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Abstract

Real-time hybrid simulation is an efficient and cost-effective experimental testing technique for per-

formance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior.

To assess the response of structural components with multi-axial loading, a loading assembly with multiple

parallel actuators connected to a rigid moving platform is required to impose realistic boundary conditions

on physical components. This loading assembly is expected to exhibit significant dynamic actuator cou-

pling and suffer from systematic errors and potential instabilities. One approach to reduce experimental

errors considers a multi-input, multi-output (MIMO) modeling approach to design controllers that could

compensate for these undesired effects.

In this dissertation, a framework for three-dimensional, multi-axial real-time hybrid simulation is

presented. The methodology consists in designing a real-time system platform to perform dynamic test

experiments by controlling the interface boundary conditions on the physical specimen in Cartesian (global)

coordinates. First, a kinematic transformation is derived to impose the six-degree-of-freedom motion to

the loading platform in three-dimensional Cartesian space. Then, a linearized model of the multi-actuator

loading assembly is obtained through nonparametric frequency domain system identification techniques.

Subsequently, a feedforward-feedback compensator is developed for reference tracking of the multivariate

transient signals, which should be sufficiently robust to rule out any disturbances and measurement noises

in the experimental closed-loop system. Finally, the numerical substructure, compensators, and kinematic

transformations are implemented over an embedded system with a micro-controller unit and digital signal

processing capabilities for real-time applications.

The proposed framework is validated using a small-scale version of the Load and Boundary Condition

Box (LBCB) from Newmark Civil Engineering Laboratory at University of Illinois, Urbana-Champaign.

A one-story, two-bay, moment frame was considered as the reference structure, where the experimental

substructure was chosen as a steel column with fixed ends. The hybrid system was subjected to earthquake

ground motions chosen according to its importance and destructive characteristics. Comparisons of different

compensation strategies are made, and excellent performance is achieved for all situations that incorporates

the multivariate controller.
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Chapter 1

Introduction

1.1 Motivation

Natural and human-made disasters have a dramatic impact on the development of our society.

According to the International Civil Defense Organisation (ICDO, 2016), the total economic and

human impact of natural disasters in the period between 2000 and 2011 has been estimated to be

around USD $1.3 trillions of damage, with 2.7 billion citizens been directly affected by the disaster,

and with a death toll of 1.1 millions. If only the de-aggregated statistics per natural hazard are

considered, earthquakes are the most deadly natural hazard with more than 750 thousand people

killed in this period; moreover, earthquakes have the second highest economic impact (USD $636

billion in damage), right after storm hazards (USD $720 billion in damage).

Indeed, understanding the risks of natural hazards and promoting mitigation plans is fun-

damental for our society to achieve sustained development. Therefore, one of the main objectives

in urban planning is to support the growth of sustainable and resilient cities, and civil engineers

play a very important role in this regard. Civil engineers are entrusted to plan, design, build,

and maintain the civil infrastructure that serves as the engine of our economic development. Also,

civil engineers collaborate in multi-disciplinary teams to enable risk management of lifelines (e.g.

highways, railroads, water and electrical supply), critical facilities (e.g. hospitals, governmental

and defense buildings), and residential property.

Moreover, structural engineers are commissioned to assess the performance and reliability of

structural systems, which is a fundamental ingredient for any risk management and mitigation plan.

Structural performance assessment can be accomplished by two means: (i) numerical simulation,

where the structural responses are predicted using numerical models; and (ii) physical observations,

where structural systems and/or components are subjected to loading conditions, and the physical
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responses are measured directly to evaluate the structural performance. The latter is usually

conducted through either field inspection after an extreme event (e.g., large earthquakes) or by

experimental testing in a laboratory environment.

Numerical simulation has experienced significant improvements over the years, with faster

computers capable of running multiple simulations of very large structural systems with complex

loading scenarios. However, experimental testing is still necessary. For example, most computa-

tional models and constitutive relationships are developed and evaluated on the basis of experi-

mental testing results. Furthermore, when the response characteristics of a structural system are

not well understood or difficult to model numerically (e.g., inelasticity, nonlinear effects, and rate-

dependent behavior), physical testing provides the only accurate way to study the performance of

structural systems.

Therefore, experimental testing is considered an essential tool in civil engineering, to un-

derstand the behavior of structural systems and construction materials, which provides empirical

evidence that can be used to calibrate numerical models for reliable, cost-effective analysis and

design, and eventually be considered for the development of building codes used by practitioners.

However, experimental testing has its limitations. More often than not, experimental tests are

constrained by laboratory space, equipment payloads and size, and more importantly, by project

budget and timeframes.

Different experimental techniques are currently available, which have been extensively used

in the field of earthquake engineering. Most of these techniques can be classified into three main

methods: (i) cyclic (static) testing; (ii) shaking table (dynamic) testing; and (iii) hybrid simulation.

In particular, shaking table testing is regarded as the most realistic approach to conduct experi-

ments on structural systems, due to the fact that it can reproduce similar conditions associated

with large earthquake events. Therefore, the results obtained from shaking table testing are con-

sidered to be more representative of the physical phenomena compared to cyclic testing, because it

incorporates dynamic behavior on the structural response. But, due to high costs and complexity

of the loading systems, shaking table tests of large-scale buildings and bridges is extremely chal-

lenging. As an alternative, reduced-scale specimens can be considered to study the global behavior

of real structures. Unfortunately, local effects of construction materials, such as fracture or local
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buckling, do not scale well with size. Hence, the results from small-scale shake table testing may

not be an adequate representation of the physical phenomena.

Thus, hybrid simulation has proven to be a reliable, flexible and practical alternative to shake

table testing. Hybrid simulation is a hybrid procedure that integrates experimental testing with

online computer simulation, for cost-effective performance evaluation of structural systems and

components when subjected to extreme loading events, such as large and destructive earthquakes.

This approach allows for experimental testing of only critical components of interest (i.e. where

damage is expected) from the reference structural system; while other, better-understood portions

of the structure can be modeled numerically in the computer. Both experimental and numeri-

cal components of the hybrid system are interconnected by actuators, sensors, and digital signal

processing hardware, forming a feedback loop to solve the governing equations of motion at every

integration time step.

Hybrid simulation was originally proposed in the late 1970s, and from the mid-1980s it gained

much attention from the engineering community. Many developments in hybrid simulation testing

have been successfully proposed in the last few decades, each of which focus on particular aspects

of the experimental, computational, and networking capabilities of this approach. One of the most

recent applications from this scope is real-time hybrid simulation (RTHS). This technique was pro-

posed for dynamic testing purposes, especially for structural systems with rate-dependent behavior.

During the last two decades, RTHS have demonstrated many advances and improvements. Still,

research on RTHS testing has not reached its mature stage yet, and many challenges are yet to be

solved in different technical areas.

1.2 Hybrid simulation: a historical perspective

Hybrid simulation (HS) testing, also called pseudo-dynamic (PsD) testing, is an experimental

testing method that has proven to be an attractive alternative to traditional cyclic (quasi-static) and

shaking table testing. The original concept was proposed in the late 1960s by Hakuno et al. (1969),

where a single-degree-of-freedom system under ground motion excitation was studied. In this

seminal work, the test specimen was loaded by an electromagnetic actuator while using an analog

computer to perform “online” numerical integration of the equations of motion. Later, with the
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Figure 1.1: Major milestones in the development of hybrid simulation techniques

advent of modern computers, Takanashi et al. (1975) was the first to incorporate a digital computer

to control the experimental equipment for online testing. Moreover, the first implementation of

substructuring techniques along with pseudo-dynamic testing was presented by Dermitzakis and

Mahin (1985). These three seminal contributions, along with incorporation of the microprocessor

and advanced electro-servo controllers, opened the door for the extensive use of what is commonly

known these days as hybrid simulation (HS) testing in experimental research. Major milestones on

the development of hybrid simulation are presented in Figure 1.1.

The goal of hybrid simulation is to study the responses of a reference structural system by

combining numerical simulations and experimental observations in a test setup. The method con-

sists on the identification of critical components of interest from a reference structural system (e.g.,

where damage is expected). These components are then isolated from the reference system, thus

creating two separate substructures, as shown in Figure 1.2: (i) a experimental substructure, where

test specimens are built and installed in a experimental facility; and (ii) a numerical substructure,

where all the structural elements are modeled numerically for simulation. To solve the governing

equations of motion from the reference system, both experimental and numerical substructures are
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Figure 1.2: Substructuring in hybrid simulation testing

interconnected with a series of actuators and sensors, to enforce equilibrium and compatibility at

the designated interfaces between substructures (Mahin and Shing, 1985).

At the early stages of development of hybrid simulation, two major challenges were identified.

The first one is associated to experimental error propagation, while the second concerns the real-

time constraints of loading and computational hardware. About the former, it was observed that

experimental errors can affect the reliability of the hybrid simulation, due to differences between

target and measured displacements of the actuator, or by incorrect force measurements from the

test specimen. Because hybrid simulation is a closed loop feedback system, any experimental error

can be introduced and accumulate with time, thus decreasing the accuracy of the results and

jeopardizing the stability of the experimental setup. This effect is exacerbated when actuators

are used to simulate dynamic loads. On the other hand, the speed for solving the equations of

motion of the numerical substructure is highly dependent on the model size and the computational

resources. More often than not, computers require to perform several algebraic operations and run

iterations to obtain an accurate numerical solution. Hence, time restrictions occur, because both

computer and loading assembly must be perfectly synchronized to perform the test.

Thus, the loading over the specimen is usually applied very slowly in conventional hybrid

simulation, by means of a ramp-hold procedure. In other words, the test specimen system is

loaded with an extended time scale. Regardless, this ramp-hold procedure have a major problem

that results on loss of accuracy and representativeness of the results. During the hold stage, the

specimen may experience force relaxation which introduces unwanted errors in the experimental

test. Hence, researchers were looking for alternatives to move the actuators in a smooth manner,
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without hold phases.

Later, Takanashi and Ohi (1983) developed a “fast” (continuous) hybrid simulation tech-

nique, which introduced for the first time a dynamic actuator and improved servo controller. In

this method, the command displacements are applied continuously to the test specimen; thus, the

actuators move without stopping until the simulation ends. But, to keep the actuators moving

continuously, the responses from the numerical substructure must be predicted while the computer

is busy solving the next time integration step. Hence, the predictor-corrector method was intro-

duced, which is the key component to allow for continuous HS. The technique was validated using

a single-degree-of-freedom system with a steel beam as test specimen (Takanashi and Nakashima,

1987). From the tests, it was observed that the continuous HS behaved well, while no significant

differences were observed in the overall responses for quasi-static and “fast” tests. Still, this method

was not sufficient to conduct dynamic testing in real-time, primarily because of inaccurate control

and error propagation during the test.

For dynamic testing purposes, real-time hybrid simulation (RTHS) has demonstrated many

advances and improvements in the past 20 years. Testing is executed in real-time, meaning that all

calculations, imposed boundary conditions on physical specimens, measured forces, and displace-

ments, and digital data acquisition, must be performed in very short time intervals, typically less

than 1 millisecond (Nakashima, 2001). Moreover, the boundary conditions must also be imposed at

fast rates, meaning that dynamic actuators are required for this task. Therefore, the fundamental

requirements to perform RTHS tests is the implementation of both fast hardware and software

to achieve a stable and accurate result. The literature offers many comparative studies between

RTHS and conventional shaking table testing, for both steel specimens (Lamarche et al., 2010) and

concrete specimens (Chae et al., 2017; Saouma et al., 2014), with very good agreement between

the two testing methods. Moreover, RTHS studies have been carried out for a number of structural

systems with rate-dependent components, such as sliding bearing devices (Nakashima, 2001); pas-

sive energy dissipation devices (Chae et al., 2013b; Horiuchi et al., 1999; Nakashima et al., 1992);

and semi-active control devices (Asai et al., 2013; Brodersen et al., 2016; Carrion et al., 2009;

Chae et al., 2014; Jiang et al., 2013; Phillips et al., 2010). These results confirm that RTHS is

an accurate, cost-effective, flexible, and repeatable alternative to conventional shake table testing.
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Nonetheless, RTHS testing has not yet reached maturity; many challenges remain to be resolved

in the areas of servo-hydraulic dynamic compensation, control design, digital communications, and

fast numerical computations, among others.

A critical aspect of RTHS testing is that any experimental errors must be mitigated during

real-time execution to avoid inaccurate and unstable responses (Darby et al., 2002; Horiuchi et al.,

1996). Thus, the engineering community has greatly focused on the development of compensation

techniques in RTHS, with sufficient performance and robustness guarantees, such that RTHS ex-

periments are conducted safely. In particular, Carrion and Spencer (2007) was the first study to

consider a model-based approach to the design of compensators to run RTHS experiments with

sufficient guarantees of stability and accuracy. This approach considered feedforward and feed-

back controllers that were designed according to a model of the experimental system, such that it

minimizes the tracking errors while conducting the dynamic experiments in real time. Thereafter,

many researchers focused on the improvement of this concept to include nonlinear phenomena and

model uncertainty (Gao et al., 2013; Ou et al., 2015a; Phillips and Spencer, Jr., 2012).

Furthermore, recent RTHS studies are looking for alternatives to reduce the burden over

micro-controller units when executing the integration time-stepping algorithms of large numerical

substructures in real-time. For example, Kim et al. (2011a) proposed a convolution integral method

that can reduce the numerical computations during real-time execution by means of a determining

a pre-calculated response of the bare numerical substructure without specimen interaction. While,

Maghareh et al. (2016b) proposed an adaptive multi-rate interface for two machines working at

different sampling rates: (i) a computer working at a slow sampling rate for numerical integration of

a high fidelity numerical substructure; and (ii) a micro-controller unit working at a higher sampling

rate, where the control strategies are executed.

On the other hand, many researchers have been interested in alternatives of hybrid simula-

tion where specimens are tested under force control, rather than displacement control, specially for

very stiff structures (Thewalt and Mahin, 1987). The effective force testing (EFT) was proposed

as a dynamic force-controlled method. Dimig et al. (1999) presented the first experimental imple-

mentation of this approach. In this method, the effective (inertial) force, which is a function of the

ground acceleration and mass of the structure, is applied directly to the test specimen. Thus, the
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experimental loading pattern can now be force-controlled. This method was attractive at first, be-

cause the effective force loading was known “a priori” for any given earthquake ground acceleration

record. But, it was found that hydraulic actuators were incapable of applying forces at the natural

frequency of lightly damped structures, due to a phenomenon called control-structure interaction

(Dyke et al., 1995). Moreover, because experimental force measurement is usually contaminated

with high noise levels, stable and robust force feedback control must be considered (Nakata, 2013;

Nakata et al., 2014). Although, the EFT method does not allow for substructuring, there has been

some contributions on force-control RTHS testing (Shao and Reinhorn, 2012; Sivaselvan et al.,

2008).

For three-dimensional loading of full-scale test specimens, multi-axial HS was proposed by

Elnashai et al. (2004), as an alternative to six-degree-of-freedom shaking table tests. For this pur-

poses, multi-actuator loading assemblies were introduced to impose six-degree-of-freedom (6DOF)

Cartesian boundary conditions over the test specimen: three translations and three rotations, all

of them controlled at one point in space. A concise review of this method is provided in the next

Section 1.3.

Subsequently, geographically-distributed HS was inspired by the fundamental concept of sub-

structuring, and benefited from modern technological advances in digital communications. Con-

ceptually, the reference structure is partitioned in several substructures, and each substructure do

not need to be located in the same laboratory facility. Thus, each distributed substructure can be

linked through computer networking, such as the Internet. This method can substantially boost

national and international collaboration between experimental sites with larger loading assembly

capacities and computational sites with powerful, super-computer clusters. Other advances have

been proposed in the area of geographically-distributed HS, such as distributed continuous HS

(Mosqueda et al., 2004), and distributed RTHS (Kim et al., 2012).

Other important developments in hybrid simulation have gained recent attention of the sci-

entific community. In particular, model-updating hybrid simulation was proposed by Yang et al.

(2009), where the numerical substructure is modified during the simulation to incorporate knowl-

edge from the test specimen. The reason for the modifications in structural parameters of the

numerical substructure is associated with the level of knowledge of structural behavior of some of
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its components. If subjective judgements were made in the numerical modeling of a component, and

it shares common characteristics with the test specimen, the structural properties of the numerical

component are “updated” by using the online observations from the real physical component. For

this purpose, an optimization problem is usually stated, where a set of optimal structural parame-

ters are sought such that an objective function is minimized. This objective function is usually a

residual between measured and predicted responses from the structural component of interest. The

model-updating approach for HS testing have been studied by Hashemi et al. (2014) and Elanwar

and Elnashai (2016a,b), among others. Also, the model-updating approach was extended for RTHS

testing, where nonlinear Kalman filters have been used for online parameter estimation (Ou et al.,

2017; Shao et al., 2015).

1.3 Multi-axial hybrid simulation testing

As stated previously, the purpose of experimental testing is to evaluate the performance of

structural systems for extreme environmental loading. A well known fact is that the accuracy

achieved in performance evaluation can significantly affect the design process and/or risk assess-

ment. Moreover, if reliable measures of structural performance from seismic loading are required,

then a more realistic loading scenario is needed. Then, the effects of multi-directional ground mo-

tions over structural systems are required in both numerical simulations and experimental testing.

Different solutions are available for three-dimensional loading in experimental testing. As

discussed previously, a six-degree-of-freedom shake table can be considered for this purpose, but

the cost and time required to conduct large-scale testing makes it very difficult to implement. Thus,

Elnashai et al. (2004) proposed a multi-axial hybrid simulation framework, based on state-of-the-

art hydraulic simulators that could impose six-degree-of-freedom load and boundary conditions to

a physical specimen for seismic performance evaluation.

In essence, multi-axial HS testing requires a multi-actuator loading assembly to impose the

three-dimensional loads over the test specimen. This type of equipment is very unique, and only

three facilities in the world have introduced large-scale multi-actuator systems for three-dimensional

multi-axial loading, as shown in Figure 1.3. Each of these three facilities has the capability to

conduct multi-axial hybrid simulation (HS) testing.
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First, the Multi-Axial Subassemblage Testing (MAST) system was first commissioned by the

University of Minnesota (USA). Basically, the MAST system consists of eight coupled hydraulic

actuators for the application of multi-directional loading as shown in Figure 1.3a, and it was

first proposed by French et al. (2004) mainly for cyclic (quasi-static) testing (e.g., Nojavan et al.,

2015). More recently, the Smart Structures Laboratory from Swinborne University of Technology

(Australia) have commissioned a similar large-scale MAST system, which is capable of conducting

both cyclic and HS testing (Hashemi et al., 2015). A picture of the MAST system installed at

Swinborne is shown in Figure 1.3b.

In 2003, the Newmark Civil Engineering Laboratory from the University of Illinois at Urbana-

Champaign (USA) commissioned three large-scale multi-actuator loading assemblies, called the

Load and Boundary Condition Box (LBCB). Each LBCB consists of six hydraulic actuators mounted

to a boxed frame, where each moving piston is connected in parallel configuration to a rigid loading

platform for controlled three-dimensional rigid body motion, as shown in Figure 1.3c. In partic-

ular, the large-scale LBCBs at Illinois are a modular solution for experimental testing that could

be mounted to either strong walls or strong floor, something that is not possible with the MAST

system. The experimental facility at Illinois allows for up to three experimental substructures to

be tested simultaneously in cyclic (quasi-static) or hybrid simulation. Because of its modularity,the

LBCBs can also be used to impose multiple boundary conditions at different positions of a single

test specimen. This feature is very attractive for sophisticated substructuring (e.g., three numerical

substructures interconnected through a single experimental substructure). Also, modularity allows

for the use of two LBCBs working in parallel to test very stiff physical specimens, where a single

LBCB is not enough to impose the required loads for testing. In addition, three small-scale versions

are available at the same facility, primarily intended for training and academic purposes.

Nakata et al. (2007) proposed a systematic procedure for calibration and control of the

multi-actuator loading assembly. The main contributions of that study were the development

of a sensitivity-based external calibration method for multi-actuator systems controlled in global

Cartesian coordinates, and a mixed-mode (force and displacement) coupled control strategy for

multi-axial HS testing. The latter was very important to account for the coupling between vertical

actuators responsible of creating the gravity loads, with the lateral actuators that primarily impose
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(a) MAST, University of Minnesota (b) MAST, Swinburne University of Technology

(c) LBCB, University of Illinois

Figure 1.3: Available experimental solutions for three-dimensional multi-axial loading
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displacements to the test specimen.

Subsequently, researchers adopted this framework to conduct novel three-dimensional hybrid

simulation testing of civil infrastructure. Kim et al. (2011b) examined the effect of coupled horizon-

tal and vertical earthquake ground motion on a series of large-scale reinforced concrete bridge piers.

In addition, an external feedback control system was developed in order to overcome control issues

of the LBCB when interacts with test specimens with high axial stiffness. Mahmoud et al. (2013)

investigated the system-level performance of steel moment frames with semi-rigid connections. The

test specimen consisted on a full-scale beam-column subassembly, that was loaded by the combina-

tion of two LBCBs to impose the required displacements and boundary conditions at two different

ends of the subassemblage. Frankie et al. (2013) performed a three-dimensional seismic test of

a curved four-span bridge system. The test specimen was a full-scale reinforced concrete bridge

pier, and the numerical substructure was comprised of the bridge deck, cap beams and abutments.

Afterwards, rigorous model calibration was performed using the experimental results in order to

improve the accuracy of analytical predictions from the bridge numerical model (Abdelnaby et al.,

2014). Chang et al. (2015) proposed a high-precision external positioning correction method for

multi-axial hybrid simulation systems, that could account for any unanticipated displacements in

the test setup due to flexibility of the reaction structure or insufficient friction at the interfaces

with LBCBs.

Recently, an experimental study of a representative 10-story reinforced concrete (RC) frame

structure under severe pulse-type seismic ground motion was conducted (Murray and Sasani, 2016).

A single RC column with insufficient shear capacity was selected as a test specimen to study the

near-collapse system response. A following study by Murray and Sasani (2017) considered two

shear-critical RC columns as test specimens, and the objective was to assess the collapse resistance

of a 7-story structure after combined shear-axial column failure. In both studies, each test column

was loaded using an LBCB from the Illinois facility. Similarly, Hashemi et al. (2017) performed a

comparison study of two identical, full-scale RC columns, tested to collapse, by using both cyclic

and HS testing. In these tests, the limited-ductility RC columns were taken from first-story, corner-

columns, of a 5-story RC frame prototype structure, and the loading of each test specimen was

applied by using the MAST system at Swinborne. Because multi-axial HS tests provide more
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realistic boundary effects, the associated fragility analysis is deemed more credible compared to

cyclic test results.

This body of literature has proved that multi-axial HS testing has been successfully used for

structural performance assessment of full-scale structural systems with multi-directional loading.

However, the current multi-axial HS framework is not capable to reproduce real-time, dynamic,

three-dimensional loading, because it does not consider either loading assemblies with dynamically-

rated servo-hydraulic actuators, or they are not designed with compensation schemes to reduce

real-time tracking errors. Dynamic three-dimensional loading could open the door to examine the

behavior of strain-rate dependent structural components, such as materials with visco-elastic or

visco-plastic relationships, cohesive materials, components with frictional-contact mechanics, etc.

Also, even though over-strength effects of concrete and steel due to strain-rate effects are considered

to be small, are not negligible and would be desirable to incorporate those effects in experimental

testing for better understanding of the physical phenomena. Moreover, strain-rate effects may

be very significant for the evaluation of stiff structures (i.e. large natural frequencies) that are

subjected to pulse loading (Shing and Mahin, 1988).

In addition, the aforementioned framework has shown some shortcomings due to accuracy

problems associated to force relaxation of the physical specimens due to sustained loads from hold

sequences during the integration of the numerical substructure (i.e., not performed in continuously

or in real-time). Force relaxation up to 10% of the yield capacity for steel structures on a lapse

of 0.5 sec has been reported by Mahin et al. (1989). While, some control strategies have been

proposed to minimize force relaxation errors in geographically-distributed HS tests (Stojadinovic

et al., 2006). Furthermore, an excessive time dilation of the overall experiment could also affect

the experiment budget and timeframes for successive testing.

1.4 Multi-actuator dynamic coupling in real-time hybrid

simulation

As suggested in the previous sections, performing real-time hybrid simulation (RTHS) test-

ing with a multi-actuator loading assembly would allow researchers to improve the accuracy and
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reliability of experimental testing for structural performance assessment. Nevertheless, to realize

this concept, investigation of multi-actuator dynamic coupling effects is fundamental for successful

real-time dynamic tests. For that matter, two cases have been identified from the literature to

date: (i) multi-actuators coupled through a rigid link; and, (ii) multi-actuators coupled through a

flexible specimen.

Blakeborough et al. (2001) reported one of the earliest experimental studies on real-time

hybrid simulation with rigidly-coupled actuators. The reference structure was a portal frame (see

Figure 1.4a), where the experimental substructure was chosen as the left-hand column. The RTHS

test was composed of two servo-hydraulic actuators that were coupled together with a rigid loading

bracket, in order to impose two-degree-of-freedom boundary conditions (translation and rotation)

to the free end of a cantilever column specimen, as shown in Figure 1.4b. Similarly, a polynomial

extrapolation delay compensation approach (Horiuchi et al., 1996) was considered to control each

actuator independently.

This test setup was highly prone to dynamic instabilities, mainly because of the dynamic

coupling between the two actuators. The reason for this behavior was not fully explained and

understood, but the evidence clearly showed that it was extremely difficult to ensure stability of a

multi-degree-of-freedom RTHS test setup. An ad-hoc solution was devised by artificially increasing

the value of numerical damping (up to 5% of critical value). This artificial damping had the effect

of offsetting the equivalent negative damping associated to actuator dynamics, which causes the

test to become unstable. Unfortunately, this approach sacrificed the accuracy of the RTHS overall

response, so better solutions to this problem were needed.

