displacement Error

Case Profile E Profile F Profile G Profile H Profile I Total Total w/o F
HSMU-BL 0.069 2.3316 0.2513 0.2579 0.0409 2.9507 0.6191
HSMU-BW 0.1375 2.8261 0.2390 0.4308 0.2472 3.8805 1.0544
SIM-BL 0.0217 2.7960 0.2498 0.4872 0.1164 3.6711 0.8751
SIM-BW 0.2215 2.5020 0.3941 0.6282 0.5058 4.2516 1.7496

Table 11.4.: S2: J
2

Peak Acceleration Error

Case Profile E Profile F Profile G Profile H Profile I Total
HSMU-BL 0.1397 0.2363 0.0807 0.3121 0.1849 0.9537
HSMU-BW 0.1795 0.1386 0.0424 0.1395 0.1642 0.6642
SIM-BL 0.0470 0.3016 0.5294 0.2999 0.2480 1.4259
SIM-BW 0.4612 0.1437 0.2180 0.2955 0.4784 1.5968
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Figure 11.18.: Error Indices Comparison for Peak Responses
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Figure 11.19.: Displacement Profile at Peak Locations
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Figure 11.20.: Acceleration Profile at Peak Locations
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Figure 11.21.: S2: Frequency Domain Anlaysis Floor 1
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Figure 11.22.: S2: Frequency Domain Anlaysis Floor 2
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Figure 11.23.: S2: Frequency Domain Anlaysis Floor 3
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Figure 11.24.: S2: Frequency Domain Anlaysis Floor 4
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Figure 11.25.: S2: Frequency Domain Anlaysis Floor 5
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11.4 Conclusion

In this chapter, HSMU results are evaluated at the global level, where the dis-

placement and acceleration responses from two HSMU tests are compared to a shake

table test. Observations are made as follows, some observations are consistent with

the conclusions from previous chapters:

• The HSMU-BW case yields the most accurate results, especially when the

ground excitation is smaller, both displacement and acceleration time history

match the measured shake table responses well.

• Results are improved when the phenomenological model is updated, where

HSMU-BW has the smallest errors and SIM-BW case has largest errors. On

the other hand, the improvement of HSMU-BL compared to SIM-BL is less

significant.

• The phenomenological model can better capture the nonlinear behavior of each

floor frame.

• Frequency analysis also demonstrates the e↵ectiveness of model updating on

both models. Higher modes on SIM-BW case shows larger damping for SIM-BW

and less damping for SIM-BL, which are both improved with model updating,

as more accurate modal frequency and damping are shown in HSMU-BW and

HSMU-BL cases.

• When the structure experiences a large ground motion, a large residual drift

shows in the shake table response at the first floor. Neither HSMU-BL or

HSMU-BW can capture such residual drift in the responses.

The reason the large residual drift in the shake table test but not captured by hybrid

simulations is not specifically investigated in this study. Some possible explanations

can be 1) deficiency in the connection manufacturing; 2) a fixed-end simplification

of the connection is not su�cient; 3) the inertia e↵ect is applied numerical applied.
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Additional investigation and further studies to improve the residual drift prediction

using a more proper simulation model are needed.
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12. CONCLUSIONS AND FUTURE WORK

12.1 Summary and Conclusions

The main objective of this dissertation is to develop a robust RTHS platform

considering complex interactions between di↵erent components in the physical - com-

putational system. Key contribution and findings in developing this platforms are:

• In RTHS, the loading servo-hydraulic system can be linearized into a fourth-

order, component-based model. Genetic algorithms is used to optimize system

characteristic parameters in this transfer function. The approach is found to be

highly e�cient and have fast convergence for this application and the results of

the parametric identification is demonstrated to be e↵ective.

• A new algorithm for actuator control is proposed. By integrating the most

e↵ective features to develop a flexible and versatile closed loop control system,

the new robust integrated actuator control algorithm meets the needs of the

RTHS user. The limitations of the original H1 design are overcome, while the

robust stability is preserved. In both simulation and experimental results, the

RIAC significantly reduced noise impact on the closed loop system, especially

when the noise peak is in the desired control frequency range. RIAC enables the

user to fully consider the system dynamics as well as the uncertainty (error or

measurement noise) and still establish a design yielding highly accurate tracking.