In addition, Darby et al. (2002) perform a detailed study of the stability of two-actuator

RTHS test setup based on the previous study by Blakeborough et al. (2001). The purpose of the

study was to inspect the sensitivity of delay compensation parameters on the stable response of

the twin-actuator system. Stability analysis was performed to determine the maximum error in

estimated delay of each actuator by trial and error. The main result from this study was that either

delay over-compensation or under-compensation of the twin-actuator system can cause instability

of the RTHS system. Therefore, the coupled actuator system requires a robust compensation

algorithm to avoid unstable responses.
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(a) Reference structure (b) Experimental substructure

Figure 1.4: RTHS test with twin-actuators coupled through a rigid link (Blakeborough et al.,
2001)

Afterwards, an adaptive delay compensation of the twin-actuator system was proposed. A

polynomial extrapolation/interpolation algorithm was used for delay compensation of each actuator

independently, where an online delay estimation technique was proposed. In this test, a damping

ratio of 2% was used, which is a more realistic assumption compared to the previous study by

Blakeborough et al. (2001), while the the delay compensation with online delay estimation provided

a stable response of the RTHS test. Although, the response of the test specimen was constrained

to the linear range for the 2DOF RTHS test.

Moreover, this paper provided additional evidence of the effect of specimen stiffness in actu-

ator delay, as it was previously explained by Dyke et al. (1995). For this purpose, a single actuator

was attached to the end of the cantilever column, and various specimen were chosen with varying

lateral stiffness. Then, actuator delay estimation was conducted. The results showed that actuator

delay increased almost linearly with specimen stiffness. Therefore, for test scenarios where a stiffer

specimen is considered for RTHS testing, careful assessment and synthesis of delay compensation

methods is required in order to avoid any unstable response during the test.

Subsequently, Bonnet et al. (2007) presented an improved investigation on the effects of a

highly-stiff coupling system between two identical actuators. The study consisted on the analysis

of a three-degree-of-freedom (3DOF) mass-spring system, with two nominally identical dynamic

actuators on opposing ends. An adaptive model-based compensator was proposed for RTHS testing
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using this multi-actuator loading system. The stiffness of the springs was increased to study the

phenomenon of actuator coupling. The extreme case considered all three masses joined into one

by using two stiffer springs between them, as shown in Figure 1.5. As a result, any attempt to

excite the actuators in opposite directions were not able to be run due to instability. This effect

was explained as an inability of the outer-loop controller to adapt quickly to the sudden changes

in measured force at both boundaries of the specimen. However, when the excitation caused both

actuators to move in phase, tests were able to be completed in a stable manner.

To illustrate the later effect, a sine sweep test with 3.5 mm amplitude and frequency range

from 0 to 4 Hz on both actuators was conducted. Figures 1.6a and 1.6b shows the synchronization

subspace plot and tracking error vs. time plot, respectively. The tracking errors were considerably

high, and the average relative error for actuators 1 and 2 was 7.1% and 13.0%, respectively. Also,

the test configuration with stiff coupling experienced undesired high frequency oscillations at around

22 Hz, close to the expected rigid body mode of vibration the reference 3DOF structural system.

Hence, the authors declared that accurate control of systems with strong dynamic actuator coupling

was still a major remaining challenge in multi-actuator RTHS.

Then, Saouma et al. (2014) conducted a study of RTHS with three actuators coupled through

a rigid beam, in order to command planar motion (i.e., two translations and one rotation) over

the test specimen. The reference structure was a three-story reinforced concrete (RC) moment

frame, where the experimental substructure was a first-floor, interior column with non-ductile

detailing, as shown in Figure 1.7. Furthermore, a restoring force correction was considered to

mitigate experimental errors. Unfortunately, the test implementation suffered extreme challenges

that were only possible to be corrected by using ad-hoc solutions. High-frequency vibrations and

undesired rotations at the controlled point were experienced during the tests. Also, the peak

drift tracking error was reported as 3.29%. A restoring force correction was considered. A large

effort was conducted for both PID fine-tuning of the servo-controller, and system identification,

with destructive tests of 20 specimens in total. The lack of a rational approach for compensation

of both the actuator dynamics and coupling effects could be the main reason for the undesired

responses reported in this study.

Furthermore, the literature provides some results of RTHS testing for soft-coupling of multi-
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Figure 1.5: RTHS experiment with high actuator coupling (Bonnet et al., 2007)

(a) Synchronization subspace plot (b) Tracking error

Figure 1.6: Main results from RTHS tests with high multi-actuator coupling (Bonnet et al., 2007)
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Figure 1.7: RTHS test of a three-story RC moment frame, with multi-actuator coupling through
a rigid link (Saouma et al., 2014)
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Figure 1.8: Multi-actuator coupling through a test specimen (Phillips and Spencer, Jr., 2013b)

actuator systems when connected to one flexible test specimen. Investigations of two coupled

actuators (Gao et al., 2014; Jung et al., 2007; Wallace et al., 2005), as well as three coupled

actuators (Cha et al., 2014; Dong et al., 2015; Friedman et al., 2015; Phillips and Spencer, Jr.,

2013b) have been reported in the literature. In particular, Phillips and Spencer, Jr. (2013b) was

the first study to account directly for the multi-input, multi-output (MIMO), actuator coupling

effects in the design of model-based compensators for multi-actuator RTHS. This analytical study

considered a three-story shear building system, where the numerical substructure included only

the inertial effects and intrinsic damping, while the physical substructure included both linear

(columns) and nonlinear (MR damper) structural components, as shown in Figure 1.8. While, three

identical actuators were located at each story level to impose the displacements after integration of

the numerical equations of motion. Numerical simulations portrayed a significant improvement of

accuracy for the RTHS testing when the multi-actuator coupling effects were considered explicitly

on the design of model-based compensators. This novel technique for multi-actuator RTHS was

implemented and validated in an experimental test of a three-story steel frame equipped with MR

dampers (Cha et al., 2014).

On the other hand, Nakata and Krug (2013) and Nakata et al. (2014) studied two-coupled ac-

tuators for multi-degree-of-freedom effective force testing (EFT). Other examples of multi-actuator

RTHS have been proposed with the addition of shake tables. For example, (Reinhorn et al., 2004,

2005) conducted an investigation on force-controlled real-time hybrid simulation, where a one-story
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building specimen was connected between a six-degree-of-freedom (6DOF) shake table and a dy-

namically rated actuator. The compensation of the single dynamic actuator was conducted by

increasing the mechanical compliance installing a spring in series with the actuator; but, shake

table control was not included in the design of dynamic compensators for RTHS purposes. Subse-

quent studies improved the force-controlled RTHS by including compensation of only unidirectional

shake tables (Shao and Reinhorn, 2012; Shao et al., 2011).

Nevertheless, the use of more than three coupled dynamic actuators for RTHS testing has not

been reported in the literature to date. More importantly, the research on multi-actuator RTHS

with rigid coupling has only explored situations when the specimen behaves in the linear range.

Also, research on this topic for nonlinear specimens is lacking in the literature. Indeed, as the

discussed in the previous section, the advancement of dynamic multi-axial testing will require a

minimum of six coupled dynamic actuators, in order to impose realistic three-dimensional dynamic

loading over structural specimens.

1.5 Dissertation Overview

In this dissertation, a novel framework to conduct multi-axial real-time hybrid simulation

(maRTHS) testing is proposed. In maRTHS testing, the experimental substructures will be sub-

jected to realistic three-dimensional dynamic loading, which consists of a total of six-degree-of-

freedom (6DOF): three translational and three rotational motion. The 6DOF loading considered

for this research will be displacement-controlled in Cartesian space.

1.5.1 Main objectives

The main objectives of this dissertation are:

1. Develop and validate a reliable and efficient framework for three-dimensional, multi-axial,

real-time hybrid simulation (maRTHS) testing.

2. Enable the multi-actuator loading assembly to accurately impose three-dimensional dynamic

boundary conditions on a physical specimen for realistic performance assessment of structural

systems, especially for materials with rate-dependent behavior.
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3. Provide sufficient guarantees for stable and robust maRTHS testing of physical specimens

with different stiffness levels.

1.5.2 Broader impacts

In carrying out the vision of the proposed research, the scientific community will have im-

proved and cost-efficient tools to promote for seismic resiliency of civil infrastructure. The proposed

research will have a considerable impact on the earthquake engineering research community, push-

ing forward the development of real-time hybrid simulation testing to new heights, while promoting

large-scale, cost-effective, experimental evaluation for dynamic characterization of new innovative

systems that are not well understood or are difficult to model numerically.

The development of the proposed framework for multi-axial real-time hybrid simulation

(maRTHS) of complex systems under complex loading has the potential of increasing the class

of structures that can be experimentally tested using the hybrid simulation technique, while en-

abling significant reductions on costs through substructuring methods. In addition, it may allow

experimental testing of full-scale specimens where some of their mechanical properties cannot easily

be scaled down in smaller prototypes, i.e. grain size in concrete, defects on materials that causes

propagation of cracks, geometric and material instabilities, etc. This opportunity opens a promising

field that could incorporate new materials and structural systems into future versions of building

design codes.

This maRTHS framework could allow for full-scale testing of massive structures such as high-

rise buildings and long-span bridges, while overcoming current payload and/or spatial restrictions

of state-of-the-art laboratory facilities with large shaking tables (see Figure 1.9).

In addition, there are many interesting applications that could take advantage of this proposed

framework, including but not limited to:

• influence of vertical loading effect on the lateral stability of elastomeric bearing (Sanchez

et al., 2013) and friction pendulum bearing (Ryan and Dao, 2016) isolators subjected to

three-dimensional seismic loading;

• design of supplemental energy dissipation devices with multi-axial loading, e.g. viscoelastic
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Figure 1.9: Large-scale multi-axial shaking table facility (E-Defense, Japan)
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Figure 1.10: Viscoelastic (VE) coupling damper for energy dissipation of building systems
(Christopoulos and Montgomery, 2013)

(VE) coupling dampers (Christopoulos and Montgomery, 2013) installed on mid-rise to high-

rise buildings subject to either seismic and wind vibration (Figure 1.10);

• self-centering friction connections for steel moment frame systems, as shown in Figure 1.11

(Kim and Christopoulos, 2008);

• soil-structure interaction, where problems of soil mass inertial loading, the permeability of the

soil in partially saturated conditions, and liquefaction potential, are critical issues that need

to be assessed experimentally. Studies on rocking isolation systems with elasto-plastic / visco-

plastic soil specimens (Anastasopoulos et al., 2013) and dynamic soil-structure interaction of

wind turbines (Lombardi et al., 2013) are promising applications for maRTHS testing, as

shown in Figures 1.12 and 1.13;

• large-scale studies of magneto-rhelogical elastomer (MRE) bearings for semi-active base iso-

lation (Li et al., 2013);

• other studies, such as earthquake pulse-like response on non-ductile systems, system-level

performance assessment of civil infrastructures subject to progressive collapse scenarios, etc.
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Figure 1.11: Self-centering, post-tensioned (PT), steel moment frame connection with friction
energy dissipation (FED) devices, subjected to multi-axial loading conditions (Kim and

Christopoulos, 2008)

Figure 1.12: Rocking isolation design for bridge piers with soil-structure interaction
(Anastasopoulos et al., 2013)
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Figure 1.13: Dynamic effects of offshore wind turbine supported on monopile foundation
(Lombardi et al., 2013)
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1.5.3 Dissertation organization

Chapter 2 will provide the necessary background to conduct this research. An overview of

techniques used in real-time hybrid simulation (RTHS) will be presented, such as substructuring,

numerical integration schemes, and compensation algorithms. Then, an overview of the govern-

ing equations for servo-hydraulic actuators will be provided, in order to briefly discuss about its

dynamical properties. This knowledge is fundamental for effective compensation in RTHS test-

ing. Finally, a brief summary of modern control theory for linear systems will be provided, with

emphasis to multi-input, multi-output (MIMO) systems. This information will be fundamental to

develop model-based compensation algorithms for maRTHS in the following sections.

Chapter 3 will explain the proposed framework for multi-axial real-time hybrid simulation

(maRTHS). In order to allow for real-time execution of the proposed framework, fast and reliable

hardware is required. As such, the objective is to integrate control and measurement systems to

enable maRTHS using real-time hardware. This hardware will consists in a fast micro-controller,

including multi-channel digital-to-analog (D/A) converters for servo-valve command voltage signals,

and multi-channel analog-to-digital (A/D) converters for multiple sensor measurements (i.e. load

cells, displacement transducers, etc.). The framework implementation on a small-scale LBCB

assembly will be presented.

Chapter 4 introduces the topic of kinematic transformations for tracking of multi-actuator

systems in Cartesian space. The target displacements from the numerical substructure are applied

to the physical specimen by using multiple servo-hydraulic actuators attached to the loading plat-

form. The actuator’s piston can only be commanded to move along its primary axis, therefore if

the multiple actuators of the loading assembly are not aligned with the global Cartesian system

of coordinates, a kinematic transformation between Actuator and Cartesian space coordinates will

be required for successful maRTHS testing. The goal of this task is to develop an explicit solution

of inverse and forward kinematic transformations using an external sensor approach attached to

the loading platform. In addition, a calibration procedure for actuators and external displacement

transducers will be developed, in terms of both command and measured strokes, using a contact-

less dynamic measuring machine. This will offer a practical way to perform fast and accurate

measurements for the position of the controlled motion in Cartesian coordinates.
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Chapter 5 explains the system identification procedure for multi-actuator systems. In order

to provide good tracking and robustness to the overall system, a very accurate representation of the

dynamics of the experimental setup is needed for the purpose of developing compensators for stable

and robust system responses. The objective for this task is to obtain an accurate model of the multi-

input, multi-output (MIMO) experimental system, that incorporates all the parameters from the

servo-hydraulic actuators, the test specimen interaction, and the actuator dynamic coupling effects.

To achieve this, a nonparametric frequency-domain system identification procedure is considered .

The data collected to create this models are obtained from multi-input random vibration excitations

to the physical component. The final outcome will be a MIMO physical model of the experimental

system that will be used for compensation design. In addition, this model will be fundamental to

increase our understanding of the multi-actuator dynamic coupling, and the effects of specimen

interaction.

Chapter 6 illustrates the compensation design approach for multi-actuator systems in the

context of maRTHS testing. For the purposes of this research, a model-based controller is considered

in this study. Consequently, the goals for this task are to develop a multi-input, multi-output

(MIMO) model-based controller to perform maRTHS testing. This controller will allow for stable

and accurate tracking of the overall system response, without the need of any ad-hoc artifice

like in previous research. Moreover, the controller is designed considering the global Cartesian

displacements of the physical specimen, quite different from other RTHS solutions where single

actuator feedback was considered. In particular, a feedforward-feedback control architecture will

be considered. The feedforward compensator will be designed using the inverse model of the

experimental system, and will be responsible of tracking the target displacements with zero-phase

delay error. Similarly, the feedback controller will consider an LQG/LTR approach to provide

additional robustness to the system when the feedforward is not able to perfectly track the target

displacements due to model uncertainty. The performance of the designed controllers will be

assessed in terms of analytical simulations and experimental tests for specimens with varying degree

of relative stiffness.

Chapter 7 presents the results of a small-scale experimental test, carried out for validation

purposes of the proposed framework. To demonstrate the effectiveness of this framework, successive
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tests and adjustments must be considered to guarantee that the experimental results satisfy the

main goals of this proposed research. Therefore, the next steps on this development are to perform a

series of small-scale tests that will incrementally increase the degree of actuator dynamic coupling,

the range of kinematic transformations, and the nature of the physical specimens to be tested

(elastic and inelastic). This will enable a test-bed to verify and evaluate the proposed framework

and methods developed during this research.

Finally, Chapter 8 will provide some final remarks of this research, and will specify future

directions to continue the research on this topic for continued improvement.
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Chapter 2

Background

2.1 Substructuring method

Consider an initial boundary value problem (IBVP) with a domain defined by Ω and boundary

conditions Γg and Γh for prescribed displacements and loads, respectively. This IBVP represents

the dynamic response of a reference structural system, such as a building, or a bridge. After

discretization of the IBVP (e.g., by finite elements method), the dynamic response of the structural

system is obtained in terms of degrees-of-freedom (DOF) u(t)∀t ∈ [0, tf ], by solving the following

equation of motion:

Ω : Mü(t) + Cu̇(t) + r (u(t)) = p(t) (2.1)

where u, u̇ and ü are the displacement, velocity and acceleration vectors, respectively; M is the

mass matrix; C is the linear damping matrix; r(u) is the nonlinear internal (restoring) force

vector; and p is the vector of externally applied forces. For earthquake loading, the external force

vector is determined as p = −µüg, where µ is the seismic participation vector, and üg is the

ground acceleration. In addition, the initial conditions at time t = 0, u(0) = u0 and u̇(0) = u̇0,

are required to solve the system of coupled ordinary differential equations (ODEs) for all time

t ∈ [0, tf ], where tf > 0 is the final time of the numerical simulation.

In the context of this dissertation, instead of solving the IBVP for the entire domain, a process

known as substructuring can be employed to subdivide the domain into smaller subdomains, such

that the order of large and complex structural systems is reduced for efficient computations. Each

subdomain can be solved independently, provided that coupling between components is enforced

by means of compatibility and equilibrium conditions at their interfaces (de Klerk et al., 2008).
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Figure 2.1: Initial boundary value problem (IBVP) for a structural system

Figure 2.2: Substructuring of dynamical system

For example, the domain can be defined as the union of two smaller subdomains, Ω =

ΩN
⋃

ΩE , as shown in Figure 2.1. The subdomains ΩN and ΩE are called the numerical and

experimental substructures, respectively. Each subdomain can have its own boundary conditions

for prescribed displacements (ΓNg and ΓEg ) and prescribed loads (ΓNh and ΓEh ), as shown in Figure

2.2.

Let the displacement vector of the associated numerical and experimental substructures be

defined as:

uN =

uNi

uNb

 , uE =

uEi

uEb

 (2.2)
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Figure 2.3: Degrees-of-freedom (DOF) of numerical (ΩN ) and experimental (ΩE) substructures

where the indices “N” and “E” denote the numerical and experimental substructures, respectively;

and “i” and “b” refer to the interior and boundary DOFs, respectively. The displacement vectors

for each substructure is better illustrated in Figure 2.3. Then, the equations of motion (EOM) for

both numerical (ΩN ) and experimental (ΩE) coupled substructures are expressed as follows:

ΩN : MN üN + CN u̇N + rN (uN , u̇N ) = pN + gN (2.3)

ΩE : MEüE + CEu̇E + rE(uE , u̇E) = pE + gE (2.4)

and the coupling force vector for each substructure is defined by:

gN =

gNi

gNb

 , gE =

gEi

gEb

 (2.5)

To solve this coupled problem, both compatibility and equilibrium conditions must be satis-

fied. First, the compatibility condition is given by:

uNb = uEb (2.6)

The main assumption in this formulation is that the substructures are only coupled through

the boundary Γb. Therefore, the coupling forces at interior DOFs for each substructure should be

equal to zero:
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gNi = 0Ni (2.7)

gEi = 0Ei (2.8)

Furthermore, the equilibrium condition for boundary DOFs is given by:

gNb + gEb = 0b (2.9)

Therefore, by substituting (2.9) and (2.5) into (2.3), the following “coupled” numerical sub-

structure EOM is obtained:

MN üN + CN u̇N + rN (uN ) = pN +

 0Ni

−gEb

 (2.10)

where gEb is the coupling force vector from the experimental component, which includes all the

effects associated with nonlinear restoring forces, nonlinear damping, and inertial forces, along

with any external excitation that can be induced directly to the experimental substructure:

gE =

0Ei

gEb

 = MEüE + CEu̇E + rE(uE)− pE (2.11)

while noting that the coupling vector gEb is a function of displacement vector uNb to satisfy (2.6):

uE =

 uEi

uEb = uNb

 (2.12)

To obtain an admissible solution, compatibility and equilibrium must be satisfied for all

boundary DOFs at all times. Therefore, an algorithm should be considered to prescribe displace-

ments and forces at the boundary Γb for the solution of the dynamical system. The algorithm

chosen for hybrid simulation is illustrated in Figure 2.4. After solving the EOM (2.10) of numerical

substructure ΩN through a time-stepping integration algorithm (see Section 2.3), the output uNb is

commanded to the experimental substructure ΩE to satisfy compatibility condition at the interface
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Figure 2.4: Coupling of numerical (ΩN ) and experimental (ΩE) substructures

Γb. Then, the coupling force gEb is measured directly from the test specimen after displacement-

controlled loading, using load cell sensors in a laboratory facility, and this output is inserted back

into the numerical substructure ΩN , to satisfy the equilibrium condition at interface Γb. This “hy-

brid loop” procedure is repeated until the simulation reaches the final simulation time tf . Moreover,

due to the time constraints imposed in real-time systems, the hybrid loop must be performed in a

fast and timely manner in order to conduct RTHS testing.

Finally, other substructuring techniques have been proposed for hybrid simulation testing,

such as overlapping methods (Hashemi and Mosqueda, 2014), where the substructures are over-

lapped by more than the interface nodes, while it can also share redundant elements. This over-

lapping technique is conceived for the main purpose of alleviating the requirements on number of

actuators at the interface of experimental subassemblies. Also, mixed-mode control (Nakata et al.,

2007) and switch control (Yang et al., 2017) has been proposed to command forces in addition to

displacements over the experimental substructure. However, real-time force control of actuators is

much more complex than real-time displacement control due to multi-actuator dynamic coupling,

specimen interaction, and measurement errors from load cells. Therefore, substructuring with only

displacement control will be primarily presented in this dissertation for maRTHS testing purposes.

2.2 Real-time systems

As discussed in Section 1.2, real-time hybrid simulation (RTHS) is an experimental technique

to conduct dynamic testing of physical specimens coupled with numerical structures. To allow for
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dynamic loading and fast computations of numerical substructures and feedback control algorithms,

among others, a real-time system is required.

The concept of a real-time system comes from computer science and is used to describe the

collection of hardware and software systems that are subjected to timing and resource constraints.

The goal of real-time systems is to provide necessary guarantees of predictable and timely com-

putational behavior under all expected operating conditions when the system interacts with the

physical environment. In other words, computer programs must perform “tasks” within specified

“deadlines”. If timing constraints are not met by the computer response, then the real-time system

could cause performance degradation or even lose reliability, i.e., the probability of system failure

increases.

In general, real-time systems (RTS) are classified by the consequence of missing a deadline:

(i) hard RTS is such that missing any deadline will cause total system failure; and (ii) soft RTS

is when the system allows for frequent missing of deadlines without failure, but at the expense of

system performance (Buttazzo, 2011). In the context of this dissertation, RTHS testing can be

considered as hard RTS. In general, RTHS hardware and software must ensure that all deadlines

of the hybrid loop are strictly met. If this condition is not guaranteed, it could cause failure of the

experimental setup and damage to laboratory equipment and its surroundings.

Therefore, to ensure that constraints are strictly met for RTHS testing, the real-time system

must be designed taking into account the tradeoff between high-fidelity numerical models and

simulation/integration time steps. Large and complex numerical substructures are necessary to

capture local phenomena that affect global behavior. It may be possible that sophisticated material

and element models (e.g. finite deformations, inelasticity, etc.) are necessary to estimate the

expected phenomena. But, this leads to tasks with the increasing use of computational resources,

thus requiring a significant amount of time to solve with the potential of missing deadlines in real-

time execution. On the other hand, if the time to meet a deadline is larger, the reliability of the

system is guaranteed, but at the expense of a reduction on the computational resources available

for numerical integration and other arithmetic operations. In this regard, it may be possible that

only macro (coarse) models are allowed for RTHS tests with this particular RTS design, which may

not offer accurate results compared to more refined models.
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For example, Huang et al. (2010) considered the relationship between numerical model fidelity

and timing constraints in RTHS testing. For this study, different multi-story shear buildings (5 to

280 DOFs) were considered, where only the first floor is chosen as the experimental substructure.

The test specimen was a linear-elastic spring loaded by a servo-hydraulic actuator. The numerical

substructure was solved using an Intel Core2 Quad 2.66 Hz CPU machine, with 4GB RAM memory,

and NI-DAQ card for analog/digital communication with actuators and sensors. Also, the software

consisted of C++ and Matlab code running on a standard Linux platform. A sampling rate of 1280

Hz was chosen, and 10 trials were conducted for each RTHS test. The experimental results show a

direct dependency between a number of deadline misses and size of the numerical substructure. For

this experiment, if the numerical substructure was larger than 255 DOFs, then the computational

load becomes too large for the RTS to keep a simulation rate of 1280 Hz, therefore reducing its

system reliability.

Hence, careful choice of hardware and software must be considered for a reliable and accurate

RTHS platform. In terms of hardware, a faster real-time target machine would imply that timing

constraints are less restrictive. The literature offers a wide variety of target machine solutions

for RTHS testing; for example: dSpace (Phillips and Spencer, Jr., 2012), Speedgoat (Gao et al.,

2013), National Instruments (NI) (Liu et al., 2016), among others. These target machines differ

primarily in computer architecture, timer speed, shared memory, and digital signal processing

(DSP) capabilities. Also, target machines usually work with a real-time operating system (RTOS),

which is responsible for task scheduling and handling of both computational resources and timing

constraints. Examples of RTOS kernels are Matlab’s Simulink Real-Time (formerly xPC Target),

NI Linux Real-Time, LabView Real-Time, etc.

Moreover, software applications are developed to work over the RTOS platform, to perform

the required operations in real-time. Most standard software packages have been developed in

Matlab/Simulink IDE for direct integration over target machines. For example, HybridFEM (Kar-

avasilis et al., 2009) and RT-Frame2D (Castaneda et al., 2012) have been developed especially for

RTHS testing.

In case that standard structural analysis software is required to perform the calculations of

the numerical substructure (e.g., OpenSees, Abaqus, Zeus-NL), then a simulation coordinator is

35



required. In traditional hybrid simulation (HS) testing, the coordinator is responsible for communi-

cations between multiple actors in the hybrid loop and usually performs time-stepping integration

locally. These actors can be numerical and/or experimental substructures located in the same

laboratory or even geographically-distributed substructures. Examples of standard coordinator

packages are UI-SIMCOR (Kwon et al., 2007) and OpenFresco (Schellenberg et al., 2009). But, in

RTHS tests, simulation coordination must be performed in real-time; hence, the real-time software

application is usually designed to serve the role of simulation coordinator and is tailored specifically

for a particular experimental setup. In that case, the coordinator is just a simple communication

link between numerical and physical substructures located in the same facility.

Finally, some studies have focused on extending the RTHS capabilities by allowing RTS

systems with multiple periodic rates, to solve multiple tasks with different deadlines. Maghareh

et al. (2016b) presented a multi-rate transition between numerical and experimental substructures,

which solve the numerical model at a larger time-step; while, an adaptive polynomial interpolation-

extrapolation scheme is used to send command displacements continuously to the experimental

setup. In addition, parallel computing has been explored to relax the constraints of real-time

systems in RTHS testing.Bunting (2016) considered a multi-time-step (MTS) approach, where the

numerical model is partitioned into refined and coarser models, depending on its proximity to the

experimental substructure. Then, the refined and coarse models are integrated at different time

steps to ensure strict timing constraints and efficiency of the solutions.

2.3 Numerical integration of equations of motion

A fundamental aspect of RTHS testing is the choice of fast and accurate numerical integration

schemes to solve the multi-degree-of-freedom (MDOF) equations of motions from the numerical

substructure (see Section 2.1). Consider the following nonlinear equation of motion (EOM):

Mü(t) + Cu̇(t) + r(u(t)) = p(t) (2.13)

where u is the displacement vector, p is the external force vector. The previous equation can also

be formulated using a state-space representation. Let the state vector x be defined as:
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x =

u

u̇

 (2.14)

Then, (2.13) can be reformulated as a system of nonlinear ordinary differential equations

(ODEs) in terms of state vector x and input force p:

ẋ(t) = f (t,x(t),p(t)) (2.15)

To solve this dynamical system, numerical time-integration methods are generally considered.

Therefore, by assuming a time-discretization tk = k∆t,∀k = {0, 1, 2, . . . , tf/∆t}, where ∆t is the

time step, and tf is the final simulation time. By defining the discrete vectors, xk = x(tk),

rk = r(xk), and pk = p(tk), then the EOM (2.13) can be expressed as:

Mük + Cu̇k + rk = pk (2.16)

Similarly, the system of ODEs (2.15) can be discretized in time as follows:

ẋk = f (tk,xk,pk) (2.17)

Clearly, the derivatives ük and u̇k for EOM, or ẋk for ODEs, must be approximated by using

finite difference approximations. Hence, the solution to the dynamical problem can be expressed

by either explicit or implicit algorithms. In explicit integration, the calculation of the states of

the system at a future time is done by evaluating an expression that depends only on the current

states. Also, implicit integration involves the solution of a nonlinear equation of both the current

and future states. The following algebraic equations for state vector x represents the structure of

both algorithms:

xk+1 = F(xk,pk) (explicit) (2.18)

G(xk+1,xk,pk) = 0 (implicit) (2.19)
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where F(·) and G(·) are functions derived from implementing explicit and implicit integration

schemes, respectively. Explicit algorithm provides a direct solution to the dynamic problem for

future state xk+1, even though F(·) may be a nonlinear function. But, when G(·) is a nonlin-

ear function, then the solution for future state xk+1 will require additional iterations to achieve

convergence, hence the solution is implicit.

Although, a major disadvantage of explicit algorithms is the fact that is conditionally stable,

i.e., the choice of time step ∆t will affect its numerical stability. On the other hand, most implicit

algorithms are unconditionally stable, but not all of them have this property. In the context of

RTHS testing, iterations may pose a serious problem because of time constraints of the real-time

system when the hybrid loop is implemented (see Section 2.2). For this reason, explicit algorithms

have been extensively used in RTHS testing, such that integration would be performed as fast as

possible (McCrum and Williams, 2016; Shing, 2008).

Hence, the choice of numerical integration schemes is a crucial aspect of RTHS implementa-

tion. Historically, the first RTHS tests were implemented using explicit integration, mainly because

they do not require any iteration sub-steps to solve the equations of motion in real-time, with the

requirement that stability margins must be obtained in order to guarantee that the numerical re-

sults are bounded. But some implicit algorithms have been reported in the literature as well. A

representative set of numerical integration algorithms used in RTHS testing is presented in the

following sections.

2.3.1 Nonlinear systems

For a MDOF system with a nonlinear restoring force vector, let the EOM be:

Mük + r(uk, u̇k) = pk (2.20)

The nonlinear term r(uk, u̇k) can be linearized using Taylor series expansion:

r(uk+1, u̇k+1) = r(uk, u̇k) +
∂r

∂u
(uk, u̇k)∆u +

∂r

∂u̇
(uk, u̇k)∆u̇ +O(‖∆u‖2, ‖∆u̇‖2) (2.21)
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Defining the tangent stiffness and tangent damping matrices:

K =
∂r

∂u
(uk, u̇k) (2.22)

C =
∂r

∂u̇
(uk, u̇k) (2.23)

and the incremental terms:

∆a =ak+1 − ak (2.24)

∆v =vk+1 − vk (2.25)

∆u =uk+1 − uk (2.26)

where vk , u̇k and ak , ük. Then, the linearized EOM is expressed in incremental form:

M∆a + C∆v + K∆u = ∆p (2.27)

where ∆p is the residual force vector:

∆p = pk −Mak − r(uk,vk) (2.28)

Hence, the solution of the nonlinear dynamic system is obtained incrementally, by solving

the linearized equilibrium equation (2.27) at step k, and obtaining the increment values ∆u, ∆v

and ∆a, to update the responses for next step k+ 1. The solution of (2.27) is typically performed

through iteration, with finite difference approximations for uk+1, vk+1 and ak+1, depending on

each numerical integration algorithm.

2.3.2 Central difference method

The central difference method (CDM) is one of the most used numerical integration algo-

rithms, mainly due to its explicit nature and simple implementation (Carrion and Spencer, 2007;

Darby et al., 1999; Horiuchi et al., 1999; Horiuchi and Konno, 2001; Nakashima et al., 1992;
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Nakashima and Masaoka, 1999; Phillips and Spencer, Jr., 2013a; Shing et al., 1996; Wu et al.,

2005).

Without loss of generality, let the EOM for a linear system be defined by:

Mak + Cvk + Kuk = pk (2.29)

where vk , u̇k and ak , ük are the velocity and acceleration vectors at step “k”, respectively.

Then, the CDM considers the following approximations for velocity and acceleration vectors using

finite differences:

vk =
uk+1 − uk−1

2∆t
(2.30)

ak =
uk+1 − 2uk + uk−1

∆t2
(2.31)

Substituting the later in (2.29), the explicit solution of displacement uk+1 is obtained through

the following algebraic equation:

uk+1 =

(
M +

∆t

2
C

)−1 [
∆t2pk +

(
2M−∆t2K

)
uk −

(
M− ∆t

2
C

)
uk−1

]
(2.32)

For the calculation of the first step, an estimation of u−1 is required. By combining (2.30)

and (2.31), we obtain the following expression to initialize the CDM algorithm:

u−1 = u0 −∆tv0 + ∆t2a0 (2.33)

where u0 and v0 are the initial conditions of displacement and velocity, respectively. In addition,

the initial acceleration a0 can be determined through equilibrium:

a0 = M−1 (p0 −Cv0 −Ku0) (2.34)

The CDM algorithm is an explicit and conditionally stable scheme, with a criterion for
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integration time step ∆t given by the equation ωn∆t ≤ 2, where ωn (rad/s) is the highest natural

frequency of the structural system.

The CDM algorithm was originally proposed by Nakashima et al. (1992) for RTHS testing;

but, in order to guarantee that the actuator will receive displacement commands without inter-

ruption, a staggered scheme was considered, where the integration time interval is 2∆t instead of

∆t, while ∆t corresponds to the sampling time of the digital controller for the actuator. Then,

Nakashima and Masaoka (1999) proposed the CDM algorithm with an interpolation/extrapolation

strategy to ensure a continuous movement of the actuator. Later, Wu et al. (2005) considered a

modified version of the CDM, with an explicit forward difference formulation for velocity vk+1,

although sacrificing accuracy and stability, thus only working for lightly damped experimental

substructures.

2.3.3 Newmark-β and HHT-α methods

The Newmark family of integration methods is given by the following finite differences ex-

pressions:

uk+1 = uk + ∆tvk + ∆t2
[(

1

2
− β

)
ak + βak+1

]
(2.35)

vk+1 = vk + ∆t [(1− γ) ak + γak+1] (2.36)

These two expressions are combined with (2.29) for the linear case, to solve for accelerations

ak+1 or displacements uk+1, depending on the corresponding implementation.

In terms of numerical stability, if the structural system is linear, and if condition 1/2 ≤ γ ≤ 2β

is met, then the Newmark method is unconditionally stable, i.e., the method is stable regardless of

the choice of time step ∆t. But, if γ < 1/2, then the method is conditionally stable, which implies

a restriction for possible values of ∆t for numerical integration.

Also, there are a number of classical algorithms derived from the Newmark method family.

For instance, if β = 1/4 and γ = 1/2, then the algorithm is the implicit unconditionally stable

Newmark method, also known as the constant average acceleration method (CAAM), or trapezoidal
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rule. Also, the choice of β = 0 and γ = 1/2 leads to the explicit CDM algorithm discussed

previously. But, the explicit form of the Newmark method is better than the CDM in terms of its

numerical conditioning (Shing, 2008).

On the other hand, HHT-α method is a generalization of the Newmark method, when the

introduced parameter α = 0. For a general case when α 6= 0, the HHT-α method modifies the

discrete linear EOM (2.29) into the expression:

Mük+1 =(1 + α) [pk+1 −Cu̇k+1 −Kuk+1]− α [pk −Cu̇k −Kuk] (2.37)

where the following conditions must be met for second-order accuracy and unconditionally stability:

α ∈
[
−1

3
, 0

]
(2.38)

β =
(1− α)2

4
(2.39)

γ =
1

2
− α (2.40)

The incorporation of the α parameter is useful to improve numerical dissipation of undesired

high-frequency responses from the numerical solution of MDOF systems, without degrading the

accuracy as much.

For HS testing, Chang (2002) considered a modification of the Newmark method, that allows

for explicit integration through the introduction of two weighting matrices, β1 and β2, that are

computed before the test starts, and are based on the initial elastic stiffness of the structure:

uk+1 = uk + ∆tβ1vk + ∆t2β2ak (2.41)

This Newmark-Chang method is considered to be second-order accurate and unconditional

stable for linear systems; but, a thorough study of its accuracy and stability for nonlinear systems

is still lacking.

Furthermore, the HHT-α implicit method with a fixed number of iterations was proposed by
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Jung et al. (2007) and Mercan and Ricles (2009) for RTHS testing. In addition, this implementation

considered a polynomial extrapolation-interpolation technique to ensure a smooth motion of the

actuator to impose the command displacements over the test specimen. However, a degradation

on the test performance was observed, as a direct consequence of the increased numerical damping

associated with the α parameter.

Later, Bonnet et al. (2008) studied different numerical integration schemes from the Newmark

family for RTHS testing purposes. The schemes considered for this study were: Newmark explicit

(CDM), Newmark-Chang explicit, Newmark implicit, and HHT-α implicit. It was concluded that

the two implicit schemes were extremely slow, risking overrun situations on the real-time system

even for a relatively small number of DOFs on the numerical substructure. On the other hand,

the explicit schemes could manage the integration of larger numerical substructures in real-time.

The Newmark-Chang method was demonstrated to be computationally efficient, and it was recom-

mended by this study for situations when the numerical substructure does not meet the stability

conditions of the Newmark explicit (CDM) scheme.

2.3.4 Operator-Splitting method

The Operator-Splitting (OS) method was developed to allow for two parts of the mesh (or

operator) to be solved by implicit and explicit algorithms, simultaneously. This idea was developed

specially for “stiff” subdomains, where implicit algorithms are required for stability purposes; while,

“soft” subdomains are solved explicitly for efficiency.

The OS method consists in the combination of an implicit integrator, with a compatible

explicit predictor-corrector scheme, while a modified EOM is taken into account for the synthesis

of both algorithms.

First, the predictor-corrector variables are defined. The predictors of displacement and ve-

locity, ũk+1 and ṽk+1, are given by:

ũk+1 =uk + ∆tvk +
∆t2

2
(1− 2β)ak (2.42)

ṽk+1 =vk + ∆t(1− γ)ak (2.43)
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where the correctors for displacement and velocity, uk+1 and vk+1, are obtained by:

uk+1 =ũk+1 + β∆t2ak+1 (2.44)

vk+1 =ṽk+1 + γ∆tak+1 (2.45)

Then, the implicit scheme of the linear EOM is given by:

Mak+1 + Cvk+1 + Kuk+1 = pk+1 (2.46)

Next, the explicit predictor-corrector method is defined by:

Mak+1 + Cṽk+1 + Kũk+1 = pk+1 (2.47)

Finally, by performing the following “splitting” procedure between implicit and explicit parts

of the mesh, “I” and “E”, respectively:

C =CI + CE (2.48)

K =KI + KE (2.49)

the modified EOM that combines implicit-explicit schemes with the predictor-corrector approach

is given by:

M∗ak+1 =pk+1 −Cṽk+1 −Kũk+1 (2.50)

M∗ =M + γ∆tCI + β∆t2KI (2.51)

This expression is exactly the same as the implicit Newmark method, when:
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CI = C, KI = K

CE = 0, KE = 0 (2.52)

Nakashima et al. (1990) first implemented the OS method for HS testing, with parameters

β = 1/4 and γ = 1/2. The OS method considered an explicit prediction sub-step, where the

displacement predictor is imposed onto the test specimen, to obtain the experimental coupling

force. Also, an implicit correction sub-step is employed to solve for the nonlinear response of

the numerical substructure. This OS method proved to be unconditionally stable for HS testing

purposes.

Afterwards, Wu et al. (2006) extended the OS method for RTHS testing. The explicit scheme

is responsible for the calculation of both displacement and velocity predictors. Then, both predic-

tors are directly imposed onto the test specimen, through a polynomial extrapolation-interpolation

scheme (Horiuchi et al., 1999). Unfortunately, the OS method cannot preserve the unconditional

stability of for RTHS testing, and it has proved to offer sufficient stability guarantees only for

softening type systems (e.g., degrading strength and/or stiffness).

Finally, Bonnet et al. (2008) considered the α-OS method for RTHS testing, a modification of

the OS method to incorporate the α parameter from the HHT-α method discussed in the previous

section. This α-OS method was intended to include numerical damping to reduce experimental

errors due to uncompensated actuator dynamics.

2.3.5 CR/KR methods

Chen and Ricles (2008) developed the CR algorithm, which is an explicit, unconditionally

stable algorithm, that was developed by studying the Newmark-β method from the perspective of

digital control theory. This Also, this scheme has demonstrated similar accuracy to the implicit

Newmark method, which is an additional feature of the method.

Inspired by the Newmark-Chang method (Chang, 2002), the displacement and velocity in-

crements are obtained by including two weighting matrices, α1 and α2, as shown in the following
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expressions:

vk+1 = vk + ∆tα1ak (2.53)

uk+1 = uk + ∆tvk + ∆t2α2ak (2.54)

where ak is solved through equilibrium equation (2.29), and the weighting matrices are equal to:

α1 = α2 = 4
(
4M + 2∆tC + ∆t2K

)−1
M (2.55)

The matrices α1 and α2 were determined by pole placement in discrete frequency domain

(z-domain), such that the integration scheme satisfies unconditional stability, but only for linear

and nonlinear structures with stiffness softening response. In addition, the matrices α1 and α2 are

computed once, before the simulation starts.

Subsequently, Kolay and Ricles (2014) proposed the KR-α method, which is a family of

explicit, unconditionally stable algorithms, based on the analysis of the HHT-α method through

digital control theory. In this method, the parameter ρ∞ ∈ [0, 1] is introduced, which is defined

as the high-frequency spectral radius. This parameter is useful for tuning of controllable numerical

energy dissipation, that will dampen high-frequency spurious modes; while, low-frequency energy

dissipation is minimized. This feature is particularly useful for numerical substructures with a

large number of DOFs, when the time step for numerical integration is too large due to timing

constraints in real-time systems. Then, the response increments are obtained by (2.53) and (2.54),

with the following modification to the equilibrium equation:

Mâk+1 + Cvk+1−αf
+ Kuk+1−αf

= pk+1−αf
(2.56)

where
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âk+1 =(I−α3)ak+1 + α3ak (2.57)

vk+1−αf
=(1− αf )vk+1 + αfvk (2.58)

uk+1−αf
=(1− αf )uk+1 + αfuk (2.59)

pk+1−αf
=(1− αf )pk+1 + αfpk (2.60)

The weighting matrices are defined as:

α1 = α−1M (2.61)

α2 =

(
1

2
+ γ

)
α1 (2.62)

α3 = α−1
[
αmM + αfγ∆tC + αfβ∆t2K

]
(2.63)

α =
(
M + γ∆tC + β∆t2K

)
(2.64)

and

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

(2.65)

γ =
1

2
− αm + αf , β =

1

4
(1− αm + αf )2 (2.66)

The special case when ρ∞ = 1 yields the CR algorithm, hence no numerical energy dissipa-

tion is introduced. On the other hand, when ρ∞ = 0, maximum numerical energy dissipation is

considered. Similarly to the CR algorithm, the KR-α method is explicit and unconditionally stable,

only for linear or nonlinear structures with stiffness softening response. Later, Kolay et al. (2014)

implemented the KR-α method for an RTHS test, and conducted a study on the determination

of optimal values for ρ∞. Finally, Kolay and Ricles (2017) proposed a modification to the KR-α

method, to mitigate overshoot for high-frequency modes, but at the expense of period elongation

errors and numerical dissipation in the low-frequency regime.
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2.3.6 Runge-Kutta methods

Let the MDOF EOM be defined by a system of nonlinear ODEs:

ẋk = f (tk,xk,pk) (2.67)

The Runge-Kutta methods are single-step integration schemes that replace higher-order

derivatives by finite difference approximations based on values of the nonlinear function f(·) at

points between tk and tk+1. A well-known Runge-Kutta method is the fourth-order Runge-Kutta

(RK4) explicit scheme:

xk+1 = xk +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.68)

where

k1 =f (tk,xk,pk) (2.69)

k2 =f (tk + ∆t/2,xk + (∆t/2)k1,pk) (2.70)

k3 =f (tk + ∆t/2,xk + (∆t/2)k2,pk) (2.71)

k4 =f (tk + ∆t,xk + ∆tk3,pk) (2.72)

In particular, the Runge-Kutta methods have special attributes compared to methods previ-

ously examined. For example, the method is self-starting at the beginning of the integration, i.e.,

the calculation of x1 only depends on the initial condition x0. Also, it allows for variable time-step

during the integration. And the fact that is easy to implement, and that is readily available in

many mathematical software packages, makes it a very popular numerical integration technique for

nonlinear ODEs. But, the Runge-Kutta method is not very efficient for “stiff” ODE problems, or

when highly accurate solutions are required.

In the context of RTHS testing, Carrion et al. (2009) and Phillips and Spencer, Jr. (2012)

considered the explicit RK4 method, with a sufficiently small fixed time step ∆t = 0.005 s (i.e., 2000

Hz sampling rate) for improved stability margins. Additionally, Li et al. (2017) considered the RK4
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scheme for numerical integration of an RTHS test with geographically-distributed substructures,

where the sampling rate of 1, 024 Hz was chosen for numerical integration.

Furthermore, Ou et al. (2015b) looked further on the classical Runge-Kutta scheme and

proposed a modified Runge-Kutta (MRK) method for RTHS that is aimed at providing better

numerical stability margins. The MRK method is a model-based predictor-corrector scheme, where

the experimental coupling force is predicted before measurement takes place, in order to compensate

for undesired experimental delays during the numerical integration of RTHS tests. The MRK

scheme consists of three main steps: (1) pseudo response calculation; (2) coupling force prediction,

based on identified initial stiffness and damping of the test specimen; and (3) response correction.

Nonetheless, it was observed from experimental results that situations of lightly damped structures

and test specimens with hardening effects and/or underestimated initial stiffness, may affect the

stability of this numerical scheme.

2.3.7 Rosenbrock-based method

The Rosenbrock method is related to implicit Runge-Kutta methods and is classified as L-

stable, a property that makes this method generally good to solve stiff ODE problems. Let the

solution to (2.67) be given by an s-stage Rosenbrock method:

xk+1 =xk +

s∑
i=1

biki (2.73)

[I− γ∆tJ]ki =f

tk + αi∆t,xk +

i−1∑
j=1

αijkj

∆t+ J

i−1∑
j=1

γijkj∆t (2.74)

where αi =
∑i−1

j=1 αij , γij and bi are predefined parameters, and J is the Jacobian matrix:

J =
∂f

∂x
(2.75)

Bursi et al. (2008) proposed a variant of the Rosenbrock method for RTHS testing. Two

L-stable real-time (LSRT) algorithms were developed from the Rosenbrock scheme: two-stage

(LSRT2) and three-stage (LSRT3). In addition, these algorithms were developed to avoid the
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burden of Jacobian matrix update; the Jacobian matrix is evaluated only once at the start of the

algorithm and kept constant for the entire simulation. Also, the parameters γ, γij , αi, αij , and

bi, must meet specific conditions for unconditional stability. In addition, LSTR2 and LSTR3 are

classified as second-order and third-order accurate, respectively. The LSRT algorithms were imple-

mented and verified through RTHS tests of SDOF and MDOF systems with linear and nonlinear

test specimens (Lamarche et al., 2009). Also, other studies focused on the examination of numerical

performance for stiff numerical substructures (Bursi et al., 2010), and the extension for nonlinear

solutions with subcycling (mixed time step integration) strategies (Bursi et al., 2011).

2.4 Compensation of actuator dynamics

Due to actuator dynamics, there exists an inherent delay in the response of the actuator with

respect to the commanded motion. This effect could not only degrade the accuracy of the RTHS

test (i.e. measured response does not follow the expected response), but it could also result in an

unstable response, which could have negative consequences on the experimental equipment.

Figure 2.5: Effects of time delay on RTHS with linear physical specimen (Phillips and Spencer,
Jr., 2012)

Horiuchi et al. (1996) observed the effects on the stability and accuracy of RTHS tests caused

by the dynamic response of servo-hydraulic actuators. The dynamics of a servo-hydraulic actuator

can be idealized as a pure time delay Td, as shown in Figure 2.5. Therefore, the measured and target

(desired) displacements of the actuator are separated in time-domain by Td. It was demonstrated

that this delay causes an instability problem during the execution of the RTHS test. The reason
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behind this issue was that the delay increases the total energy supplied to the RTHS experiment,

which is equivalent to the case where negative damping is artificially introduced into the numerical

substructure. If the negative damping is greater or equal to the numerical damping of the system,

then an unstable response occurs.

The solution devised to fix this problem was to include a delay compensation method in

RTHS testing. A “prediction” of the actuator motion, by means of an n-th order polynomial

extrapolation, is commanded to the servo-hydraulic system in order to balance the time delays.

Unfortunately, the compensation method failed to achieve its objective when very stiff specimens

are tested, or when the numerical substructure is very flexible (e.g. tall buildings).

Henceforth, compensation of actuator dynamics has become a key challenge for RTHS devel-

opment. The formulations reported in the literature can be classified in time-domain or frequency-

domain. The former is based on the numerical analysis of the equations of motion and it considers

extrapolation relations to “predict” command signals that will compensate for time delays; while,

the latter methods were derived from the adoption of tools from modern control theory. Either

way, any compensator design should allow for stable and accurate RTHS test, that ideally could

provide some robustness guarantees of the controller design (i.e., controller performes well under

model uncertainty or random disturbance). The following is a brief list of significant contributions

on this field.

2.4.1 Polynomial extrapolation

Horiuchi et al. (1996) proposed a delay compensation based on polynomial extrapolation.

Let r , utarget, u , ucmd, and y , umeas, be the target, command, and measured displacements,

respectively. Also, let the sampling time ∆t, and discrete time tk = k∆t,∀k ∈ {0, 1, 2, . . . , tf/∆t}.

Assume that the actuator dynamics can be idealized by a constant pure time delay Td. Hence,

a key assumption is that the measured signal is delayed with respect to the target displacement,

i.e., y(tk) = r(tk − Td). Then, the discrete-time command signal uk = u(tk) that compensates for

this delay effect is obtained by:

uk =

n∑
i=0

airi,k (2.76)
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where ri,k = r(tk − iTd) is the discrete-time target signal by adding shifts of Td by integer values

of i. The polynomial coefficients ai were determined using the Lagrange basis functions. A third-

and fourth-order polynomial extrapolation is commonly used for delay compensation in RTHS:

uk =4r0,k − 6r1,k + 4r2,k − r3,k (third-order) (2.77)

uk =5r0,k − 10r1,k + 10r2,k − 5r3,k + r4,k (fourth-order) (2.78)

Figure 2.6: Delay compensation through polynomial extrapolation

The discrete-time command signal can be understood as a “prediction” of the target signal

shifted Td once into the future, i.e., uk , r(tk + Td). After commanding this signal to the ac-

tuator, the discrete-time measured and target signals will be approximately equal, yk ≈ rk, thus

compensating for the actuator dynamics.

Unfortunately, perfect compensation is not possible, mainly due to the fact that actuators

have more complex dynamics that cannot be represented using only a pure time delay model.