• An inherent unit delay is identified in the force measurement of the experi-

mental substructure in RTHS due to the sequential order of communication

between the numerical and experimental substructures. This may cause in-

stabilities or performance degradation of the test. The computation delay in

RTHS changes the stability characteristics of the integration scheme. For an
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undamped structure, any partitioning ratio results in an unstable RTHS loop,

and for lightly damped structures, the stable sampling intervals is significantly

reduced to maintain closed loop stability. Also, larger partitioning ratios results

in more restrictions on the selection of the sampling intervals.

• A modified Runge-Kutta integration algorithm is proposed to predict the feed-

back force measurement and minimize the e↵ects of this inherent delay. The

MRK integration includes three computation stages, 1) pseudo response calcula-

tion, 2) prediction of the measured force, and 3) corrected response calculation.

Results illustrate that the modified Runge-Kutta improves the performance of

RTHS. Further, a robustness analysis, considering modeling error in the ex-

perimental substructure, demonstrates that only under-estimation of structure

sti↵ness (specimen sti↵ening) may a↵ect MRK stability for the undamped case.

For lightly damped structures with a high partitioning ratio, the MRK method

is shown to be robust for up to 40% modeling error.

• An experimental test is also implemented to verify the e↵ectiveness of the

modified Runge-Kutta integration algorithm over conventional integration algo-

rithms. A moment resisting frame with a large sti↵ness is tested as the experi-

mental substructure in RTHS. Results indicated that the modified Runge-Kutta

algorithm improves the accuracy of the RTHS and extends the stability limit

of the test.

In addition, to improve the fidelity of the hybrid simulation where elements similar

to the physical specimen are also represented in the numerical substructure, the online

system identification algorithm is integrated into the hybrid simulation to update the

numerical model parameters according to the physical specimen response. Investiga-

tions are performed using a model updating method to identify di↵erent structural

models. The improvement in hybrid simulation fidelity is illustrated through the

model updating performance as well as a global assessment by comparing the HSMU
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responses with the shake table test results. Some findings associated are listed as

followings:

• Phenomenological models are capable of capturing the hysteretic shape of a

structural component. One major drawback of these models is that the pa-

rameters do not have physical meaning, therefore, it is very di�cult to start

any model updating process with a reasonable initial guess. Also, knowledge

of previous component models and test results cannot be transmitted to a new

specimen. In addition, in Bouc-Wen models, the hysteretic shape is more sen-

sitive to some parameters. Here it is demonstrated that this can a↵ect model

updating convergence.

• Both bilinear and the Menegotto-Pinto models are dominated by material prop-

erties such as the Young’s modulus, the yield stress, and the strain-hardening

ratio. There are shape parameters in the Menegotto-Pinto model to capture the

Bauchinger e↵ect of a steel component. However, the Menegotto-Pinto model is

associated with loading path, and its implementation has been simplified with

flag indications in computational implementation. Therefore, computational

execution of the Menegotto-Pinto model is equivalent to piece-wise function,

which makes it di�cult to incorporate online (recursive) model updating algo-

rithms.

• Hybrid simulation with model updating significantly improves the accuracy of

hybrid simulation when the initial target model behavior di↵ers significantly

from the true response. If the target model is relatively accurate, it may not

always be necessary to implement model updating. Additionally, the initial

guess of the target model parameter for CUKF does not significantly a↵ect

the stability and convergence of the updating procedure, which indicates that

HSMU is likely to be successful even with a large initial error in the target

model.



288

• The accuracy of the model identification procedure depends on the richness of

the information (frequency and amplitude) in the structural response. HSMU

may not be applicable in all situations because reaching the global minimum

requires that the system is fully excited. Also, the excitation incompleteness

may cause parameter oscillation in identification and not truly converge.