In addition, this technique is only suitable when the pure time delay is small compared to the

fundamental period of the structure (i.e. Td << Tn). Also, accurate estimation of time delay Td is

a requirement to implement this compensation method.

Other alternatives to this polynomial extrapolation method have been reported in the litera-
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ture, such as the linear acceleration extrapolation (Horiuchi and Konno, 2001), which is developed

to consider explicit predictions of target displacement, velocity, and acceleration, for the determi-

nation of the controller signal.

2.4.2 Phase-lead compensation

The phase-lead compensator (Jung et al., 2007; Zhao et al., 2003) is developed from the

perspective of classical control theory. The actuator dynamics can be analyzed in frequency-

domain, where in general the transfer function G(s) shows a phase shift that could be assumed

to be linear. This phase shift can be cancelled out by adding a lead compensator K(s). Thus,

obtaining an approximate zero-phase response for the open-loop transfer function G(s)K(s) at a

given frequency bandwidth.

Let Td be the pure time delay of the actuator. Then, the transfer function of the phase-lead

compensator is given by:

K(s) =
Tds+ 1

αTds+ 1
, α < 1 (2.79)

where α is the phase-lead constant, s = jω is the Laplace variable, ω is the natural frequency

(rad/s), and j =
√
−1 is the complex number. In general, this compensator provides a maximum

phase increase that depends only on the choice of α. For example, for α = 0.1, the phase-lead

compensator can contribute a maximum of 60◦ to the phase angle at a frequency equal to ωTd.

Similarly, this method requires accurate estimation of the time delay Td through parameter esti-

mation.

2.4.3 Inverse compensation

Bonnet et al. (2007) proposed an inverse-based feedforward compensator. This controller is

designed to compensate the dynamics of a simple first-order actuator model:

Gm(s) =
bm

s+ am
(2.80)

where Gm(s) is transfer function of the actuator model. Then, to compensate for the actuator

53



dynamics, an inverse model is considered for the design of feedforward compensator:

K(s) = G−1
m (s) =

s+ am
bm

(2.81)

where the control signal is u(s) = K(s)r(s). Then, the tracking error is given by:

e(s) = y(s)− r(s)

= G(s)u(s)− r(s)

=
[
G(s)G−1

m (s)− 1
]
r(s) ≈ 0 (2.82)

This idea was further extended by Chen and Ricles (2009) for discrete control systems:

K(z) =
αz − (α− 1)

z
, α ≥ 1 (2.83)

where α was determined such that the time delay satisfies the following relationship:

Td = (α− 1)∆t (2.84)

and ∆t is the sampling time. Both algorithms require an accurate estimation of the time delay

parameter Td prior to conducting the RTHS test. For example, Chen and Ricles (2009) proposed

values of ∆t = 1/1024 s and α = 36 for their experimental implementation, and open loop system

(i.e., L(s) = G(s)K(s)) showed almost unit-gain, zero-phase for frequency range 0 – 5 Hz.

Unfortunately, the time delay of an actuator system is not constant along the frequency

space, making the optimal estimation of time delays for robust compensation a laborious task.

2.4.4 Adaptive compensation

Adaptive compensation was introduced to increase the robustness of RTHS test. Compared

to previous compensator solutions, this algorithm provides an on-line estimation and adaption of

compensator parameters, in order to adjust to model uncertainty and/or nonlinear response of the

experimental system. Indeed, this solution offers an attractive solution for the study of nonlinear
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or very stiff experimental substructures, compared to schemes with fixed parameters.

Darby et al. (2002) proposed a polynomial extrapolation compensator, where the time delay

τ was adapted using the following on-line estimator:

τk = τk−1 + Cp tanh

[
Cv

(
rk − rk−1

∆t

)]
(rk−1 − yk−1) (2.85)

where rk is the k-th step of discrete-time target displacement; while, Cp and Cv are adaptation

gains. These gains are tuned such that the estimator converges sufficiently fast and at the same

time does not become unstable.

Afterwards, Ahmadizadeh et al. (2008) proposed polynomial extrapolation compensation

with a modified on-line time delay estimator through linear fits:

τk = τk−1 + 2G∆t

(
ravg
k − yavg

k

yk − yk−2

)
(2.86)

where

ravg
k =

rk + rk−1 + rk−2

3
, yavg

k =
yk + yk−1 + yk−2

3
(2.87)

and G is the learning gain, chosen equal to G = 0.1. This implementation proved to converge faster

and with reduced oscillations, compared to Darby et al. (2002).

Then, Wallace et al. (2005) proposed an adaptive forward prediction (AFP) compensator,

which considered a polynomial extrapolation compensator with least-squares polynomial fitting,

instead of using Lagrange basis functions. The controller signal is obtained as follows:

uk = ka

n∑
i=0

θiP
i (2.88)

where ka is a gain to remove amplitude errors (i.e., undershoot/overshoot problems); θi are the

adaptive polynomial coefficients; and P is the number of time steps to be predicted forward, which

does not need to be an integer multiple of sampling time step ∆t. Then, the adaptation of the

polynomial coefficients is obtained through an on-line least-squares estimation:
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θ = XP

[(
XT
kXk

)−1
XT
k

]
(2.89)

Xk =



1 rk r2
k . . . rNk

1 rk−1 r2
k−1 . . . rNk−1

...
...

...
. . .

...

1 rk−n r2
k−n . . . rNk−n


(2.90)

where XP = [1, P∆t, . . . , PN∆tN ] is the forward prediction vector; θ = [θ0, θ1, . . . , θn] is the

adaptive polynomial vector; n is the number of target points, and N is the order of the polynomial

fit. In particular, values of n = 3 and N = 2 were chosen for application to an RTHS test.

Subsequently, Lim et al. (2007) extended the idea of inverse compensation with a modified

minimal controller synthesis (MCS) algorithm. The adaptive controller is based on a reference

model of the actuator, given by:

Gm(s) =
bm

s+ am
(2.91)

Then, the control signal was obtained from a feedforward-feedback controller:

u(t) = Kff(t)

(
s+ am
bm

)
r(t) +Kfb(t)e(t) (2.92)

The purpose of the adaptive controller is to minimize the tracking error e(t) = r(t) − y(t).

Hence, the adaptation of feedforward Kff(t) and feedback Kfb(t) gains are given by the following

expressions:

Kff(t) =Kff(0) + βe(t)r′(t) + α

∫ t

0
e(τ)r′(τ)dτ (2.93)

Kfb(t) =Kfb(0) + βe(t)y(t) + α

∫ t

0
e(τ)y(τ)dτ (2.94)

where α and β are adaptive weights, and the initial conditions for feedforward and feedback gains

are chosen as Kff(0) = 1 and Kfb(0) = 0, respectively. This framework was also validated experi-
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mentally by Bonnet et al. (2007) in a twin-actuator RTHS setup.

Following these steps, Chen and Ricles (2010) considered an adaptive inverse compensator:

K(z) =
(αes + ∆α)z − (αes + ∆α− 1)

z
(2.95)

where αes is the estimated actuator delay, and ∆α is an evolutionary variable that is determined

by the following expression:

∆α(t) = kpTI(t) + ki

∫ t

0
TI(τ)dτ (2.96)

where TI(t) is a tracking error indicator; kp and ki are proportional and integral gains for the

adaptive law. Also, the initial condition of the adaptive law is chosen as ∆α(0) = 0.

Similarly, Chae et al. (2013a) proposed an adaptive time series (ATS) compensation, where

the discrete-time controller displacement at step k is obtained by:

uk = a0krk + a1kṙk + a2kr̈k (2.97)

where the target velocity and acceleration are approximated using finite differences:

ṙk =
rk − rk−1

∆t
, r̈k =

rk − 2rk−1 + rk−2

∆t2
(2.98)

and the adaptive parameters A = [a0k, a1k, a2k]
T are obtained using an on-line least-squares esti-

mation approach:

A =
(
XT
mXm

)−1
XT
mUc (2.99)

where Xm = [xm, ẋm, ẍm], is a matrix of observed responses, where xm = [yk−1, yk−2, . . . , yk−q]
T ;

Uc = [rk−1, rk−2, . . . , rk−q]
T is a vector of observed targets; and q is the number of target points

considered for polynomial fitting.

Later, Chen et al. (2014) proposed an adaptive, discrete, second-order, phase-lead compen-

sator:
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K(z) =
[W1 + (W1 +W2 + 1)Td] z

2 + [W2 − (W1 +W2 + 1)Td] z + 1

W1z2 +W2z + 1
(2.100)

where W1 and W2 are weighting parameters, and z = ejω is the complex number in z domain. In

this case, the time delay Td is modified using a gradient adaptive law.

Finally, Chen et al. (2015) proposed self-tuning model-based compensator approach, where

the feedforward controller

Kff(s) = a3s
3 + a2s

2 + a1s+ a0 (2.101)

have parameters ai that are modified using a gradient adaptive control law:

θ̇ =Γεw (2.102)

ε =
z − θTw

m2
s

(2.103)

where θ = [a3, a2, a1, a0]T is the estimated parameter vector; z and w are known signals; ε is the

estimation error; m2
s = 1 +αwTw is a normalization factor, with α > 0; and Γ is the adaptive gain

matrix. In addition, parameter projection was considered to enforce constraints over the adaptive

gains θ, such that Routh’s stability criterion was satisfied.

2.4.5 Model-based compensation

Previous compensator solutions require an estimate of time delay, which is taken as a con-

stant for these classical implementations. But, a pure time delay is an approximation that does

not consider more fundamental dynamics of an actuator. For example, actuator systems have a

frequency response with nonlinear phase, which is equivalent to frequency-dependent time delays.

Therefore, relying on one constant time delay estimation may not be suitable for compensation of

complex RTHS setups. Moreover, the test specimen and actuator system have a dynamic interac-

tion (Dyke et al., 1995), which is an effect that may not be possible to capture with constant pure

time delays.
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Hence, Carrion and Spencer (2007) proposed a model-based compensation scheme, based on

the advances of modern control theory. The control algorithms are designed by taking into account

a model of the experimental system, for improved performance while conducting RTHS tests. The

original approach considered a linearized model of the experimental system:

G(s) =
k∏n

i=1(s− pi)
(2.104)

where k is the gain, and pi are the poles of the transfer function. Then, an inverse-based feedforward

controller is obtained, with a unit-gain lowpass filter to allow the resulting transfer function to be

proper and causal:

Kff(s) = αn
∏n
i=1(s− pi)∏n
i=1(s− αpi)

(2.105)

Moreover, a feedback term is included to reduce the effect of model uncertainty in the design of

the feedforward compensator. A proportional feedback controller with constant gain Kfb(s) = Kfb

was considered in this case. For stability purposes, a root locus plot was required to determine the

maximum proportional gain to satisfy both performance and stability specifications.

Later, Phillips and Spencer, Jr. (2012) extended this idea and proposed a discrete-time

feedforward compensator:

uff
k = a0rk + a1ṙk + a2r̈k + a3

...
rk (2.106)

where higher order derivatives ṙk, r̈k, and
...
rk, are approximated using finite difference method for

causal implementation in a real-time system. Furthermore, the feedback controller was replaced

by an LQG optimal control algorithm, which is also based on a nominal model of the actuator

dynamics.

Afterwards, Gao et al. (2013) studied the incorporation of robust control strategies into the

model-based compensation approach. This study recognized that the compensation schemes must

provide sufficient guarantees of robustness against model uncertainties and external disturbances.

H∞ loop shaping design was proposed to satisfy both performance and robustness specifications.

Another implementation was the robust integrated actuator control (RIAC), based on feedforward
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controller with H∞ loop shaping feedback, and a Kalman filter for noise reduction (Ou et al.,

2015a).

2.5 Compensation of coupling force measurements

A fundamental aspect of HS testing is the accurate measurement of coupling forces from

the experimental substructure, to avoid error propagation when these values are inserted back

to the numerical substructure. Unfortunately, force measurements in experimental tests contain

significant noise. Usually, high-frequency noise can be filtered by using lowpass filters, but at the

expense of introducing additional dynamics to the experimental system, something that is not

beneficial for RTHS test purposes.

Therefore, methods to compensate for errors in coupling force measurements have been con-

sidered in the literature. Most methods were focused on force compensation by using an estimation

of the tangent stiffness of the test specimen. Then, the compensated coupling force is given by

gEcorr = gEmeas + K̂E(umeas − utarget) (2.107)

where gEcorr is the corrected (compensated) coupling force; gEmeas is the measured (uncompensated)

coupling force; K̂E is the estimated tangent stiffness of the test specimen; umeas and utarget are the

measured and target displacements, respectively. Hence, the amount of compensation is propor-

tional to the displacement tracking error.

In the context of HS tests, Nakashima et al. (1990) proposed corrections of the coupling force

measurements by using a previously identified initial elastic stiffness of the test specimen. Later,

Thewalt and Roman (1994) proposed an on-line tangent stiffness estimation for force compensation,

based on the BFGS algorithm typically used in nonlinear optimization problems to estimate Hessian

matrices. Also, Hung and El-Tawil (2009) proposed an updated tangent stiffness, which is estimated

using a least-squares method, and applied with particular rules depending on loading/unloading

trajectories of the test specimen.

Force compensation in RTHS tests has only been considered. Carrion and Spencer (2007)

proposed the use of a Kalman filter, which was designed using an estimated initial stiffness of the
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test specimen. In addition, an extended Kalman filter (EKF) was considered for force compensation

of nonlinear specimens, although the method was found to be sensitive to the degree of inelastic

behavior of the specimen and the choice filter parameters. Later, Ahmadizadeh et al. (2008)

proposed a polynomial extrapolation for force compensation. But, the proposed method can result

in complex-valued restoring forces, something that does not have a physical meaning. Afterwards,

Chen and Tsai (2013) proposed a moving average tangent stiffness estimation (MATSE). The

accuracy of this stiffness estimator was highly dependent on the choice of sample size N used in

the moving window: if N was too small, then the estimated stiffness is highly sensitive to sensor

noise; on the other hand, if N was too large, the estimation is not able to represent the sudden

changes of the specimen stiffness.

The main challenges in force compensation of the experimental substructure are related to

obtaining accurate and stable predictions of tangent stiffness, under the presence of sensor noise

and nonlinear hysteretic response of the test specimen. Indeed, compensation of actuator dynamics

have a great impact on force compensation. But, if the test specimen is stiff, even the ideal case

where tracking errors are close to zero could produce some undesired results in terms of coupling

force errors.

2.6 Error quantification in hybrid simulation

Experimental errors in hybrid simulation can be classified in two categories: (i) tracking er-

rors, which are associated with actuator dynamics, and cause de-synchronization of experimental

and numerical substructures; and (ii) communication errors, which are associated to problems of

coordination between geographically-distributed substructures. The evaluation of how experimen-

tal errors are propagated while conducting the tests is essential to avoid any problems of accuracy

and stability.

Therefore, assessment measures have been proposed in order to highlight any experimental

inconsistencies for hybrid simulation tests in general. These assessment measures can be classified

as either local or global response assessment indices (Christenson et al., 2014). The former focuses

only on the performance of the experimental system, where actuator tracking errors are primarily

monitored to ensure accurate and stable response of the RTHS tests. While, the later considers
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Figure 2.7: Synchronization subspace plot (SSP) of simulated response with amplitude and
tracking errors (Hessabi and Mercan, 2012)

the full substructuring problem, which could be useful to identify problems on either numerical or

experimental substructures.

2.6.1 Local assessment measures

Wallace et al. (2005) proposed the use of a synchronization subspace plot (Ashwin, 1998)

for online visual evaluation of tracking errors. The synchronization subspace plot (SSP) consists

of plotting the experimentally measured response vs. target displacement, as shown in Figure 2.7.

Perfect tracking occurs when the data follows a straight line with 1:1 slope (angle of 45◦). Also,

changes on the slope are associated to undershoot/overshoot of the response, and hysteresis (not

straight lines) are associated to lag/lead of the response.

Mercan and Ricles (2009) adopted the synchronization subspace plot to propose two per-

formance indices: a tracking indicator (TI) and amplitude indicator (θpc). The former is used to

determine if any time lead or time lag error is present in the experiment; while, the latter is used

to assess any amplitude error in the actuator measured displacement during real-time execution.

These indices were obtained by numerically computing the enclosed area of the SSP, and the major
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axis inclination through principal component analysis (PCA), respectively. For perfect tracking,

values of TI = 0 and θpc = 45◦ are expected.

Similarly, Hessabi and Mercan (2012) proposed a phase and amplitude error indices (PAEI)

that were derived as coefficients of ideal ellipsoids that match the shape of the SSP. This allowed

improved computation compared to previous tracking and amplitude indices.

Afterwards, Guo et al. (2014) proposed the frequency evaluation index (FEI), which is a

weighted sum of the ratio between the auto-power spectral densities Syy(ω) and Srr(ω), associated

to response y(t) and target r(t) displacements, respectively. Then, generalized amplitude and phase

measures are obtained:

A =‖FEI‖ (2.108)

ϕ = arctan

[
Im(FEI)

Re(FEI)

]
(2.109)

where in the case of perfect tracking, A = 1 and ϕ = 0.

Subsequently, Mosqueda et al. (2007a,b) proposed a hybrid simulation error monitor (HSEM),

that was derived from energy principles. A normalized energy error estimator is determined by

estimating the energy that was introduced to the hybrid simulation test by systematic errors on

the experimental setup:

HSEMk =
Eerror
k

Einput + Estrain
(2.110)

Einput =

∫
pTdu (2.111)

Estrain =
1

2
uTy Kuy (2.112)

where Eerror
k is the energy error from the experimental setup at time step k; Einput is the total input

(excitation) energy; and Estrain is the maximum recoverable strain energy, which is estimated for

elasto-plastic materials with yield displacement uy. Also, the energy error is calculated as follows:
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Eerror
k+1 = Eerror

k +
(
EBEk − EEk

)
(2.113)

where EBEk is the best estimate of the energy in the experimental substructure; and EEk is the

energy in the experimental substructure observed by the numerical substructure. Both quantities

are defined in actuator coordinates, where the kinematic transformations q = Tu and r = TT t are

considered. In this case, q is the displacement in actuator coordinates, t is the force in actuator

coordinates, and T is the kinematic transformation matrix.

EBEk =
1

2
(tmeas
k−1 + tmeas

k )T (qmeas
k−1 − qmeas

k ) (2.114)

EEk =
1

2
(tmeas
k−1 + tmeas

k )T (qtarget
k−1 − qtarget

k ) (2.115)

These indices provide a way to track and control individual actuators in order to improve

overall hybrid simulation results. Nevertheless, it was reported that the relationship between the

growth of hybrid simulation accuracy measures and the values of HSEM are influenced by the

structural model and ground motion considered. Therefore, numerical studies to assess the effect

of simulation error measures are required prior to the experimental testing, in order to determine

bounds for the HSEM index.

Other measures local assessment measures have been proposed in the literature. For example,

normalized root mean square error (NRMSE) offers a good indication of tracking errors for a

particular boundary DOF. Assuming uniaxial loading in RTHS test:

NRMSE =

√
1
N

∑N
k=1

(
umeas
k − utarget

k

)2

mN
(2.116)

where mN is a normalization factor, that can be chosen as one of the following options:

1. mN =

√
1
N

∑N
k=1

(
utarget
k

)2

2. mN = max
(
|utarget
k |

)
3. mN =

∣∣∣max
(
utarget
k

)
−min

(
utarget
k

)∣∣∣
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Also, the cross-correlation function between target and measured signals and the transfer

function of the experimental system can be considered for the same purposes.

2.6.2 Global assessment measures

Ahmadizadeh and Mosqueda (2009) proposed an extension of the HSEM index to incorpo-

rate both numerical and experimental errors global assessment measured for HS tests. A non-

dimensional energy error index (EEI) was proposed based on overall unbalanced energy:

EEI =
Eerror

Einput + Estrain
(2.117)

where in this case Eerror is the energy error of the whole substructuring problem, i.e., including

numerical an experimental errors. This quantity is computed as follows:

Eerror = EI − (EK + ED + ES + EE) (2.118)

in which EI is the input energy, EK is the kinematic energy, ED is the dissipated energy through

viscous damping of the numerical substructure, ES is the strain energy stored by the numerical

substructure, and EE is the experimental energy (stored + dissipated) from the experimental

substructure:

EI =

∫
pTdu (2.119)

EK =
1

2
u̇TMu̇ (2.120)

ED =

∫
u̇TCdu (2.121)

ES =

∫
rTdu (2.122)

EE =

∫
(rmeas)T dumeas (2.123)

In principle, the EEI measure is lower bounded by the HSEM index, that is the global measure

cannot be less that the local measure. Therefore, the combination of these two global and local
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measures is quite valuable to assess the performance and robustness of the HS experimental design.

More recently, the predictive performance and stability indicators (PPI and PSI) were es-

tablished to assess the impact of substructuring choices and the sensitivity of tracking errors on

the stability of the RTHS tests (Maghareh et al., 2014). Both measures can be determined before

conducting the experimental test, for the study of different experimental design alternatives. First,

the steady-state variance of the tracking error is equal to:

σ2 =
1

2π

∫ ∞
−∞

See(ω)dω (2.124)

See(ω) =|Heg(ω)|2Sgg(ω) (2.125)

where See(ω) is the auto-spectral density of the tracking error; Sgg(ω) is the auto-spectral density

of the input excitation (e.g., ground motion); and Heg(ω) is the frequency response function of

the tracking error e(t) given an input g(t). Then, the PPI measure is defined as the normalized

variance of the tracking error, and is obtained by the formula:

PPI =
ω3
nσ

2

Sg
(2.126)

where ωn is the natural frequency of the reference structure; Sg is the power spectral density of

zero-mean, stationary, white noise excitation; and σ2 is the steady-state variance of the tracking

error.

In general, the parameter PPI is closely related to the value of |γ−α|, where γ = MN/M and

α = KN/K are the normalized mass and stiffness from the numerical substructure, respectively;

while, M and K are the mass and stiffness matrices of the reference structural system, respectively.

Then, to achieve better performance and stability for single-degree-of-freedom (SDOF) RTHS tests,

three options can be applied in combination: (i) decrease PPI, which is associated to a decrease of

|γ − α|; (ii) decrease the natural frequency ωn of the reference structural system; and (iii) increase

the numerical damping.

Likewise, the predictive stability indicator (PSI) was proposed as:
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Figure 2.8: Relationship between predictive stability measures and RTHS stability (Maghareh
et al., 2016a)

PSI = log10(τcr) (2.127)

where τcr is the smallest critical time delay (msec) obtained by solving a delay differential equation

model. A relationship between different values of predictive stability measures and the stability of

the RTHS experimental designs is illustrated in Figure 2.8.

Both PPI and PSI assessment measures with different substructuring combinations were

validated experimentally by Lin et al. (2015) for a SDOF RTHS test. Regardless, these measures

were originally formulated for RTHS tests of SDOF systems. Therefore, direct application for

MDOF problems is not straightforward and have not studied in detail yet. Although, Maghareh

et al. (2016a) carried out a study to extend the notion of PSI for MDOF reference structures, where

the delay differential equation is converted into a generalized eigenvalue problem.

2.7 Summary

In this chapter, different aspects of real-time hybrid simulation (RTHS) tests were explored.

First, the substructuring method was explained, which serves as the foundation for conducting a hy-

brid simulation. In general, both a numerical and experimental substructures are considered for this

kind of experimental testing. Then, the technical difficulties to conduct real-time hybrid simulation

were discussed. In particular, real-time systems are designed to conduct RTHS tests, and in general

these systems are governed by timing and computational resource constraints. Afterwards, different

alternatives for numerical integration of the governing equations were considered, with a special

emphasis on real-time integration techniques. Moreover, the detrimental effects that systematic

errors can assert into the experimental test are well recognized. Therefore, different algorithms for
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compensation of actuator dynamics and coupling force measurements were presented. In addition,

the design of any RTHS experimental setup should be assessed in terms of its local and/or global

performance. For that matter, assessment measures were portrayed, such that error quantification

and propagation of an RTHS test is better understood. Finally, this body of literature provides

necessary and sufficient knowledge about RTHS testing, which is essential to continue with the

development of the proposed framework for multi-axial real-time hybrid simulation (maRTHS).
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Chapter 3

Framework for multi-axial real-time
hybrid simulation testing

3.1 Problem statement

The purpose of this research is to develop and validate a framework to conduct three-

dimensional, multi-axial, real-time hybrid simulation (maRTHS) for structural testing of com-

plex large-scale systems subjected to seismic loading. Consequently, if real-time hybrid simulation

(RTHS) is considered for multi-axial experimental testing, a control system must be designed such

that the loading assembly can reproduce the boundary conditions in three-dimensional Cartesian

space as accurately as possible within a fixed simulation time step.

Therefore, the maRTHS framework includes kinematic transformations for accurate motion

tracking in global Cartesian coordinates of the loading platform, development of multi-actuator

and multi-sensor calibration procedures, the design of model-based compensators with explicit

consideration of multi-actuator dynamic coupling effects for improved accuracy and robustness, and

practical implementation and validation guidelines for proof-of-concept representative examples .

3.2 Methodology

The maRTHS framework is based on hybrid and feedback control loops developed in three-

dimensional Cartesian space, i.e., vector signals will carry out the information of multi-degree-of-

freedom boundary conditions at the interface between numerical and experimental substructures.

Thus, a boundary condition vector signal is defined as u = {ux, uy, uz, θx, θy, θz}T , which are the

translational and rotational DOFs at the interface (Fermandois and Spencer, Jr., 2017).

This proposed framework includes both multi-actuator and multi-sensor modules that must

be properly calibrated to allow for accurate motion tracking in 3D Cartesian space. In addition, the
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outer-loop controller is required for compensation of the servo-hydraulic dynamics, with explicit

consideration of dynamic coupling effects between multiple actuators and the potential interaction

with the experimental specimen that is attached to the loading platform.

A sketch of the overall framework is presented in Figure 3.1, where it can be seen that

multiple-degree-of-freedom (MDOF) boundary conditions are imposed to the physical substructure

by a modular multi-actuator loading assembly. The maRTHS test starts with the time-stepping

algorithm to solve the numerical substructure must be considered first, where the target Cartesian

displacements utarget ∈ R6 at the interface between numerical and experimental substructures are

obtained. Then, target Cartesian coordinates are passed through an outer-loop controller, which is

the component responsible for minimizing the tracking error e ∈ R6 between measured and target

Cartesian displacements (i.e., e = umeas − utarget).

A command signal in Cartesian coordinates, ucmd ∈ R6, is provided from the outer-loop

controller. This vector signal needs to be transformed to a command in actuator coordinates

through a kinematic transformation. Then, each single actuator command stroke is processed by the

inner-loop servo-controllers, and the resulting motion of the loading platform is obtained through an

external motion measurement system, which provides the measured Cartesian coordinates, umeas ∈

R6, that are required for feedback control purposes.

Subsequently, after reading individual actuator forces, the restoring Cartesian forces, fmeas ∈

R6, are estimated and applied to the numerical substructure at the interface degrees-of-freedom

(DOF). Finally, the numerical substructure is ready to solve the equations for the next time step,

and the procedure is repeated until the simulation ends.

Then, a real-time system is designed for the maRTHS framework, which is shown in Figure

3.2. This system is composed of three subsystems: (i) numerical subsystem (Figure 3.3), where the

numerical substructure model, external loading, and numerical integration scheme are declared;

(ii) model-based control subsystem (Figure 3.4), where the model-based compensation for servo-

hydraulic system dynamics are defined; and (iii) physical subsystem (Figure 3.5), where kinematic

and force transformations, calibration corrections, and digital-analog conversions are provided to

communicate with external actuators and sensors connected to the experimental substructure in

real-time.
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Figure 3.1: Framework for multi-axial real-time hybrid simulation (maRTHS) testing

Figure 3.2: Block diagram of maRTHS code developed for real-time micro-controller execution
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Figure 3.3: Block diagram of numerical substructure implementation

Figure 3.4: Block diagram of outer-control loop algorithm

Figure 3.5: Block diagram of Cartesian-domain physical subsystem
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(a) 1/5th scale LBCB (b) Actuator labels and Cartesian coordinates

Figure 3.6: Load and boundary condition box (LBCB)

In addition, the maRTHS real-time system is designed over a micro-controller unit for real-

time execution. A good practice in RTHS testing consists in embedding the code for numerical

and model-based controller subsystems in the same micro-controller unit for fast calculations and

seamless integration with the other experimental modules. Thus, the hybrid system can provide

necessary guarantees for the real-time system to be executed in a timely manner under all expected

operating conditions (i.e., avoid task overruns).

3.3 Multi-actuator loading equipment

The maRTHS framework was developed using the available experimental resources from the

Newmark Civil Engineering Laboratory, located at University of Illinois at Urbana-Champaign. In

particular, a small-scale load and boundary condition box (LBCB) equipment, as shown in Figure

3.6, was chosen to conduct the multi-axial experimental tests. This equipment is a 1/5th scale

version of the large-scale LBCB available at the same facility for full-scale experimental tests. The

small-scale LBCB was manufactured by Shore Western Manufacturing, and it has been extensively

used for academic and training purposes. For the proposed research, this device will become

the testbed for development and debugging of control algorithms and testing procedures for the

maRTHS framework.

The small-scale LBCB consists of six servo-hydraulic actuators mounted to a boxed frame,
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Table 3.1: Capacity specifications for small-scale LBCB (Shore Western, 2014)

x y z

Displacement (mm) ±53.0 ±25.4 ±25.4
Rotation (deg) ±11.6 ±9.4 ±20.4

Force, extending (kN) +31.14 +15.57 +46.71
Force, retracting (kN) −18.68 −9.34 −28.02
Moment (kN-m) ±2.28 ±2.66 ±2.28

and connected in parallel to the loading platform. This configuration allows for controlled six-

degree-of-freedom (6DOF) rigid body motion. The specifications for the small-scale LBCB are

presented in Table 3.1.

In particular, the actuators are distributed such that two long actuators, with a maximum

stroke of 101.6 mm (4 in), are primarily oriented with the x global coordinate; while, four shorter

actuators, with a maximum stroke of 50.8 mm (2 in), are oriented primarily along the y and

z global coordinates. The actuators were designed with Moog G631-3002B two-stage electro-

hydraulic servo-valves, with rated flow and pressure of 10 lpm (2.5 gpm) at 1, 000 psi, respectively

(Moog, 2014). Also, each actuators have installed a linear variable differential transducer (LVDT)

manufactured by Trans-Tek, Inc., for stroke measurements; and a load cell manufactured by Inter-

face, Inc., model WMC-3000, with an axial force measurement capacity of 13.34 kN (3 kip).

Furthermore, a Shore Western servo-controller is used for analog control of the small-scale

LBCB. The Shore Western servo-controller consists of three SC6000 cards. Each card allows

for high-precision feedback control of two individual actuators. On top of that, actuator stroke

commands can be performed from an external source through the SC6000 cards, which is a feature

that is fundamental for the maRTHS framework. In addition, the Shore Western servo-controller

provides signal conditioning for LVDT and load cell measurements from all actuators, and it allows

for analog output signals that can be acquired directly from an external real-time hardware with

data acquisition capabilities.

Finally, a dedicated hydraulic power supply (HPS) with a capacity of 37.85 lpm (10 gpm) at

3, 000 psi is provided to operate the actuators of the small-scale LBCB. The connection between

HPS and LBCB is made through a Shore Western 213(3)B-4 hydraulic service manifold (HSM),

which has flow capacity of (60 gpm). The HSM has three independent outlets for each small-
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Figure 3.7: Implementation of proposed framework using small-scale LBCB equipment

scale LBCB, each equipped with two pressure control solenoid valves for low- and high-pressure

conditions, respectively. In addition, the HSM includes pressure and return accumulators that to

provide sufficient pressure supply for dynamic testing purposes, and a filter.

3.4 Real-time system platform

The real-time system implementation of the proposed framework is summarized in Figure 3.7.

To control the synchronized motion of the actuators in Cartesian coordinates, a micro-controller

unit (MCU) is connected to the Shore Western servo-controller.

The MCU hardware of choice is a dSpace DS1103PPC micro-controller, based on a single

PPC 750GX processor running at 1 GHz. This MCU comes with 20 analog-to-digital (A/D)

channels and 8 digital-to-analog (D/A) channels for external device communications, each with a

16-bit resolution. Also, a host PC is connected directly to the MCU via fiber optics. The host

PC consists of an Intel Core 2 Quad Processor (Q9300) running at 2.5 GHz, with 3.25 GB RAM

memory, and working with Windows XP operating system. The host PC is responsible of storing

all the programming code and preferences required for maRTHS, as well as recording the test

measurements data. A photo of the MCU, host PC, and connector boards, is shown in Figure 3.8.
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Figure 3.8: Assembled real-time hardware for maRTHS testing

The integrated development environment (IDE) is Matlab Release 2007b. The algorithms

of the real-time system are developed using Simulink block diagrams and libraries. In addition,

Simulink Coder (formerly Real Time Workshop) is considered to provide a seamless transition

between Simulink models and the MCU. C source code is automatically generated and loaded

into the dSpace MCU, by using dSpace’s Real Time Interface (RTI) software. In addition, virtual

instrument interfaces can be developed to check parameters of the simulation on the fly, by using

dSpace’s ControlDesk software. An example of the current development of virtual instruments for

maRTHS testing is shown in Figure 3.9. Likewise, a connector board allows the communication

with the multi-actuator servo-controller, in terms of command signals (cmd) and measurement

signals (meas), for every actuator and sensor installed in the LBCB.

In addition, finite element analysis (FEA) of numerical substructures must be conducted

using Matlab/Simulink models for compatibility with maRTHS framework. Fortunately, two stan-

dard software packages for RTHS are readily available to be used in maRTHS framework: (i)

RT-Frame2D (Castaneda et al., 2012); and (ii) HybridFEM (Karavasilis et al., 2009). Both soft-

ware packages allow for planar structural analysis of numerical substructures with beam-column

elements, and provides a good variety of nonlinear constitutive relations and integration algorithms
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(a) Control instruments in Cartesian coordinates

(b) Sensor settings in actuator/transducer coordinates

Figure 3.9: Virtual instruments developed in dSpace’s ControlDesk for maRTHS testing
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for RTHS tests. Nevertheless, this framework allows for the implementation of user-defined code

to solve numerical structures using a state-space approach (Simeonov et al., 2000) and incorporate

novel integration schemes. Both solutions may be required for optimization of MCU computational

resources, and for increased reliability of real-time scheduling schemes.

3.5 Summary

In this chapter, an overall description of the multi-axial real-time hybrid simulation (maRTHS)

has been presented. The framework is developed based on traditional RTHS schemes, and extended

to deal with vector signals in Cartesian space for hybrid and control loops, respectively. Further-

more, details of both hardware and software required to build the maRTHS system were presented.

Finally, although the current implementation of this framework considered a small-scale LBCB

loading assembly, the framework scalability in terms of real-time system design should not be a

problem for large-scale LBCB loading assembly and full-scale test specimens.
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Chapter 4

Kinematic transformations for
multi-actuator loading assemblies

4.1 Problem statement

The target displacements from the numerical substructure are applied to the test specimen

through multiple servo-hydraulic actuators attached to the loading platform. The actuators can

only be commanded to move along its axis; therefore, a kinematic transformation between actuator

and Cartesian space coordinates is required. Similarly, any displacement transducer attached to

the loading platform will also measure the motion only in the direction of the sensor, which implies

that kinematic transformations are also needed to acquire Cartesian coordinate measurements.

Because real-time operation is essential in dynamic testing, the objective is to develop an explicit

and fast solution for inverse and forward kinematic transformation problems.

4.2 Kinematics of parallel manipulators

The following provides an insight on the formulation for real-time kinematic transformations

to be used on the maRTHS framework. First, we begin by writing the kinematic equations for a

parallel manipulator (Merlet, 2006), which is the architecture chosen for the loading assembly in

maRTHS (i.e. small-scale LBCB).

The parallel manipulator (see Figure 4.1a) consist of n prismatic joints (i.e. actuators or

displacement transducers). The “i-th” joint is connected at one end to a fixed body at point Ai,

and at the other end to a moving body at point Bi. Hence, n joints are connected in parallel to

both bodies. Then, we can define two frame systems at each body; a “fixed” frame attached to

the base (e.g., reaction frame), and the other “moving” frame attached to the loading platform,

as shown in Figure 4.1b. This definition will be useful to represent six-degree-of-freedom (6DOF)
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(a) Closed kinematic chain (b) Kinematics of “i-th” prismatic link

Figure 4.1: Parallel manipulator kinematics

rigid body motion of the moving loading platform in either system of coordinates.

Hence, two kinematic transformations are defined between joint coordinates (strokes from

actuator or displacement transducers) and Cartesian coordinates. First, the transformation from

Cartesian to joint coordinates is called inverse kinematic transformation (IKT), and is represented

by the following mathematical relationship for three-dimensional Cartesian space:

si = p + Rbi − ai, (i = {1, . . . , n}) (4.1)

where si ∈ R3 is the vector in global coordinates that represents the position of the “i-th” joint;

p ∈ R3 and R ∈ R3×3 are the translation vector and rotational matrix that represents the position

of the body frame with respect to the global frame; ai ∈ R3 are the fixed end coordinates of the

“i-th”joint relative to the fixed frame; and bi ∈ R3 are the free end coordinates of the “i-th” joint

relative to moving frame, and n is the total number of joints connected to the moving platform.

For an over-constrained parallel manipulator, usually the number of actuators and transducers is

greater or equal to the number of motion components from the loading platform. In this case, the

number of actuators for three-dimensional purposes should be n ≥ 6.

The translation vector and rotational matrix is derived from the Cartesian command sig-

nal ucmd = u = {ux, uy, uz, θx, θy, θz}T . The structure of the translation vector is given by

p = {ux, uy, uz}T , where (ux, uy, uz) are the Cartesian translation coordinates; while, the rota-
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tion matrix is given by R = R(θx, θy, θz), where (θx, θy, θz) are the Euler angles from rigid body

motion. Also, the relationship R(θx, θy, θz) can be decomposed by the product of three elemental

rotation matrices, Rx(θx), Ry(θy), and Rz(θz), which are obtained by direct conversion from Euler

angles using the yaw-pitch-roll convention:

R(θx, θy, θz) = Rz(θz)Ry(θy)Rx(θx) (4.2)

Therefore, the formula to obtain joint strokes from IKT is the following:

qi = qi(ux, uy, uz, θx, θy, θz)

= ‖si‖

= ‖p(ux, uy, uz) + R(θx, θy, θz)bi − ai‖ (4.3)

where qi is the length of “i-th” joint, and ‖ · ‖ corresponds to the Euclidean norm. In particular,

actuator length commands qcmd = {q1, q2, . . . , qn}T are obtained by solving the last equation for

all actuator joints i = {1, 2, . . . , n}. From this expression, the inverse kinematic transformation

results in a nonlinear function of the Cartesian coordinates, with a closed-form solution that can

be solved explicitly for real-time execution.

Subsequently, the transformation from joint to Cartesian coordinates is called forward kine-

matic transformation (FKT), which should corresponds to the inverse mapping of the inverse kine-

matic transformation described previously. The problem is stated as follows: given the stroke mea-

surement of the “i”-th joint, qmeas
i , calculate the Cartesian coordinates umeas = {ûx, ûy, ûz, θ̂x, θ̂y, θ̂z}T

of the loading platform. Thus, to obtain Cartesian coordinates from joint strokes, the previous

equation (4.3) is rewritten as follows:

gi(q
meas
i ,umeas) = qmeas

i − qi(umeas) = 0, (i = {1, . . . , n}) (4.4)

Indeed, the later expression is an implicit function of Cartesian coordinate estimates umeas;

hence, the problem does not have a closed-form solution. Also, the solution is determined only if
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the number of joint equations n is equal to the total number of rigid body Cartesian coordinates

in three-dimensional space, i.e., n = 6. In the case of n ≥ 6, then the problem is overdetermined,

and the solution can be obtained as a least squares approximation. Moreover, if n ≤ 6, then the

problem is undetermined, and no unique solution can be found.

Clearly, the only way to solve the problem is by numerical methods, where the candidate

solution needs to be updated at each iteration step until convergence is achieved. Hence, the FKT

problem can be rewritten as an optimization problem where an error measurement is minimized:

minimize
p,R

f0 =
1

2

n∑
i

eTi ei

subject to ei = (p + Rbi − ai)− si,

RTR = I3×3,

det(R) = +1.

(4.5)

where the last two constraints are needed to enforce that the resulting rotation matrix R does

indeed belong to the special orthogonal group SO(3), a necessary condition for rigid body motion.

This FKT problem can be solved iteratively until convergence is achieved with a predefined

tolerance. But, iterations will impose time scheduling constraints to the real-time system which

is a major issue. Another alternative is to obtain an approximation of the measured Cartesian

coordinates through linearization of the IKT relationship from (4.1). By performing a Taylor series

expansion around the Cartesian coordinate uk at step “k”:

δq ≈ Jδu (4.6)

where δq = qk+1−qk is the joint coordinate increment, δu = uk+1−uk is the Cartesian coordinate

increment, and J ∈ Rn×6 is a Jacobian matrix defined in indicial notation by:

Jrs =
∂qr
∂us

(uk), (r = {1, . . . , n}, s = {1, . . . , 6}) (4.7)

or in matrix form:
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J =


∂q1
∂u1

(uk) · · · ∂q1
∂u6

(uk)

...
. . .

...

∂qn
∂u1

(uk) · · · ∂qn
∂u6

(uk)

 (4.8)

Then, if the Jacobian matrix is invertible (i.e., matrix is square and non-singular), a linearized

forward kinematic transformation (LFKT) is obtained to calculate the Cartesian coordinates at

next step k + 1:

uk+1 = uk + J−1 (qk+1 − qk) (4.9)

Each term of the Jacobian matrix is obtained analytically, thus its numerical evaluation is

straightforward. More details on the analytical expression of the Jacobian matrix are provided in

Appendix A.

In the particular case of over-actuated multi-actuator system, the Jacobian matrix is non-

square, therefore the inverse does not exist. However, it may be possible to approximate the

inverse Jacobian matrix using the Moore-Penrose pseudo-inverse, which is basically a least-squares

approximation:

uk+1 = uk + J+ (qk+1 − qk) (4.10)

where

J+ = (J∗J)−1J∗ (4.11)

Due to physical constraints, the actuators cannot faster than the flow allowed by each servo

valve. Therefore, a physical constraint can be enforced by the following expression:

|∆qik| ≤ vimax∆t, ∀i = {1, . . . , n} (4.12)

where vimax is the velocity capacity of the actuator “i”, and ∆t is the sampling time step.

In addition, two choices are available for the LFKT: (i) linearization around initial position
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(constant Jacobian); and (ii) linearization around current position (incremental Jacobian). In

the first approach, the Jacobian is kept constant for the whole test. While, the second approach

considers the update of the Jacobian matrix at each time step. The latter approach is more

computationally expensive, thus timing constraints of the real-time system should be a concern

when implementing this approach.

Therefore, for real-time applications, the exact IKT and approximate LFKT algorithms are

considered for implementation in maRTHS testing. In general, the LFKT algorithm does not

provide any guarantees that it can be accurately solved for the Cartesian position of the loading

platform motion center, due to the implicit nature of the FKT relationships. However, Mercan

et al. (2009) found that incremental schemes to solve the FKT problem have good agreement

with the true FKT results, provided that the incremental time step is sufficiently small. Usually, a

sampling time step of 1/1000 seconds should be small enough to obtain good results of the measured

Cartesian coordinates, while meeting the requirements from the real-time system.

Moreover, the kinematic transformations allow for the motion control of any point of interest

in Cartesian space. But, usually the control point of interest in RTHS should be along the test

specimen that is connected to the loading platform. For example, a choice of Cartesian coordinates

for the small-LBCB case is shown in Figure 4.2, where the motion center (i.e., origin of coordinate

system) is offset from the centroid of the loading platform, and located at position MC2. This

choice of motion center is associated to the hole pattern on the loading platform for the connection

of the test specimen.

Furthermore, when flexibility of the reaction frame should be accounted for Cartesian coordi-

nate measurements (Chang et al., 2015), instead of using the LVDT transducers located inside each

actuator, a collection of external displacement transducers are connected in parallel to the loading

platform. Hence, six Celesco CLWG-150-MC4 linear potentiometers were selected for external dis-

placement transducers. The measurement range for each linear potentiometer is 0 to 150 mm (6

in). An external power supply provides the reference voltage for stroke measurements. Also, the

sign convention for actuator stroke is positive for extension (negative for retraction).

Hence, the external sensors were installed and conveniently oriented as close as possible

to the Cartesian axes, as shown in Figure 4.3. In consideration of this sensor arrangement, the
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Figure 4.2: Sign convention and location of Cartesian coordinate system for small-scale LBCB

LFKT Jacobian matrix J of the mapping from Cartesian coordinates to external sensor strokes

at the default position of the loading platform, as is obtained and presented in Figure 4.4. Each

component of the LFKT Jacobian matrix J represents the sensitivity values of sensor strokes for

a unit increment in the Cartesian motion. For instance, at the default configuration of the LBCB,

a positive unit increment in Cartesian coordinate δux = 1 mm will correspond to a negative

increment on the strokes of sensors X1 and X2 only, with values of δqX1 = δqX1 = −0.95 mm;

while, the stroke of the other sensors will be small. Moreover, this results are in good agreement

with previous observations by Nakata et al. (2010) on the kinematics of LBCB for classical hybrid

simulation tests.

4.3 Static force analysis of loading platform

The measurement of restoring forces from the test specimen is a fundamental quantity re-

quired for hybrid simulation. Typically, multi-actuator loading assembly have inline load cells

installed to each actuator. Thus, the restoring force in Cartesian coordinates can be obtained

through a static analysis of the parallel manipulator (Merlet, 2006).

Let f ∈ R6 be the restoring force vector in Cartesian space, and and τ ∈ Rn the measured

forces from load cells in actuator space. To obtain an estimation of the restoring forces at the
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Figure 4.3: External sensor system considered for estimation of Cartesian coordinates of motion
center

Figure 4.4: Jacobian matrix JMC2 considered for LFKT algorithm (translations in mm, rotations
in deg, strokes in mm)
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motion center in Cartesian coordinates (forces and moments), a force mapping between Cartesian

and actuator spaces is required. From the principle of virtual work:

δW = fT δu− τT δq (4.13)

By substituting the linearized kinematics equation (4.6) into the previous equation:

δW = fT δu− τTJδu

=
(
fT − τTJ

)
δu (4.14)

From equilibrium (δW = 0):

f = JTτ (4.15)

Therefore, to obtain the restoring forces in Cartesian space, the Jacobian matrix must be

solved first using the LFKT approach, and then evaluate the load cell measurements τ in (4.15).

Thus, force measurement task is highly dependent on the LFKT task in real-time execution.

4.4 Calibration of motion control system

Two calibration corrections are essential to improve the accuracy of the motion of the loading

assembly: (i) command calibration is required in order to match both the command and real

displacements measured from a standard reference; and (ii) external sensor calibration, where both

the estimated displacements from the external sensors is calibrated according to the real measured

displacements from a standard reference. In both cases, pseudo-static (very slow rate) motion

is considered. Also, the standerd reference is provided by Krypton K600 DMM, a contact-less

dynamic measuring machine, that provides very accurate Cartesian position measuring of up to

±0.02 mm in three-dimensional (3D) Cartesian space.

The loading trajectory was selected as a ramp-hold sequence to achieve very slow motion of

the small-scale LBCB, with two cycles per Cartesian coordinate, as shown in Figure 4.5. More
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Figure 4.5: Target Cartesian coordinate trajectory for calibration purposes

than 200, 000 data samples are collected for each channel in order to create linear regressors that

will serve for calibration correction purposes.

After the calibration iteration process, the results for command errors and measurement

errors are presented in Figure 4.6 and 4.7, respectively. It can be seen that the overall accuracy for

command displacements is less than 0.25 mm in translation, and 0.05 deg in rotation, results that

are in agreement with the calibrations performed by Nakata et al. (2010). In addition, the overall

accuracy for measurement displacements is less than 0.2 mm in translation, and less than 0.03

deg in rotation. Indeed, the LFKT algorithm together with the external measuring system is able

to accurately estimate Cartesian position of the motion center for the chosen loading trajectories.

Although, more research is required in order to assess the accuracy for other Cartesian trajectories

that are beyond the limits of this study.
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Figure 4.6: Cartesian command errors obtained after calibration procedure
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Figure 4.7: External measurement system errors obtained after calibration procedure
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4.5 Summary

In this chapter, a study of the loading assembly kinematics for maRTHS testing was performed

for motion control purposes. The loading assembly consists of multiple actuators connected in

parallel to a rigid platform, where the kinematic relationships between rigid body motion of the

loading platform in Cartesian space and the actuator strokes were derived. Then, two kinematic

transformations were presented in this study: (i) inverse kinematic transformation (IKT), to convert

command Cartesian position of the loading platform into individual actuator command strokes;

and (ii) linearized forward kinematic transformation (LFKT), which is an incremental scheme to

estimate measured Cartesian position of the loading platform from measured transducer strokes.

Following these steps, a force relationship between Cartesian and actuator coordinates was also

proposed, such that restoring forces of the test specimen can be directly measured using the sensors

installed on the multi-actuator loading assembly. Finally, a calibration procedure for accurate

position control of the loading platform was presented. The results for the calibration show very

small errors in Cartesian space, that are good enough for experimental testing purposes, provided

that the sampling rate will not exceed 1000 Hz.
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Chapter 5

System identification of
multi-actuator systems

5.1 Problem statement

To provide good reference tracking and robustness properties for multi-axial real-time hybrid

simulation, an accurate representation of the dynamics of the experimental setup is needed. The

goal of this chapter is to obtain a model of the multi-input, multi-output (MIMO) experimental

system that incorporates all the properties from the servo-hydraulic actuators, the test specimen

interaction, and any multi-actuator dynamic coupling effects, while ensuring desired characteristics

such as stability and minimality of the solution.

5.2 White box model

In this section, a physically-based model for a single servo-hydraulic actuator will be provided.

This model will be quite useful to capture the essential characteristics of single actuators when

combined into multi-actuator loading systems, which are very complex systems that can only be

be studied using a black box model approach. More information on black box modeling of single

and multiple actuator systems will be presented in Section 5.3.

A typical servo-hydraulic actuator is illustrated in Figure 5.1, which is composed of an electro-

hydraulic servo valve and a hydraulic actuator. The white box model of a servo-hydraulic actuator

consists in the mathematical representation of three components: (i) servo valve dynamics; (ii)

hydraulic actuator dynamics; and (iii) feedback control. The model of the servo-hydraulic actuator

can be represented as a block diagram, which is illustrated in Figure 5.2.

In particular, the effects of pipeline and power supply dynamics are not considered in this

model. Also, a further assumption is that the effects of pipeline dynamics are not significant,
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Figure 5.1: Schematic of a servo-hydraulic actuator (Carrion and Spencer, 2007)

Figure 5.2: Block diagram for dynamics of servo-hydraulic actuator

which is usually the case for low-frequency applications. In addition, the power supply (pumps) is

given such that it provides a constant supply pressure, which is usually considered as a reasonable

assumption.

5.2.1 Servo valve dynamics

Servo valves are very complicated devices, that are primarily used to control a source of fluid

power through mechanical motion of its components. A two-stage electro-hydraulic servo valve

is illustrated in Figure 5.1, where the first stage is composed of a torque motor, and the second

stage consists of a spool valve. This design allows for controlled flow through the valve, by sliding

the spool using a pilot valve driven by a flapper-nozzle and controlled by a feedback spring, while
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maintaining large hydraulic flows through the servo valve ports.