• An experimental study is conducted to understand the model updating perfor-

mance in HSMU. HSMU approach has been successfully implemented to both

phenomenological and constitutive models with di↵erent platforms.

• Results indicate model response accuracy has been improved with model updat-

ing. Most model parameters converge fast after the peak response occurs in the

time history. This convergence can be the local optimization point for a given

response history and a given model. If the peak response evolves later in the

time history, the optimization set can adjust to a new convergence according

to the updating process. A trilinear behavior is observed from model updating

for the steel bilinear model, which matches the observation in the steel material

test.

• The model updating estimation accuracy is improved with the phenomenolog-

ical model. Because the initial guess is more accurate and has a clear physical

meaning in the bilinear model, the improvement in the HSMU-BL is less signif-

icant. Additionally, the bilinear model cannot represent the hysteresis behavior

of the steel frame well and, the residual error after model updating is larger.

• Compared to the shake table test, hybrid simulation responses improved largely

after the phenomenological model is updated. The improvement of HSMU-

BL compared to SIM-BL is less significant. After model updating HSMU-BW

case yields the most accurate results, especially when the ground excitation is

smaller, both displacement and acceleration time history match the measured

shake table responses well.
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• Frequency analysis also demonstrates the e↵ectiveness of model updating on

both models. Higher modes on SIM-BW case shows larger damping for SIM-BW

and less damping for SIM-BL, which are both improved with model updating,

as more accurate modal frequency and damping are shown in HSMU-BW and

HSMU-BL cases.

• When the structure experiences a large ground motion, a large residual drift

shows at the first floor in the shake table test. Neither HSMU-BL or HSMU-

BW can capture such residual drift in the responses.

12.2 Future Work

To broaden the applications of hybrid simulation and RTHS, continued develop-

ment on the theory, methodology, and implementation of those testing techniques are

needed. Based on the lesson learned and observations made in the course of preparing

this dissertation, some topics for future research are recommended:

• The actuator model identification is implemented on a linearized simplification,

in order to accurately predict the structure-actuator interacted behavior (known

as control-structural interaction), a nonlinear model is needed which requires

chamber pressure measurement. Also further study on large scale dynamic

actuators is desired.

• To reduce the interaction between system noise and actuator control loop, the

RIAC achieves a tradeo↵ between the model accuracy and system noise. To

improve the accuracy of the RIAC under high noise/signal ratio, a high fidelity

actuator model is desired. Model updating algorithm may also be applied to

the control algorithm to form an adaptive controller. However, control stability

with adaptive plant model should be carefully examined.

• The complex interaction between each component in RTHS needs to be fur-

ther eliminated. Noise e↵ect of the force transducer (structural response) to
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RTHS loop should be investigated. Advanced methodology on dealing with

such interaction should be established. It should be noted that any dynamic

filtering technique (introducing phase lag) is not applicable because in RTHS

no time delay is allowed in the feedback loop, also model predictive filter is not

desired because the response of the experimental substructure is assumed to be

unknown or hard to model.

• A component based platform or procedure to evaluate the feasibility of a RTHS

including complex interactions are needed. Such platform needs to be compat-

ible with di↵erent actuator control algorithms, numerical integration schemes,

with considering system noise, and modeling uncertainties.

• An initial parameter set is required for implementing online identification on

a given model. For phenomenological models, the initial parameters do not

associate with physical properties. It is beneficial to be able to fast identify the

initial parameters of phenomenological models close to true behavior without

testing.

• The determination of parameters in the identification algorithm (in this case, for

constrained unscented Kalman filter are Q, R, T
0

, �) based on a trial and error

approach, a more systematic and versatile procedure or guideline is needed.

• New model updating algorithms and machine learning techniques are encour-

aged to be applied to HSMU. It is desired to have a new model updating algo-

rithms can handle piece wise functions, so the Menegotto-Pinto model can be

identified during hybrid simulation.

• Results indicate model updating performs well for small scale steel frame. Imple-

mentations of model updating on large scale specimen and composite materials

should be studied.
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