First, the dynamics associated to the torque motor and flapper-nozzle system are character-

ized. The torque motor is controlled by an electrical current ic. A positive current in the motor

will create a torque over the armature, which will move the flapper to the right. This will decrease

the flow from the right nozzle, and increase the flow on the left nozzle. Because of differential

pressure on the pilot lines, the spool will move to the left. The feedback spring will deform and will

create a restoring torque over the flapper, to counteract the torque due to input current. Hence,

the position of the spool is accurately controlled.

Then, the spool position response for a given input current can be approximately captured

by a first-order linear model, for a frequency range from 0 to 50 Hz (Thayer, 1965):

xv(s) =
kv

1 + τvs
ic(s) (5.1)

where xv is the spool position; ic is the input current; kv is the servo gain; and τv is the servo

rise time constant. In this dissertation, the servo valve manufacturer (Moog Inc.) have reported

a nominal rise time of τv = 18 ms for Moog G631 series servo valves, when subjected to different

step inputs, as shown in Figure 5.3. Also, the frequency response function of the Moog G631 series

servo valves is shown in Figure 5.4, where a ±25% input amplitude was considered, with operating

pressure of 3000 psi and ambient temperature of 38◦ C.

Subsequently, the valve flow equations are considered. As mentioned previously, the spool

valve is designed to control the source of fluid power. The spool displacement will cause hydraulic

fluid to flow from/to the ports that are connected to each chamber of the hydraulic actuator.

Hence, the relationship between the load flow QL and the spool displacement xv is expressed by

the pressure-flow equation (Merritt, 1967, p.85), which is based on Bernoulli principles:

QL = Cdwxv

√
1

ρ

(
Ps −

xv
|xv|

PL

)
(5.2)

where Ps is the supply (pump) pressure; PL is the load pressure of the hydraulic actuator, which

is equivalent to the pressure drop between the two actuator chambers; Cd is the coefficient of

discharge of the valve orifices; w is the opening or area gradient of the valve orifices; and ρ is the
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Figure 5.3: Step response of Moog G631 series servo valves (Moog, 2014)

Figure 5.4: Frequency response function of Moog G631 series servo valves (Moog, 2014)
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Figure 5.5: Flow-pressure plot for Moog G631-3002B servo valve

fluid density. Another way to express this flow-pressure equation is in terms of the servo valve

input current and rated properties:

QL = QR∆ic

√
PS − PL

∆PR
(5.3)

where QR is the rated flow of the servo valve for a given rated pressure drop ∆PR, and ∆ic = ic/i
max
c

is the normalized input current. Then, the flow-pressure plot for Moog G631-3002B servo valve is

shown in Figure 5.5, where QR = 10 lpm (2.5 gpm) at ∆PR = 1, 000 psi.

Then, the linearized equation of the pressure-flow relationship (Merritt, 1967, p.84) for a

servo valve is given by the following expression:

QL = K ′qxv −K ′cPL (5.4)

where K ′q is the valve flow gain, and K ′c is the valve flow-pressure coefficient. Both coefficients are

a function of the operating point, which is the origin (i.e., QL = xv = PL = 0 of the pressure-flow

curve.

In addition, servo valves usually present large nonlinear dynamic behavior due to hysteresis

of the torque motor, frictional forces, flow saturation, and other complex flow-induced forces.
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Nevertheless, capturing these nonlinear effects in the servo-hydraulic actuator model is not part of

the scope of this study.

5.2.2 Hydraulic actuator

The hydraulic actuator consists of hollow cylindrical tube with a piston inside that is able to

slide. The piston separates the fluid inside the tube in two chambers, as shown in Figure 5.1.

Each chamber is connected to an individual port of the servo valve, thus allowing fluid

pressure to be applied on the actuator chambers. The pressure of each chamber is exerted over the

piston, and the net force is then applied to a test specimen connected to the piston. Hence, two

governing equations are required to model a hydraulic actuator: (i) continuity (mass balance); and

(ii) equilibrium (force balance).

The continuity equation is basically a flow balance inside the cylindrical tube. This equation

assumes that flow has three components: (i) flow due to piston displacement; (ii) flow that escapes

the actuator due to leakage; and (iii) flow stored due to fluid compressibility.

QL = Aẋ+ ClPL +
Vt

4βe
ṖL (5.5)

where A is the area of the piston; Cl is the total leakage coefficient of the piston; Vt is the total

volume of fluid under compression in both chambers of the actuator; and βe is the effective bulk

modulus of the system, including hydraulic fluid, entrapped air, and mechanical compliance of

the chambers (Merritt, 1967, p.148). The continuity equation can also be expressed in frequency

domain as follows:

QL = Asx+ ClPL +
Vt

4βe
sPL (5.6)

PL(s) =
1

Cl + Vt
4βe
s

[QL(s)−Asx(s)] (5.7)

where the term Asx(s) is commonly referred to as the “natural velocity feedback” (Dyke et al.,

1995). Then, force equilibrium of the piston must be satisfied:
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mtẍ+ ctẋ+ kx+ Fs = fp (5.8)

fp = APL (5.9)

where mt is the total mass of the piston, specimen and loading attachments; ct is the viscous

damping of the actuator; k is the specimen stiffness; Fs is the force applied to the piston due to

seal friction; and fp is the net force developed by the piston.

In addition, it should be obvious that the trapped (compressed) volume of hydraulic fluid

in both actuator chambers is equivalent to a “hydraulic spring”. The hydraulic stiffness when the

piston is centered is equal to:

Kh =
4βeA

2

Vt
(5.10)

Moreover, the interaction with the total inertia produces a “hydraulic natural frequency”:

ωh =

√
Kh

mt
=

√
4βeA2

mtVt
(5.11)

This hydraulic natural frequency is an important parameter because it determines the overall

speed of response of the actuator (Merritt, 1967, p.140), and the frequency response of the hydraulic

actuator.

5.2.3 Feedback control

Displacement control is usually considered for servo-hydraulic actuators. Given an external

command displacement u, and the actuator displacement x measured by a displacement transducer

(e.g., LVDT), the servo error is defined as:

e(t) = u(t)− x(t) (5.12)

The goal is to determine input current ic(t), or control signal, such that the servo error e(t)

is minimized. A commonly used inner-loop control algorithm for servo-hydraulic actuators is PID
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control. It consists of proportional, integral, and derivative control, where each component have

its own specific properties and goals. The equation for PID control is given as follows:

ic(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

d

dt
e(t) (5.13)

where Kp, Ki, Kd are the proportional, integral, and derivative gains, respectively; and e is the

servo error.

The first component in PID controllers is the proportional control, where the control signal

is directly proportional to the instantaneous error e(t). Large proportional gains can be used to

increase the speed of transient responses, and get adequately small steady-state errors, but at the

expense of large overshoots and instability. In addition, integral control can drastically reduce the

steady-state error. In this case, the control signal is proportional to the accumulated servo error∫
e(t)dt. Moreover, derivative control is used when the goal is to improve stability, speeding up

transient response, and reducing overshoot; but, it has a negligible effect on steady-state errors.

The control signal in this case is proportional to the rate of change of the error ė(t).

Different combination of PID controllers can be considered for inner-loop feedback control

of servo-hydraulic actuators. For practical applications, only proportional control is considered in

this study:

ic = Kpe (5.14)

Unfortunately, proportional control is not able to solve the problem of steady-state errors

due to specimen interaction with the servo-hydraulic actuator, specially if the test specimen has a

large stiffness, i.e., it experiences large reaction forces (Nakata et al., 2007). Figure 5.6 illustrates

the influence of the reaction force of the test specimen on the actuator piston equilibrium. The

servo-hydraulic control system consisting of the actuator and servo valve is a mechanical system

by which the equilibrium of the piston is affected by the reaction force transferred through piston

rod. Without the influence of the reaction force, the drive current i holds the equilibrium pressures

at both sides of the piston, as shown in Figure 5.6a.

On the other hand, under the influence of relatively large reaction force F from the test
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(a) Without specimen interaction (b) With specimen interaction

Figure 5.6: Effect of specimen interaction in servo error (Nakata et al., 2007)

specimen, the drive current i′ that satisfy equilibrium of the piston will not satisfy perfect reference

tracking, as shown in Figure 5.6b. Thus, a residual actuator displacement error is introduced in the

servo-hydraulic system, that will be evidenced as undershoot errors. This issue can be mitigated

by adding a compensation bias term, without the need of adding an integral term to the controller.

More details on the issues of this steady-state bias term will be provided in Chapter 7, in particular

for the experimental study of a steel column specimen with large axial stiffness.

5.2.4 Combined dynamics of servo-hydraulic actuator

By combining the servo controller equation (5.14), the first-order servo dynamics model (5.1),

the linearized pressure-flow equation (5.4), the hydraulic actuator equations (5.7) and (5.8), and

assumming that seal friction is minimal (i.e. Fs → 0), then a fourth-order transfer function model

can be formulated for the servo-hydraulic actuator (Carrion and Spencer, 2007):

Gxu(s) =
b0

a4s4 + a3s3 + a2s2 + a1s+ a0
(5.15)

where
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b0 = Kp
KqA

Kc
(5.16)

a4 =
Vt

4βeKc
mtτv (5.17)

a3 =
Vt

4βeKc
mt +mtτv +

Vt
4βeKc

ctτv (5.18)

a2 = mt +
Vt

4βeKc
ct +

A2

Kc
τv + ctτv +

Vt
4βeKc

kτv (5.19)

a1 = ct +
Vt

4βeKc
k +

A2

Kc
+ kτv (5.20)

a0 = k +Kp
KqA

Kc
(5.21)

in which Kq = K ′qKv is the servo valve gain; and Kc = K ′c+Cl is the total flow pressure coefficient.

From this white box model, a total of eleven parameters are required to estimate the servo-

actuator dynamics, which are associated to properties of the servo controller, servo valve, hydraulic

actuator, and test specimen. These parameters can be experimentally identified; for example, by

performing a random excitation test, and then formulating a nonlinear constrained optimization

problem, the optimal parameter values that minimizes the model error can be obtained. An

illustrative example of parameter estimation of a single actuator is provided by Carrion and Spencer

(2007), where a nonlinear least-squares optimization was considered.

5.3 Black box model

In this section, a non-parametric frequency-domain method used to determine frequency

response functions from test data will be presented for single-input-single-output (SISO) and multi-

input-multi-output (MIMO) systems. The term non-parametric is associated to the fact that this

method does not consider a finite-dimensional parameter vector for the best description of the

system. In particular, SISO systems can represent the response of individual actuators; while,

MIMO systems will be useful for modeling of multi-actuator loading systems.
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5.3.1 Definitions

Let x(t) and y(t) be a pair of zero-mean, jointly wide-sense stationary (wss) stochastic pro-

cesses. Then, the auto-correlation function is defined by:

Rxy(τ) , E [x(t)y(t+ τ)∗] (5.22)

Moreover, the cross power spectral density (CPSD) is defined as the Fourier transform of the

cross-correlation function:

Sxy(ω) , F{Rxy}(ω) =
1

2π

∫ +∞

−∞
Rxy(τ)e−iτωdτ (5.23)

In practice, the discrete correlation function Rxy(k) is approximated with a biased correlation

estimate R̂xy(k):

R̂x(k) =
1

N

N−1−k∑
k=0

x(l + k)y∗(l) 0 ≤ k < N − 1 (5.24)

Therefore, the discrete CPSD estimate is defined as follows:

P̂xy(e
jω) =

L∑
k=−L

R̂xy(k)e−jωk L ≤ N (5.25)

For the case of L ≤ 10%N , the estimate is known as a correlogram. Then, for the case

L = N − 1, the estimate is known as a periodogram, which is primarily used for non-parametric

estimation of CPSD. The periodogram is easy to compute, but it has limited ability to produce

accurate estimates.

There are many methods to obtain better estimates for the periodogram; although, each

method differs in its variance and resolution characteristics. The overall performance will be limited

by the amount of data collected and the window chosen to reduce bias. For example, the Welch’s

procedure is an average modified periodogram estimate, which is asymptotically unbiased and has

good performance in terms of variance and resolution. The Welch’s procedure is obtained by

splitting the dataset into K possibly overlapping segments of length L. Then, a window function

is applied to each segment, and modified periodogram for each segment is obtained. Finally, all K
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periodograms are averaged. The Welch’s periodogram estimate P̂w is computed as follows:

P̂Welch
xy (ejω) =

1

K

K∑
k=1

P̂ (k)
xy (ejω) (5.26)

where:

P̂ (k)
x (ejω) =

1

N

L−1∑
n=0

|w(n)x(k)(n)e−jωn|2 (5.27)

In practical applications, the command cpsd() in Matlab was developed using this approach

for calculations of cross-spectrums of scalar or vector signals.

5.3.2 SISO LTI systems

First, consider the single-input, single-output (SISO) relationship in time-domain for a causal,

linear time-invariant (LTI) system, given by the following convolution integral:

y(t) = (h ∗ u)(t) ,
∫ t

0
h(t− τ)u(τ)dτ (5.28)

where h(t) is the impulse response function of the LTI system; u(t) and y(t) are the input and

output signals of the LTI system, respectively. The frequency-domain linear relationship can be

obtained by applying the Fourier transform to the previous equation:

Y (ω) = H(ω)U(ω) (5.29)

where H(ω) is the frequency response function (FRF) of the LTI system. A main assumption is that

the FRF is a deterministic expression for the dynamic system. Then, we can obtain relationships

between the input/output (I/O) signals with the FRF. The product Y (ω)Y ∗(ω) is given by:

Y (ω)Y ∗(ω) = H(ω)U(ω) {H(ω)U(ω)}∗ (5.30a)

= H(ω)H∗(ω)U(ω)U∗(ω) (5.30b)

= |H(ω)|2U(ω)U∗(ω) (5.30c)
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Taking the expectation E [·] at both sides, we obtain an expression for the output auto-

spectrum Syy(ω):

Syy(ω) = |H(ω)|2Suu(ω) (5.31)

where Suu(ω) is the input auto-spectrum. Similarly, the product Y (ω)U(ω)∗ can be obtained as

follows:

Y (ω)U∗(ω) = H(ω)U(ω)U∗(ω) (5.32)

Again, by taking the expectation E [·] of the later expression, we obtain the input-output

cross-spectrum Syu(ω):

Syu(ω) = H(ω)Suu(ω) (5.33)

This result will be used in the following derivation of estimates for H(ω). Now, let a SISO

LTI system with exogenous noise be considered for system identification, as shown in Figure 5.7,

where the input and output measurements, x(t) and y(t), respectively, are provided by the following

expressions:

x(t) = u(t) +m(t) (5.34)

y(t) = v(t) + n(t) (5.35)

where u(t) and v(t) are the I/O signals of the SISO LTI system; m(t) and n(t) are the input and

output noises, respectively. The auto-spectrum and cross-spectrum of the I/O measurements for

this problem are defined as follows:
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Figure 5.7: Single input, single output (SISO) dynamic system with extraneous noise

Sxx(ω) = Suu(ω) + Smm(ω) + Sum(ω) + Smu(ω) (5.36)

Syy(ω) = Svv(ω) + Snn(ω) + Svn(ω) + Snv(ω) (5.37)

Syx(ω) = Svu(ω) + Snu(ω) + Svm(ω) + Snm(ω) (5.38)

where:

Svv(ω) = |H(ω)|2Suu(ω) (5.39)

Svu(ω) = H(ω)Suu(ω) (5.40)

For the estimation of H(ω) using a black box approach, that is only using input/output (I/O)

measurements, two main approaches are proposed: (i) assuming no input noise; and (ii) assuming

no output noise. For the first approach, the main assumptions are that input noise m(t) = 0, and

the output noise is uncorrelated (i.e., Svn(ω) ≈ 0, Snv(ω) ≈ 0, and Snu(ω) ≈ 0). Then, the previous

equations are simplified as follows:

Sxx(ω) = Suu(ω) (5.41)

Syy(ω) = Svv(ω) + Snn(ω) (5.42)

Syx(ω) = Svu(ω) (5.43)
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Thus, the H1 estimate for the frequency response function H(ω) of the SISO LTI system is

obatined:

H1(ω) =
Syx(ω)

Sxx(ω)
(5.44)

A necessary condition for the H1 estimate to be well-conditioned, is that the input signal

u(t) must be persistently exciting, that is:

Suu(ω) > 0, ∀ω ∈ [0, ωc] (5.45)

or in other words, the auto-spectrum Suu(ω) must be invertible at least in the frequency range up

to a certain cutoff frequency ωc. Similarly, for the second approach where no output noise (i.e.,

n(t) = 0) is considered, and uncorrelated input noise (i.e., Sum(ω) ≈ 0, Smu(ω) ≈ 0, Svm(ω) ≈ 0)

is assumed, the expressions are simplified as follows:

Sxx(ω) = Suu(ω) + Smm(ω) (5.46)

Syy(ω) = Svv(ω) (5.47)

Syx(ω) = Svu(ω) (5.48)

Finally, noting that Sxy(ω) = S∗yx(ω), we obtain the expression for the H2 estimate:

H2(ω) =
Syy(ω)

Sxy(ω)
(5.49)

As explained by Rocklin et al. (1985), the estimate H1(ω) minimizes the error due to output

noise, but it could be sensitive to input noise. This situation yields an under-estimation of the true

frequency response H(ω). Also, the estimate H2(ω) minimizes the error due to input noise, but

it could be sensitive to output noise; hence, the H2 estimate can over-estimate the true frequency

response H(ω). Therefore, the relationship between these estimates and the true frequency response

H(ω) is given as follows:
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|H1(ω)| ≤ |H(ω)| ≤ |H2(ω)| (5.50)

Other estimates for H(ω) can be obtained for the general case of both correlated input and

output noise acting simultaneously on the sampled data. Assuming the input and output noise

sources to be uncorrelated and of equal amplitude results in the so-called Hv estimate, which is the

solution of a total least-squares optimization problem (Rocklin et al., 1985), given by the following

expression:

Hv(ω) =
Syx(ω)

|Syx(ω)|

√
Syy(ω)

Sxx(ω)
(5.51)

Moreover, the coherence function is defined to measure how much of the output power is

coherent (linearly related) with the input power. Then, the coherence function is given by the

following expression

γ2
yx(ω) =

|Syx(ω)|2

Syy(ω)Suu(ω)
(5.52)

0 ≤ γ2
yx(ω) ≤ 1 (5.53)

A value of γ2
yx(ω) = 1 is associated to a linear input-output relationship at the natural

frequency ω, which implies a perfect correlation between random processes x(t) and y(t); while, a

value of γ2
yx(ω) = 0 means that both signals are not correlated. Hence, if γ2

yx(ω) is smaller than 1,

it may indicate the presence of: (i) extraneous noise in the measurements, i.e., either input noise

m(t) or output noise n(t) are not zero; (ii) leakage errors of the discrete Fourier transform (DFT)

for auto and cross-spectrums; (iii) a nonlinear distortion; and/or (iv) other inputs besides x(t)

contributing to the output y(t). Then, the coherence function could be used to determine where

to trust data for curve fitting purposes (i.e. system identification). Finally, the noise spectrum for

each case is given by:
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Snn(ω) =
[
1− γ2

yx(ω)
]
Syy(ω), (approach 1, H1 estimate) (5.54)

Smm(ω) =
[
1− γ2

yx(ω)
]
Sxx(ω), (approach 2, H2 estimate) (5.55)

5.3.3 MIMO LTI system

Consider a multi-input, multi-output (MIMO) representation of a causal, LTI dynamic sys-

tem, described by the following equation:

v(t) = (h ∗ u)(t) (5.56)

where u ∈ Rm is the input vector; v ∈ Rp is the output vector; h ∈ Rp×m is the impulse response

matrix. Similarly to the previous section, let the measurement signals be defined as follows:

x(t) = u(t) + m(t) (5.57)

y(t) = v(t) + n(t) (5.58)

where x ∈ Rm and y ∈ Rp are real-valued input and output measurement vectors, respectively;

m ∈ Rm and n ∈ Rp are real-valued input and output noise vectors, respectively. Then, auto- and

cross-spectrums of the I/O measurements for the MIMO system can be obtained as follows:

Sxx(ω) = Suu(ω) + Smm(ω) + Sum(ω) + Smu(ω) (5.59)

Syy(ω) = Svv(ω) + Snn(ω) + Svn(ω) + Snv(ω) (5.60)

Syx(ω) = Svu(ω) + Snu(ω) + Svm(ω) + Snm(ω) (5.61)

where:
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Svu(ω) = H(ω)Suu(ω) (5.62)

Svv(ω) = H(ω)Suu(ω)H∗(ω) (5.63)

in which, H(ω) ∈ Cp×m is the frequency response matrix of the MIMO system. Then, similarly

to the SISO system, the H1 and H2 estimates are given by the following formulas (Bendat and

Piersol, 2011, Chapter 7):

H1(ω) =Syx(ω)S−1
xx (ω) (5.64)

H2(ω) =Syy(ω)S+
xy(ω) (5.65)

where Sxx ∈ Cm×m and Syy ∈ Cp×p are the input and output auto-spectrums, respectively; Syx ∈

Cp×m is the input/output cross-spectrum; (·)∗ is the Hermitian transpose; and (·)+ is the pseudo-

inverse of a non-square matrix for the general case where p 6= m. Also, note that pseudo-inverse of

a matrix X is defined as:

X+ = (X∗X)−1X∗ (5.66)

Following, the multiple coherence for a multi-input, single-output (SIMO) system describes

how much of the output signal power is explained by multi-input signals. The multiple coherence

is defined by:

γ2
y:x(ω) = 1− det [Syxx(ω)]

Syy(ω) det [Sxx(ω)]
, ∀ω (5.67)

where det(M) is the determinant of matrix M, and Syxx ∈ C(m+1)×(m+1) is the augmented spectral

matrix:

Syxx(ω) =

Syy(ω) Syx(ω)

Sxy(ω) Sxx(ω)

 , ∀ω (5.68)
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while Sxx ∈ Cm×m is the multi-output auto-spectrum, Syy ∈ C is the single-input auto-spectrum,

Syx ∈ C1×m and Sxy ∈ Cm×1 are the input-output cross-spectrums.

As previously discussed for the SISO case, the multiple coherence measures the degree of

linear correlation of multiple-outputs with a single-input, in the presence of output noise; a value

of γ2
y:x = 1 means perfect correlation, which is the case of no extraneous noise; while, γ2

y:x = 0

translates to uncorrelated inputs with output. Similarly, values of multiple coherence less than

unity may be associated to nonlinear behavior that is not captured by a linear representation, or

additional inputs that were not considered in the experiment.

5.4 Prediction-error methods

Prediction-error methods were developed to obtain parametric models of dynamic systems,

such that the error between the predictions of the model and the experimental observations are

reduced. These methods usually considers a gradient-based optimization algorithm to determine

the optimal parameters of the dynamic model.

Unfortunately, these methods show a tradeoff between model order and random error (vari-

ance). Higher model order (i.e., complex and very flexible model structures) can effectively reduce

systematic errors (smaller bias), but at the cost of higher variance. Also, lower model order (sim-

pler structures) can lower the model variance, but at a cost of higher systematic error (larger bias).

Furthermore, likelihood functions are not always convex, i.e. there may exist several local minima.

Therefore, the solution depends on good initial starting values (Ljung, 2010). In addition, the ap-

pearance of spurious modes may be associated to local minima in the optimization process. These

spurious modes may produce non-minimum phase models, that could impose severe restrictions

over controller classes.

The prediction-error method has been implemented in the MFDID toolbox for Matlab (Kim

et al., 2005). The MFDID toolbox consists of the following procedural steps: (i) an initial estimation

model is generated using a linear least-squares method; (ii) a nonlinear least-squares method (either

Steiglitz-McBride and/or Gauss-Newton) is applied to improve the initial estimation model; and

(iii) a maximum likelihood estimator is optimized using the Levenberg-Marquardt method.
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5.4.1 Actuator-space system identification

Carrion and Spencer (2007) proposed an experimentally-based modeling approach in fre-

quency domain for single actuators. The model structure is based on the study of white box

modeling from previous sections. Thus, a fourth-order transfer function is considered:

G(s,θ) =
b0

a4s4 + a3s3 + a2s2 + a1s+ a0
(5.69)

θ = {a0, a1, a2, a3, a4, b0}T (5.70)

where s ≡ jω is the Laplace variable, ω is the natural frequency, j =
√
−1 is the complex number,

and θ is the model parameter vector. Also, the transfer function model is equivalent to the FRF

function:

Ĥ(ω,θ) ≡ G(s,θ) (5.71)

Then, the prediction-error method is developed such that the error between the proposed

FRF model and the experimental FRF determined using black box method, is minimized:

θ∗ = arg min
θ

∑
ω

∣∣∣Hexp(ω)− Ĥ(ω,θ)
∣∣∣2W (ω) (5.72)

where θ∗ is the optimal parameter vector that minimizes the cost function, and W (ω) is a weighting

function. This procedure can be applied to individual actuators from a multi-actuator loading

assembly, using the data collected in actuator coordinates.

5.4.2 Cartesian-space system identification

To obtain a good fit between a MIMO transfer function model and the experimental data, a

good starting point is necessary, which should be sufficiently close to the global solution to avoid

getting stuck in local minima during the optimization process. One strategy to choose the model

order and starting guesses for all MIMO poles and zeros parameters, is to examine SISO transfer

functions for each individual actuator, and then combine them into an idealized MIMO transfer
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function in Cartesian space by using the kinematic transformations from Chapter 4.

First, the identification of SISO transfer functions for each individual actuator is conducted,

and assuming a rational polynomial function with four poles in the denominator, and no zeros in

the numerator:

G(i)(s) =
b
(i)
0

a
(i)
4 s4 + a

(i)
3 s3 + a

(i)
2 s2 + a

(i)
1 s+ a

(i)
0

(5.73)

where the single “i-th” actuator transfer function G(i)(s) ∈ R(s) is a rational polynomial in Laplace

variable s = jω (where ω is the natural frequency, and j =
√
−1 is the complex number); whereas,

b(i) and a
(i)
k (i, k = {1, 2, . . . , 6}) are the scalar coefficients that are dependent on properties from

the hydraulic actuator, fluid bulk modulus, servo valve, servo controller, and test specimen (Carrion

and Spencer, 2007).

A main assumption is that each actuator is ideally uncoupled with the rest. Then, the MIMO

transfer function in actuator space, GAct
yu (s) ∈ R6×6(s), is chosen to be a diagonal matrix (i.e., no

coupling effect is assumed in actuator space):

GAct
yu (s) = diag

{
G(1)(s), . . . , G(6)(s)

}
(5.74)

Subsequently, the initial guess for MIMO transfer function in Cartesian space, GCart
yu (s), is

built by performing a similarity transformation of GAct
yu (s) with the Jacobian matrix J from LFKT

relationships:

GCart
yu (s) = J−1GAct

yu (s)J (5.75)

Note that transformation matrix J is a change of coordinates that is not necessarily an

orthogonal matrix (i.e., GCart
yu (s)). Also, when performing the transformation to obtain the system

GCart
yu (s), the poles from the system GAct

yu (s) are maintained; however, transmission zeros (i.e.,

roots of polynomials in the numerator) will be affected for the system in Cartesian space. Take for

example the MIMO transfer matrix GAct
yu (s) ∈ R6×6(s) in Smith form:
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GAct
yu (s) =

1

d(s)
N(s) (5.76)

where d(s) is the monic polynomial that is obtained by finding the least common denominator

of all denominators in GAct
yu (s); and N(s) ∈ R6×6(s) is a polynomial matrix that has the same

dimensions of GAct
yu (s). Further, if transfer matrix GAct

yu (s) is diagonal, then N(s) must be diagonal

as well. Then, by performing the similarity transformation:

GCart
yu (s) = J−1

[
1

d(s)
N(s)

]
J (5.77)

=
1

d(s)

[
J−1N(s)J

]
Therefore, the transfer matrix GCart

yu (s) will have a new assignment of transmission zeros given

by the roots of numerator polynomial matrix J−1N(s)J, which is not a diagonal matrix anymore.

Furthermore, the system in Cartesian coordinates may have a configuration with non-minimum

phase (unstable) transmission zeros. This is an important detail that the control designer should

take into consideration: a dynamic system with unstable transmission zeros may be difficult, or

even impossible to control.

After this study, it was concluded that a sufficient structure of GCart
yu (s) for the LBCB (with

six actuators) is a maximum number of 24 poles for the denominator, and 20 zeros for all numerator

components of the 6× 6 transfer matrix. Finally, the prediction-error method for MIMO systems

is formulated:

θ∗ = arg min
θ

∑
m

∑
n

∑
l

∣∣∣Hexp
mn (ωl)− Ĥmn(ωl,θmn)

∣∣∣2Wmn(ωl) (5.78)

where Hexp(ωl) = [Hexp
mn (ωl)] and Ĥ(ωl,θ) = [Ĥmn(ωl,θmn)] are the experimental FRF and model

FRF matrices, respectively; W(ωl) = [Wmn(ωl)] is a weighting function; and m, n, and l, are the

output, input, and frequency indices, respectively. Finally, the MIMO transfer function model is

given by:
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GCart
yu (s,θ∗) ≡ Ĥ(ω,θ∗), (s ≡ jω) (5.79)

5.5 State-space realizations

5.5.1 From state-space model to transfer function

The MIMO experimental system in Cartesian coordinates, with m inputs and p outputs, can

be represented as a linear, time-invariant (LTI) state-space model:

ẋ = Ax + Bu (5.80a)

y = Cx + Du (5.80b)

where x ∈ Rn is the state vector, u ∈ Rm is the command input vector, and y ∈ Rp is the response

vector. Furthermore, state-space matrices have the following dimensions: A ∈ Rn×n, B ∈ Rn×m,

C ∈ Rp×n, and D ∈ Rp×m.

This model can also be represented as a transfer function, which will be useful in the following

sections of this paper. By performing the Laplace transform over (5.80), the MIMO transfer

function becomes:

Gyu(s) = Gsp(s) + D (5.81)

where Gyu(s) ∈ Rp×m(s) is a p×m matrix of rational polynomials on s = jω, which corresponds to

the Laplace variable; j is the complex number (j =
√
−1), and ω is the natural frequency (rad/s).

The transfer function is decomposed in a strictly proper part Gsp(s) defined by:

Gsp(s) = C (sI−A)−1 B (5.82)

while feedforward matrix D is defined by:
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D = lim
s→∞

Gyu(s) (5.83)

On the other hand, the transfer function can be represented as a rational function matrix as

follows:

Gyu(s) =
1

d(s)
N(s) + D (5.84)

where d(s) ∈ R(s) is a scalar monic polynomial, equal to the least common multiple of the denom-

inators from each entry of the matrix; and N(s) ∈ Rp×m(s) is a matrix polynomial.

Also, recalling Cramer’s rule for a matrix inverse:

(sI−A)−1 =
1

det(sI−A)
adj(sI−A) (5.85)

where det(·) and adj(·) are the determinant and adjoint of a matrix, respectively. Then, the

denominator and numerator of the MIMO transfer function have the following structure:

d(s) = det(sI−A) (5.86)

N(s) = C [adj(sI−A)] B (5.87)

Note that the denominator d(s) is the same as the characteristic polynomial of A; thus, poles

of Gyu(s) are somehow related to the eigenvalues of A. The following theorem from Hespanha

(2009) is useful to understand this relationship:

Theorem 5.1. The poles of a real rational transfer matrix Gyu(s) is a subset of the eigenvalues

of state matrix A.

5.5.2 From transfer function to realization

Given a proper transfer matrix Gyu(s) ∈ Rp×m(s), the realization of Gyu(s) is:
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ẋ = Ax + Bu y = Cx + Du x ∈ Rn,u ∈ Rm,y ∈ Rp (5.88)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m, such that the following equation holds:

Gyu(s) = C (sI−A)−1 B + D (5.89)

Unfortunately, this realization problem does not have a unique solution, which means that a

given MIMO transfer function may have multiple state-space descriptions. In addition, the number

of states may significantly vary for different realizations, which is always associated to the addition

of uncontrollable or unobservable dynamics, which pose a serious threat to modern feedback control

design.

For example, given the following MIMO transfer function with a strictly proper, rational

polynomial part:

Gyu(s) =
1

d(s)
N(s) + D (5.90)

where d(s) ∈ R(s) is the monic least common denominator:

d(s) = sn + an−1s
n−1 + an−2s

n−2 + · · ·+ a1s+ a0 (5.91)

while N(s) ∈ Rp×m(s) is a polynomial matrix. Then, the strictly proper part of the MIMO system

can be expanded by a linear combination of multiple SIMO systems:

Gsp(s) =
1

d(s)

[
Nn−1s

n−1 + Nn−2s
n−2 + · · ·+ N1s+ N0

]
(5.92)

where Ni ∈ Rp×m are constant matrices. Then, a realization can be constructed using for example

a controllable canonical form (CCF):
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 A B

C D

 =



−an−1Im×m −an−2Im×m · · · −a1Im×m −a0Im×m Im×m

Im×m 0m×m · · · 0m×m 0m×m 0m×m

0m×m Im×m · · · 0m×m 0m×m 0m×m
...

...
. . .

...
...

...

0m×m 0m×m · · · Im×m 0m×m 0m×m

Nn−1 Nn−2 · · · N1 N0 D


(5.93)

where Im×m and 0m×m are the identity and zero square matrices of order m, respectively; and the

realization has state-space matrices A ∈ Rnm×nm, B ∈ Rnm×m, C ∈ Rp×nm, and D ∈ Rp×m. In

this case, the number of states increases proportional to the number of inputs; this fact is related

to Theorem 5.1, where the state matrix A may have more eigenvalues than the poles of Gyu(s).

Then, the MIMO realization in observable canonical form (OCF) is given by:

 Ã B̃

C̃ D̃

 =



−an−1Ip×p Ip×p 0p×p · · · 0p×p Nn−1

−an−2Ip×p 0p×p Ip×p · · · 0p×p Nn−2

...
...

...
. . .

...
...

−a1Ip×p 0p×p 0p×p · · · Ip×p N1

−a0Ip×p 0p×p 0p×p · · · 0p×p N0

Ip×p 0p×p 0p×p · · · 0p×p D


(5.94)

where Ip×p and 0p×p are the identity and zero square matrices of order m, respectively; and the

realization has state-space matrices Ã ∈ Rnp×np, B̃ ∈ Rnp×m, C̃ ∈ Rp×np, and D̃ ∈ Rp×m. It can

be proved that both CCF and OCF realizations are equivalent, because both realizations share the

same Markov parameters:

CAkB = C̃ÃkB̃, ∀k ≥ 0 (5.95)

But, state matrices A and Ã from CCF and OCF realizations are not equal, and may have

different number of states (when p 6= m). Moreover, the number of states of CCF and OCF

realizations (nm and np, respectively) are clearly greater than the order of polynomial d(s), which
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is n in this case. The growth in number of states of a realization can be attributed to spurious

mode, that can be either uncontrollable or unobservable states. This spurious states could seriously

hinder the design of robust controllers.

Thus, the problem of finding a realization of Gyu(s) that minimizes the number of spurious

modes originated by the realization procedure is of great importance. Hence, a minimal realization

is defined as the realization with the smaller order posible, or one with the minimum number of

states possible. Moreover, the following theorem summarizes the importance of obtaining a minimal

realization from a MIMO transfer function.

Theorem 5.2. A realization of a transfer function Gyu(s) is minimal if and only if (A,B) is

controlable and (A,C) is observable.

A general approach to accomplish this task is through partial fractions expansion of the

strictly proper part of the MIMO transfer function:

Gsp(s) =
1∏n

i=1(s− pi)
N(s) =

n∑
i=1

1

(s− pi)
Ri (5.96)

where {pi, ∀i ∈ [1, n]} are the poles, and {Ri, ∀i ∈ [1, n]} are the remainder matrices. Then, the

minimal realization can be obtained by using a modal form with a diagonal matrix A, and matrices

B and C obtained from factorization of Ri. But, this approach might fail if the expansion is not

possible due to its size, and if the system has repeated poles. However, another approach may still

be found by general factorization of the transfer function. For example, the transfer function can

be right coprime factorized as:

Gsp(s) = NR(s)D−1
R (s) (5.97)

where NR(s) and DR(s) matrices must be right coprime to ensure minimality, which means that

both polynomial matrices must have no common roots. With this right-factorization, a realization

can be constructed using the controllable canonical form (e.g., Varga, 1998).
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5.5.3 Model reduction

An alternative way to obtain a minimal realization from a MIMO transfer function, is to

reduce the order of a non-minimal realization by elimination of the uncontrollable and/or unob-

servable states. Hence, the proposition is as follows: given a realization (A,B,C,D), if (A,B)

is not controllable and/or (A,C) is not observable, then there exists a lower-order equivalent re-

alization (Ar,Br,Cr,D) for the system. In that case, if (Ar,Br) is controllable and (Ar,Cr) is

observable, then this lower-order realization is of minimal degree.

A general approach to obtain this lower-order realization is through balanced truncation.

The problem to obtain a reduced-order model is presented as follows:

Given: transfer function G(s) with realization (A,B,C,D), where A ∈ Rn×n is Hurwitz

(i.e., asymptotically stable).

Find: reduced-order transfer function Gr(s) with realization (Ar,Br,Cr,Dr), where Ar ∈

Rr×r is Hurwitz

Such that: ‖G−Gr‖∞ is minimized and dim(Ar) < dim(A)

Thus, a way to obtain the reduced-order model is by defining bounds for the error norm

‖G − Gr‖∞, such that an optimization procedure can be employed. In the following section,

a methodology consisting on the inspection of singular values of the transfer function G(s) will

be considered for balanced truncation. In essence, each singular value G(s) indicates how much

energy is transferred from inputs to outputs of the system. Then, the states with negligible energy

contributions can be removed to obtain the reduced-order model of the system.

First, the observability and controllability gramians of the system are required for the follow-

ing study. Given a system G(s) with realization (A,B,C), where D = 0 is assumed without loss

of generality. The observability gramian of (A,C) is a positive semi-definite matrix defined as:

Yo =

∫ ∞
0

eA
∗τC∗CeAτdτ (5.98)

If the system is observable, then Yo is strictly positive definite. Also, the observability gramian

can be used to estimate the amount of output energy for a given initial condition x0:
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‖y‖2 = x∗0Yox0 (5.99)

While, the controllability gramian of (A,B) is a positive semi-definite matrix defined as:

Xc =

∫ ∞
0

eAτBB∗eA
∗τdτ (5.100)

Similarly, if the system is controllable, then Xc is strictly positive definite. In addition, if the

system must be controlled to reach a given target state x0, the minimum control energy is given

by the following expression:

‖uopt‖2 = x∗0X
−1
c x0 (5.101)

On the other hand, given a non-singular matrix T, a change of state bases is defined as

x = Tx̃ (5.102)

Then, the equivalent realization (Ã, B̃, C̃) is obtained through similarity transformation

Ã = T−1AT, B̃ = T−1B, C̃ = CT (5.103)

Likewise, a similarity transformation over observability and controllability gramians is ob-

tained:

Ỹo = (T−1)∗YoT
−1 (5.104)

X̃c = TXcT
∗ (5.105)

Furthermore, the Hankel singular values of the system G(s) are defined by the square roots

of the eigenvalues of the Hankel matrix YoXc

σi =
√
λi (YoXc), ∀i = [1, n] (5.106)
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The Hankel matrix and Hankel singular values are independent of the choice of state bases.

Then, the realization (Ã, B̃, C̃) is said to be balance if transformation matrix T exists such that

both observability and controllability gramians are equal

Ỹo = X̃c = Σ (5.107)

where Σ is a positive definite, diagonal matrix, of Hankel singular values of transfer system G(s),

sorted from highest to lowest values

Σ = diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ . . . ≥ σn > 0 (5.108)

Consequently, the error norm ‖G−Gr‖∞ can be bounded from above and below to obtain a

measure of accuracy of the reduced-order realization. Both upper and lower bounds are determined

with information from Hankel singular values of system G(s):

σr+1 ≤ ‖G−Gr‖∞ ≤ 2
n∑

i=r+1

σi (5.109)

where r < n is the number of retained states from the reduced-order model, with the necessary

assumption that σr+1 < σr which is true for asymptotically stable systems. Hence, the error norm

is bounded by the choice of number of retained states r from the original system.

After computing a balanced realization (Ã, B̃, C̃) by means of singular value decomposition,

the following partition is applied over the balanced realization:

Ã =

Ã11 Ã12

Ã21 Ã22

 , B̃ =

B̃1

B̃2

 , C̃ =

[
C̃1 C̃2

]
(5.110)

where
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Ỹo = X̃c = Σ =

Σ1 0

0 Σ2

 =



σ1

. . .

σr

σr+1

. . .

σn


(5.111)

and Σ1 are the retained singular values for the reduced model, which should correspond to both

observable and controllable states. Then, the reduced-order balanced realization (Ar,Br,Cr) is

chosen as

Ar = Ã11, Br = B̃1, Cr = C̃1 (5.112)

with retained Hankel singular values Σ1 = {σ1, . . . , σr}. As mentioned previously, the error norm of

the balanced truncation is upper bounded by
∑n

i=r+1 σi. The results of this procedure are sensitive

to the choice of retained states r. Therefore, multiple balanced truncations may be necessary to

determine the best fit by trial and error.

5.6 Experimental results

5.6.1 Experimental FRF of the bare loading platform

First, a black-box model of the multi-actuator loading assembly without specimen interaction

is obtained. This experimental FRF will serve as a baseline to compare the situation where specimen

interaction affects the dynamics of the multi-actuator loading system.

An experimental modal analysis is conducted to obtain experimental frequency response

functions (FRF) of the MIMO system. For this purpose, stationary, mutually uncorrelated, random

signals are generated, with a cutoff frequency of 25 Hz. The command and measured Cartesian

coordinates are considered as input and output signals to the system, respectively. In other words,

input is defined as u(t) , ucmd(t), and output is defined as y(t) , umeas(t) . Then, the H1 estimate

for the multivariate FRF from command u(t) to response y(t) is given by the following expression:
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Hyu(ωk) = Syu(ωk)S
−1
uu (ωk), k ∈ {1, . . . , N} (5.113)

where Suu(ωk) ∈ C6×6 is the auto-power spectral density of the commands u; Syu(ωk) ∈ C6×6 is

the cross-power spectral density of the responses y and commands u; and ωk is the discrete natural

frequency. One necessary condition to obtain the experimental FRFs is that the matrix Suu(ωk)

should be invertible for all frequencies ωk.

Moreover, the experimental FRF must exhibit some expected properties from the test setup,

such as: (i) DC (static) response (e.g., unity gain and zero phase at ωk = 0) for diagonal compo-

nents; (ii) frequency-dependent phase (i.e., measured response is indeed delayed with respect to

the command signal); and (iii) dynamic coupling patterns, expressed in terms of non-zero gains

for the off-diagonal components of the transfer matrix. Note that these three properties may be

aggravated every time a stiffer physical specimen is connected to the test equipment.

Consequently, the experimental magnitude and phase plots for the small-scale LBCB without

any test specimen attached to the loading platform are shown in Figures 5.8 and 5.9, respectively.

As expected, the results for the diagonal components show unit gain, zero phase, static (DC)

response, and a roll-off in magnitude with increasing frequency. Also, the phase is inversely pro-

portional to the frequency content, meaning that the measured response is indeed delayed with

respect to the command signal.

In addition, the off-diagonal components of this transfer matrix show coupling effects between

Cartesian coordinates when there is no presence of a test specimen attached to the loading platform.

Some coupling features are more important than others; for example, measured translation uMeas
z

is largely coupled with command rotation θCmd
y for the frequency range between 10 and 20 Hz.

Furthermore, the multiple coherence is illustrated in Figure 5.10. The multiple coherence for

all Cartesian outputs have values close to 1 for the frequency range between 0 to 20 Hz, which

indicates that the power for each output signal is highly correlated by the multi-input signals

measured in the experiment. Although, the multiple coherence of output channels uz and θz have

some deterioration in coherence compared to the rest output channels, but still within reasonable

limits.
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Figure 5.8: Magnitude plot of small-scale LBCB system without specimen interaction
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Figure 5.9: Phase plot of small-scale LBCB system without specimen interaction
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Figure 5.10: Multiple coherence plot for small-scale LBCB without specimen interaction
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5.6.2 Experimental FRF with specimen interaction

The test specimen chosen for this experimental validation is a φ1− 1/4′′× 18′′ (φ31.75mm×

457.2mm) steel round bar column with rigid connections at both ends. An important characteristic

of the experimental specimen is the large stiffness in the axial direction compared to the actuator

force capacity. Therefore, the effect of attaching the test specimen over the loading platform is

equivalent to imposing a kinematic constraint on the motion of the loading assembly. Hence, the

loading assembly cannot to move its motion center in the vertical direction, i.e. uz = 0.

The experimental FRF of the loading assembly with specimen interaction is shown in Figures

5.11 and 5.12, and compared to the bare platform situation (i.e., no specimen interaction). Also,

the effect of specimen interaction on the dynamics can be observed from the magnitude plot,

specifically for the vertical translation uz where the magnitude drops to approximately −20 dB

(i.e., ×1/10 reduction). Moreover, all the diagonal components have small reductions in magnitude,

which are attributed to restoring forces exerted by the specimen over the loading assembly (see

Section 5.2.3 for further details). Similarly, some off-diagonal components of the experimental FRF

show increased degree of coupling, which was not observed for the bare loading platform case. For

example, an increased coupling between command translation uz and command rotation θy with

measured translation ux is recognized. Hence, any potential errors on the command rotation in

Y direction could create a detrimental effect in the tracking control of the translation in the X

direction.

Additionally, Figure 5.13 illustrates the effect of specimen interaction on the multiple co-

herence plot obtained from black-box modelling. As it was expected, the multiple coherence for

output channel uz drops significantly compared to the bare platform case. Thus, the uz output

signal cannot be explained entirely by the input signal information, and the reliability of the model

to capture this output channel is deteriorated. Nevertheless, the multiple coherence for other

Cartesian coordinates still remain close to 1 for the frequency range of interest.
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Figure 5.11: Magnitude plot for small-scale LBCB with interaction of the steel column specimen
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Figure 5.12: Phase plot for small-scale LBCB with interaction of the steel column specimen
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Figure 5.13: Multiple coherence plot for small-scale LBCB with interaction of the steel column
specimen
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5.6.3 Sensitivity of experimental FRF

The large axial stiffness of the test specimen can greatly affect the numerical precision of the

models developed through system identification. For this matter, the condition number of a MIMO

system is defined to measure the degree of sensitivity of the MIMO system to input perturbations:

γG(ω) =
σ̄G(ω)

σG(ω)
(5.114)

where σ̄G(ω) and σG(jω) are the largest and smallest singular values of MIMO transfer matrix

G(jω), evaluated at frequency ω.

Hence, if γG(ω) is large (e.g., γG(ω) > 10), then the system is ill-conditioned, and the system

may be sensitive to unstructured input uncertainty. For illustration purposes, Figure 5.14 show

the singular values of the multi-actuator system for two scenarios: (i) no specimen attached (bare

platform); and (ii) specimen attached. Clearly, the effect of specimen interaction will create a

spread over the singular values, with a significant increase of the ratio between the largest and

smallest singular value.
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Figure 5.14: Effect of specimen interaction over singular values of multi-actuator system

The condition numbers are presented in Figure 5.15. When the system is not connected to the

test specimen, the condition number is relatively small, indicating a well-conditioned problem for

system identification purposes. Whereas, when the specimen is attached to the loading platform,

the condition number increases drastically, and the system now is ill-conditioned.
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Figure 5.15: Experimental condition numbers for multi-actuator system

To improve numerical conditioning, the system can be truncated by removing any weakly

observable or controllable signal. In this case, the translational uz Cartesian coordinate can be

removed, which indeed is weakly observable due to the presence of the axially stiff specimen. Thus,

the condition number reduces significantly for the truncation case, as seen in Figure 5.15. In

addition, the effect of coordinate truncation over the singular values can be observed in Figure

5.16.

5.6.4 Transfer function model in actuator space

A transfer function model for each independent actuator, including specimen interaction, was

obtained by following the procedure from Section 5.4.1. For sake of simplicity, all actuator models

were assumed to have a third-order structure, with three poles and no zero.

Gx1(s) =
1.865× 106

s3 + 2.860× 102s2 + 3.178× 104s+ 1.893× 106
(5.115)

Gx2(s) =
1.495× 106

s3 + 2.898× 102s2 + 2.777× 104s+ 1.507× 106
(5.116)

Gy1(s) =
2.336× 106

s3 + 2.928× 102s2 + 3.382× 104s+ 2.338× 106
(5.117)
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Figure 5.16: Effect of output channel removal over singular values of multi-actuator system with
attached steel column specimen

Gz1(s) =
1.864× 106

s3 + 3.103× 102s2 + 3.262× 104s+ 1.852× 106
(5.118)

Gz2(s) =
2.200× 106

s3 + 3.156× 102s2 + 3.332× 104s+ 2.285× 106
(5.119)

Gz3(s) =
2.226× 106

s3 + 2.889× 102s2 + 3.298× 104s+ 2.319× 106
(5.120)

In addition, the magnitude and phase plots of single actuators are presented in Figures 5.17

and 5.18, respectively. A good fit between the transfer function model and the experimental FRF

data for single actuators is obtained. Also, the results for each single actuator show static (DC)

responses with almost unity gain and zero phase at f = 0, as expected. Likewise, the results proved

that the phase angle decreases with frequency, and this relationship is not always linear for the

frequency bandwidth of interest.
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Figure 5.17: Magnitude plot of single actuators with interaction of the steel column specimen
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Figure 5.18: Phase plot of single actuators with interaction of the steel column specimen
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5.6.5 Transfer function model in Cartesian space

Because the Cartesian coordinate uz is weakly observable, the nominal plant model GCart(s) ∈

R6×6(s) must be modified to reproduce this kinematic constraint before designing model-based

controllers for RTHS testing. A practical solution that was employed was to modify the Jaco-

bian matrix J required for similarity transformation from actuator to Cartesian coordinates, by

including the following kinematic constraint relationship:

u = Tū (5.121)



ux

uy

uz

θx

θy

θz



=



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





ux

uy

θx

θy

θz


(5.122)

Then, the modified Jacobian matrix is computed as:

J̄ = JT (5.123)

Next, the starting guess for the transfer system in Cartesian space is obtained by similar-

ity transformation in (5.75), using the modified Jacobian J̄. Finally, the system identification is

conducted in Cartesian space as described in Section 5.4.2. The outcome is a square transfer ma-

trix, ḠCart(s) ∈ R5×5(s), associated only to the controllable outputs. This modification reduces

the dimension of the nominal plant and the model-based compensator, so care must be taken in

the implementation of the outer-loop controller to be consistent with the target, measured, and

command signal dimensions.

The magnitude and phase plots of the MIMO model in Cartesian space are presented in

Figures 5.19 and 5.20, respectively. The initial Cartesian model obtained from (5.75), and the

final Cartesian model after conducting the parametric optimization with the MFDID toolbox, are
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Figure 5.19: Magnitude plot of modified nominal plant with stiff axial specimen

compared with the experimental FRF data. The initial model is able to represent most of the

experimental FRF components of the MIMO transfer system, especially for the diagonal compo-

nents. But, most off-diagonal components have large deviations that may be induced by the axial

stiffness of the test specimen, which effects are not considered on the procedure to obtain the initial

models from similarity transformations. Nonetheless, the system identification procedure yields a

final model that matches well with the experimental FRF data, which is sufficient for controller

synthesis.

The final transfer function model of the multi-actuator loading assembly in Cartesian space

is included in Appendix B.1. The MIMO transfer function is expressed as a real rational matrix

Gyu(s), with a 18-degree polynomial on the denominator d(s), and 15-degree polynomials for each

component of the numerator matrix N(s).
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Figure 5.20: Phase plot of modified nominal plant with stiff axial specimen
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5.6.6 State-space realization

A state-space realization of the identified MIMO transfer function is obtained by using

the Control System Toolbox from Matlab. In particular, a controllable canonical realization

(A,B,C,D) is obtained through the function ss(). But, as it was explained in Section 5.5,

this realization is not necessarily minimal. The number of states of the realization is equal to 90,

which is equal to the number of roots of the denominator d(s) times the number of inputs of the

system (i.e., 18× 5 = 90). Hence, a balanced truncation is necessary to remove any unobservable

or uncontrollable states from this realization.

To obtain a balanced realization, the function balreal() was employed for a frequency

interval from 0 to 25 Hz. The Hankel singular values (HSV) of the balanced realization are presented

in Figure 5.21. After a close inspection of the HSV plot, a reasonable choice of number of states to

retain is exactly the number of roots from the denominator polynomial d(s), i.e., choosing r = 18.

This way the reduced-order realization will have a number of states that matches with the poles of

the transfer function, in such a way the system will be close to its minimal degree.
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Figure 5.21: Hankel singular values (HSV) from balanced realization

The model reduction is performed using the modred() function with the ’Truncate’ option

to simply remove the states and avoid the enforcement of matching DC gains. The reduced-order

realization in modal canonical form is presented in Appendix B.2.

In addition, Figures 5.22 and 5.23 show the comparison between the original realization (90
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Figure 5.22: Magnitude plot of reduced-order state-space realization

states), and the reduced-order realization (18 states). The difference in terms of the diagonal com-

ponents of both realizations is relatively small. Also, the off-diagonal components with predominant

coupling effects were also captured well by the reduced-order realization.

Likewise, the plot of singular values of both realizations is observed in Figure 5.24. The

match between realizations is very good for the first four singular values for a frequency range up

to 20 Hz. While, the lowest singular value have a larger error for frequencies greater than 5 Hz.
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Figure 5.23: Phase plot of reduced-order state-space realization
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Figure 5.24: Singular values of reduced-order state-space realization
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5.7 Summary

In this chapter, a linear, time-invariant, dynamical model for the multi-actuator loading as-

sembly considered for multi-axial real-time hybrid simulation (maRTHS) testing was developed.

The system is expressed in terms of a multi-input, multi-output (MIMO) model, with a structure

that is based on knowledge from single servo-hydraulic dynamics. Then, a proposed methodology

was to determine a black-box model of the MIMO system, by means of multivariable experimental

modal analysis. Afterwards, a transfer function model is obtained through MIMO system identifi-

cation.

The experimental results reveal that the task of obtaining models for individual actuators is

generally straightforward; but, a MIMO model in Cartesian space is much more difficult to obtain

due to the large order of the dynamical system. Nevertheless, MIMO models in transfer function and

state-space formats were successfully developed for the multi-actuator loading assembly, including

specimen interaction. These models can accurately capture the dynamics in Cartesian space of

multi-actuator systems, something that is not possible to achieve with simpler pure time delay

models commonly used in time-domain compensation techniques in RTHS testing.

Furthermore, an interesting coupling pattern is observed whenever a test specimen is con-

nected to the loading platform, which is an effect that is very difficult to accurately predict from

a pure physics-based approach. Moreover, if the coupling effects are disregarded for controller

synthesis, potential systematic errors may impact the tracking performance and even stability of

the maRTHS test.
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Chapter 6

Model-based compensation of
multi-actuator system

6.1 Problem statement

An outer-loop controller is required to reduce any reference tracking errors between target

and measured displacements of the test specimen in Cartesian coordinates. The proposed design

will consider a model-based compensation approach in Cartesian space, which is quite different

from other RTHS solutions where single actuator feedback have been considered. The proposed

Cartesian-based compensator will ensure that the correct boundary conditions are imposed into the

physical specimen, because Cartesian-space control can ensure a more reliable tracking in dynamic

testing (Paccot et al., 2009).

Hence, a two-stage approach is proposed for the design of the model-based controller. First,

a feedforward compensator is designed, which will be the main responsible of reducing the track-

ing errors. Then, a feedback regulator is included to improve the stability and robustness of the

controlled system. The design of both components is achieved independently to each other. Af-

terwards, both compensator and regulator are connected using the same architecture proposed

previously in Figure 3.4. Finally, numerical simulations are required to assess the performance of

the final controller design, before implementation in the real experiment.

6.2 Model-based compensation in maRTHS

To enable accurate and stable response of the RTHS test, different alternatives for time-

domain or frequency-domain compensation techniques have been presented in the literature. For

the purposes of this research, a model-based controller (Carrion and Spencer, 2007; Carrion et al.,

2009; Phillips and Spencer, Jr., 2012, 2013a) is considered for the design of an outer-loop controller
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Figure 6.1: Feedforward-feedback compensator architecture for multi-axial RTHS testing

in Cartesian space.

The model-based controller is based on a feedforward-feedback control architecture, as shown

in Fig 6.1. The controller provides a command signal that is determined by the following expression:

u(t) = uff(t) + ufb(t) (6.1)

where u(t) , ucmd(t) ∈ R6 is the Cartesian command signal; uff(t) ∈ R6 is the feedforward

command signal; and ufb(t) ∈ R6 is the feedback command signal. Both components of the

controller are calculated through a linear system with the following equations in Laplace domain:

uff(s) = Kff(s)r(s) (6.2)

ufb(s) = Kfb(s)e(s) (6.3)

where r(t) , utarget(t) is the target (desired) Cartesian signal; y(t) , umeas(t) is the Cartesian

measurement signal from the experimental setup; e(t) = y(t)−r(t) is the tracking error signal. Also,

the signals in Laplace domain are given by: r(s) , L{r(t)}, y(s) , L{y(t)}, and e(s) = r(s)−y(s),

where L{·} is the Laplace transform operator.

Given this control architecture, the feedforward component of the command signal is obtained

by passing the target (desired) signal originated from the numerical substructure though a linear

system Kff(s) (called the feedforward controller); while, the feedback component of the command

signal is obtained by passing the tracking error (i.e., the error between the target signal and

measured signal from the physical plant) through a linear system Kfb(s) (called the feedback
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controller). Hence, the feedforward compensator is the prime responsible for tracking the target

displacements. On the other hand, the feedback controller provides additional robustness to the

system when the feedforward is not able to perfectly track the target displacements due to potential

model uncertainty.

6.3 Design of feedforward compensator

6.3.1 Inverse-based compensation

The feedforward compensator Kff(s) is designed by employing the inverse-based compensa-

tion approach. The main idea is to cancel all servo-hydraulic actuator dynamics of the system by

implementing an ideal feedforward controller that is defined by the inverse model of the system.

For illustrative purposes, assuming a single-input, single-output (SISO) system with a nomi-

nal transfer function G(jω), the ideal feedforward compensator K ideal
ff (jω) is chosen as the inverse

of transfer function G(jω):

K ideal
ff (jω) = G−1(jω) (6.4)

where j =
√
−1 is the complex number, and ω is the natural frequency (note that s = jω is the

Laplace variable). Therefore, if we connect the ideal feedforward controller to the plant system in

series, as shown in Figure 6.2, the open-loop transfer function can be written as follows:

Lideal(jω) = G(jω)K ideal
ff (jω)

= G(jω)G−1(jω)

= 1, ∀ω (6.5)

This result shows that in theory we could achieve perfect reference tracking using an inverse-

based feedforward compensator, which yields unit-gain (|L(jω)| = 1), zero-phase (∠L(jω) = 0),

open-loop system dynamics.

Unfortunately, this ideal feedforward is quite difficult to obtain. In most cases, the plant
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Figure 6.2: Schematic of an ideal feedforward compensator

model consists of a square, strictly proper, rational transfer matrix; therefore, the inverse is a non-

proper system (i.e., it will grow unbounded as the frequency approaches infinity), and consequently

the ideal feedforward cannot be implemented in real-time. Moreover, if the plant model is non-

minimum phase (i.e., it has real positive zeros), then the inverse will result in real positive poles,

meaning that the controller is unstable. Finally, if the system is not square (i.e., different number

of inputs and outputs), then obtaining an ideal feedforward is not possible because the transfer

matrix is not invertible. Some approximations for feedforward have been provided in the literature,

all of them showing advantages and disadvantages (Butterworth et al., 2008; Devasia, 2002; Lee

and Salapaka, 2009; Lunenburg et al., 2009; Tomizuka, 1987; Zou and Devasia, 1999). More often

than not, the main disadvantage is the complexity of the different approaches that move away from

the simple and intuitive idea of using feedforward in the first place.

Nevertheless, a straightforward and rational approach to approximate the inverse model for

feedforward design was presented by Phillips and Spencer, Jr. (2013b). Basically, it consists in

performing estimations of the experimental FRF of the inverse system:

Kff(ωk) = Guy(ωk)

= Suy(ωk)S
−1
yy (ωk) (6.6)

where Syy ∈ C6×6 is the auto-power spectral density matrix of the measurement signal y(t), and

Suy ∈ C6×6 is the cross-power spectral density matrix of the commands u(t) and measurements

y(t), respectively. An important requirement for the output auto-spectrum Syy is that it must

be invertible to obtain the inverse FRF estimate. An example when this matrix inversion is not

always possible because of numerical singularities will be discussed in Section 6.3.2
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Then, a non-proper continuous transfer function can be identified from the FRF data using

the MFDID toolbox (Kim et al., 2005). The continuous transfer function of the feedforward

compensator is assumed to have only three zeros in the numerator, and no pole in the denominator:

Kff(s) = [kij(s)]i,j={1,...,6} (6.7)

kij(s) = aij + bijs+ cijs
2 + dijs

3 (6.8)

where Kff(s) ∈ R6×6(s) is a matrix polynomial in s, and kij(s) ∈ R(s) is a scalar polynomial

in s. Then, the non-proper components of the model (i.e., time derivatives) are approximated

by a backwards difference method. Hence, a discrete-time finite impulse response (FIR) filter is

obtained, that will create a command signal for delay compensation purposes as a function of higher

order time derivatives of the target signal (i.e., displacement, velocity, acceleration, jerk).

uff[k] = Kffr[k] (6.9)

Kff = [kij ]i,j={1,...,6} (6.10)

kij =

[
aij bij cij dij

]
(6.11)

r[k] =

[
r1[k] r2[k] r3[k] r4[k] r5[k] r6[k]

]T
(6.12)

rj [k] =

[
rj [k] ṙj [k] r̈j [k]

...
rj [k]

]
, j = {1, . . . , 6} (6.13)

where uff[k] ∈ R6 is the discrete-time feedforward control signal; Kff ∈ R6×24 is the feedforward

gain; kij ∈ R1×4 are the feedforward coefficients from target “j” to control “i”, obtained from

(6.8); r[k] ∈ R24 is the discrete-time target signal in terms of discrete estimates at time step “k” of

the displacement (rj [k]), velocity (ṙj [k]), acceleration (r̈j [k]), and jerk (
...
rj [k]); and rj [k] = rj(kT )
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is the discrete-time target signal, with sampling period T .

In addition, the 2nd order accurate backwards difference method is used to estimate higher-

order derivatives of the target signal:

ṙ[k] ≈ 3r[k]− 4r[k − 1] + r[k − 2]

2T
(6.14)

r̈[k] ≈ 2r[k]− 5r[k − 1] + 4r[k − 2]− r[k − 3]

T 2
(6.15)

...
r[k] ≈ 5r[k]− 18r[k − 1] + 24r[k − 2]− 14r[k − 3] + 3r[k − 4]

2T 3
(6.16)

6.3.2 System identification of inverse transfer function

For the particular case of specimen interaction with the multi-actuator loading assembly, it

was observed that the output auto-spectrum Syy(ωk) was numerically singular due to the high

axial stiffness of the steel column in the vertical direction. Therefore, for the purpose of obtaining

a model of the inverse MIMO system for feedforward design, the vertical translation uz is required

to be condensed and removed from the inverse model. Therefore, a transformation is applied to

the original auto-spectrum, where T is the kinematic constraint relationship defined in (5.121).

S̃yy(ωk) = TTSyy(ωk)T (6.17)

Then, the modified experimental FRF of inverse system is obtained as follows:

G̃uy(ωk) = Suy(ωk)S̃
−1
yy (ωk) (6.18)

Then, the improper transfer function model for the MIMO feedforward compensator was

obtained by parametric optimization using the MFDID toolbox. Since the transfer function is

essentially a matrix polynomial, no monic denominator polynomial is required to be identified.

Hence, the MFDID toolbox should be run with the Structural Relationship (SR) option disabled

(Kim et al., 2005), thus allowing each component of the matrix polynomial to be optimized inde-
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Figure 6.3: Magnitude plot of inverse MIMO system

pendently.

The final improper transfer function for MIMO feedforward compensator is included in Ap-

pendix C.1. The MIMO transfer function is expressed as a real polynomial matrix Kff(s), where

each component is a third degree polynomial. Moreover, the magnitude and phase plot of the

feedforward compensator is presented in Figures 6.3 and 6.4, respectively. Both figures illustrate

a good fit between the identified feedforward model and the inverse FRF estimation. In addition,

the poor magnitude fit of some components (e.g., Kθxux(s) and Kθxθz(s)) is always followed by a

phase without a clear trend in the inverse FRF estimation.
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Figure 6.4: Phase plot of inverse MIMO system
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6.4 Design of feedback controller

Although the feedforward compensator is the main responsible for reference tracking during

the experimental test, its performance could be affected by model uncertainty. In which case, a

perfect reference tracking is not achieved, especially when the model uncertainties are relatively

high for a given frequency band (typically for high-frequency vibration). Therefore, a feedback

regulator Kfb(s) is considered to improve the robustness of the control system.

Many approaches for feedback regulators are available in the literature. In this study, a

linear quadratic Gaussian (LQG) regulator is chosen to design feedback controllers. The LQG

regulator consists in a linear quadratic regulator (LQR) designed for optimal control, and a Kalman

filter designed for optimal state estimations in the presence of disturbance and/or measurement

noise. Both components are designed separately, evoking the separation principle from modern

control theory. In addition, to satisfy frequency-based specifications for improved performance and

robustness, a Loop Transfer Recovery (LTR) procedure is considered (Stein and Athans, 1987).

6.4.1 State feedback: linear quadratic regulator (LQR)

Given a continuous-time, multi-input multi-output (MIMO), linear time-invariant (LTI) sys-

tem with deterministic parameters:

ẋ = Ax + Bu (6.19)

y = Cx (6.20)

where x ∈ Rn is the state vector; u ∈ Rm is the control input vector; and y ∈ Rp is the measured

output vector.

The LQR problem is defined as follows (Hespanha, 2009). Find the the optimal control input

u∗ such that the following objective function is minimized

u∗ = arg min
u
J(u) (6.21)
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J(u) =

∫ ∞
0

(xTQx + uTRu)dt (6.22)

where Q ∈ Rn×n and R ∈ Rm×m are strictly positive definite matrices. Then, the solution to this

optimization problem is equivalent to solving the following algebraic Ricatti equation for unknown

matrix P:

ATP + PA + Q−PBR−1BTP = 0 (6.23)

where P is a symmetric, positive definite matrix. Then, the optimal feedback gain K is defined as

K = R−1BTP (6.24)

and the optimal control input is calculated as

u∗ = −Kx (6.25)

In addition, since y = Cx, the objective criterion (6.42) can be alternatively expressed in

terms of controlled output y:

J(u) =

∫ ∞
0

(yT Q̄y + ρuT R̄u)dt (6.26)

where Q̄ ∈ Rp×p; R̄ ∈ Rm×m, and ρ a positive constant. This special criterion is related to the

former criterion by

Q = CT Q̄C, R = ρR̄ (6.27)

A good starting point for the choice of matrices Q̄ and R̄ is given by Bryson’s rule (Franklin

et al., 2015):
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Q̄ii =
1

maximum acceptable value of y2
i

(6.28)

R̄jj =
1

maximum acceptable value of u2
j

(6.29)

Also, the parameter ρ is established as a trade-off between two conflicting goals: (i) for ρ very

small, the controlled output energy is minimized, at the expense of large control input; and (ii)

for ρ very large, the control input energy is minimized, at the expense of large controlled output

signal. Thus, different values of ρ can be considered by control designer to satisfy some design

specifications, as it will be explained in Section 6.4.5.

6.4.2 Kalman filter

Given a continuous-time MIMO LTI system with exogenous noise:

ẋ = Ax + Bu + Bww (6.30a)

y = Cx + v (6.30b)

where w ∈ Rq and v ∈ Rp are input disturbance and output noise, respectively. Both exogenous

noises are modeled as uncorrelated, zero-mean, stationary Gaussian processes:

E[w(t)] = 0, E[w(t)wT (τ)] = Qwδ(t− τ) (6.31)

E[v(t)] = 0, E[v(t)vT (τ)] = Rvδ(t− τ) (6.32)

where Qw ∈ Rq×q and Rv ∈ Rp×p are symmetric, positive definite matrices.

Thus, the state and output measurement vectors of the linear system can be regarded as

stochastic processes. Hence, the Kalman filter problem is formulated as follows. Find the optimal

state estimate x̂∗ such that the following objective function is minimized
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x̂∗ = arg min
x̂
J(x̂) (6.33)

J(x̂) = lim
t→∞

E
[
(x− x̂)(x− x̂)T

]
(6.34)

The solution to this optimization problem is equivalent to solving the corresponding algebraic

Ricatti equation for unknown matrix P:

AP + PAT + BwQwBT
w −PCTR−1

v CP = 0 (6.35)

where P is a symmetric, positive definite matrix. Then, the optimal state estimate is obtained by

solving the following differential equation

˙̂x = (A− LC)x̂ + Bu + Ly (6.36)

in which L is the Kalman gain

L = PCTR−1
v (6.37)

Consequently, the choices of covariance matrices Qw and Rv can be done using the statistics

from experimental data.

6.4.3 Output feedback: linear quadratic Gaussian (LQG) regulator

Given a continuous-time MIMO LTI system with exogenous white noise:

ẋ = Ax + Bu + Bww (6.38a)

y = Cx + v (6.38b)

where
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Figure 6.5: Block diagram of closed-loop system with LQG regulator

E[w(t)] = 0, E[w(t)wT (τ)] = Qwδ(t− τ) (6.39)

E[v(t)] = 0, E[v(t)vT (τ)] = Rvδ(t− τ) (6.40)

The LQG regulator problem is defined as follows. Find the optimal control input u∗ in a

stochastic sense, such that the following objective function is minimized

u∗ = arg min
u
J(u) (6.41)

J(u) = lim
T→∞

E
[

1

T

∫ T

0
(xTQx + uTRu)dt

]
(6.42)

By the separation principle, the LQG controller can be designed as a combination of state-

feedback LQR controller with a Kalman filter estimator. Then, the optimal control signal is defined

as

u∗ = −Kx̂ (6.43)

where K is the LQR feedback gain calculated in (6.24), and x̂ is the state estimate obtained from

the Kalman filter in (6.36). The interconnection of Kalman filter and LQR gain for feedback control

purposes is illustrated in Figure 6.5 as a block diagram.
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6.4.4 Augmented system

If the disturbances and measurement noises are expected to have a particular frequency

spectrum, then both signals can be modeled as a colored noise, i.e., a white noise signal passed

through a shaping filter with matching power spectral density. Then, these shaping filters can be

incorporated into the LTI system to form an augmented system for purposes of feedback control

design. The shaping filters are especially important to attenuate the responses of the feedback

controller at high frequencies.

In particular, a shaping filter can be designed as a low-pass filter for a frequency range

f ∈ [0, fc]. Therefore, the white-noise disturbance and noise, w and v, are passed through their

respective shaping filters such that the inputs to the system are attenuated for frequencies above

the cutoff frequency fc.

Consequently, the states of the LTI system, along with the states from input and output

shaping filters, are incorporated into the augmented system as follows:

ẋa = Aaxa + Ba


u

w

v

 (6.44a)

y = Caxa + Da


u

w

v

 (6.44b)

with

xa =


x

xin

xout

 (6.45)

where x are the states of the LTI system; and xin and xout are the states of the input and out-

put shaping filters, respectively. An illustration of the augmented system with its components is

provided in Figure 6.6.
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Figure 6.6: Augmented system including input and output shaping filters

6.4.5 Loop transfer recovery

If any frequency-domain specifications are meant to be satisfied during feedback control

design (e.g., reference tracking, noise and disturbance rejection), a procedure called loop transfer

recovery (LTR) can be introduced (Stein and Athans, 1987). The objective of LTR is to “recover”

the stability robustness properties from state-feedback LQR design, by modifying the Kalman filter

design.

Consider the LQG problem formulated in Section 6.4.3, and assume that the system is min-

imum phase (i.e., all transmission zeros of the MIMO system have strictly negative real parts).

Then, the transfer function of the LQG compensator follows the relationship

KLQG(s) = −K(sI−A + BK + LC)−1L (6.46)

Now, instead of treating the noise covariance matrices Qw and Rv as fixed parameters, these

can be “tuned” such that the design specifications are met. Then, the design parameters Qw and

Rv are redefined as follows:

Qw = ΓTΓ, Rv = I (6.47)

Γ = qBw (6.48)

where q is a scalar design parameter. Then, in the limit as q →∞, the open-loop transfer function

recovers the original properties of the state-feedback LQR controller:
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lim
q→∞

KLQG(s)G(s) = K(sI−A)−1B (6.49)

Hence, frequency-domain loop-shaping of the multi-input, multi-output (MIMO) system can

be performed by adjusting the parameter q. More details on the LTR design procedure can be

found in Franklin et al. (2015). Finally, is still possible to conduct the LTR procedure in practice

for non-minimum phase systems, but the performance of the feedback system is greatly limited.

6.4.6 Design considerations

The feedback regulator considered for model-based compensation in maRTHS testing was

designed with using the Control Design Toolbox in Matlab, with the following considerations:

• LTI system: The state-space model developed in Section 5.6.6 was considered for optimal

control purposes. The state-space matrices are presented in Appendix B.2.

• Input shaping filter: A Kanai-Tajimi filter is considered to attenuate the high frequency en-

ergy contained in the control signal. The Kanai-Tajimi filter was designed with characteristic

frequency of ff = 10 Hz (natural frequency ωf = 2πff ), and a characteristic damping of

ζf = 0.70.

ẋin =

 0 1

−ω2
f −2ζfωf

xin +

0

1

u (6.50a)

yin =

[
ω2
f 2ζfωf

]
xin (6.50b)

• Output shaping filter: A third-order Butterworth filter with a cutoff frequency fc = 15 Hz is

considered to reduce high-frequency noise in output response channels.

• LQR controller: The LQR controller was design using the lqry() function in Matlab, with

the following parameters:
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Q̄ = diag

(
1

u2
o

,
1

u2
o

,
1

u2
o

,
1

θ2
o

,
1

θ2
o

,
1

θ2
o

)
, R̄ = ρQ̄, ρ = 1e− 4

uo = 2.58 [mm], σθ = 4.47 [deg] (maximum acceptable values)

• Kalman filter: The Kalman filter was design using the kalman() function in Matlab, with

the following parameters:

Qw = diag
(
σ2
u, σ

2
u, σ

2
u, σ

2
θ , σ

2
θ , σ

2
θ

)
, Rv = qQw, q = 10

σ2
u = 7× 10−5 [mm2], σ2

θ = 2× 10−6 [deg2] (variance)

Finally, the state-space realization in modal canonical form of the LQG controller is presented

in Appendix C.2.

6.5 Performance analysis

In order to complete the design of the feedforward-feedback controller, an augmented system

is specified to obtain measures of performance and robustness of the closed-loop system. The

augmented system has three inputs (reference r, disturbance d, and noise n), and two outputs (y

and error e), as illustrated in Figure 6.7.

Then, the input-output relationships of the augmented system are given by the following

expressions:

y

e

 =

T0 + S0Tff S0G −T0

S0Sff −S0G −S0




r

d

n

 (6.51)

where Sff(s) and Tff(s) are the feedforward sensitivity and complementary sensitivity functions,

respectively:

159



Figure 6.7: Augmented system for loop shaping purposes of model-based compensator for
maRTHS

Sff(s) = I + G(s)Kff(s) (6.52)

Tff(s) = I− Sff(s) = G(s)Kff(s) (6.53)

while S0(s) and T0(s) are the output sensitivity and complementary sensitivity functions, respec-

tively:

S0(s) = [I + G(s)Kfb(s)]−1 (6.54)

T0(s) = I− S0(s) (6.55)

From this relationship, the frequency-domain specifications can be selected such that multiple

performance objectives, in terms of matrix norms of the sensitivity transfer functions, are satisfied

simultaneously:
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‖T0 + S0Tff‖ →1, ω < ωc (reference tracking) (6.56)

‖S0Sff‖ →0, ω < ωc (reference tracking) (6.57)

‖S0G‖ →0, ω < ωc (disturbance rejection) (6.58)

‖T0‖ →0, ω > ωc (noise rejection) (6.59)

‖S0‖ →0, ω > ωc (noise rejection) (6.60)

where ωc is the crossover natural frequency, which determines a tradeoff between performance and

robustness bounds for the closed-loop system. Also, ‖ · ‖ is the matrix norm of a linear and stable

MIMO system. For example, the Euclidean matrix norm can be considered for this purpose:

‖A(jω)‖2 , σ̄(A(jω)), ∀ω (6.61)

where σ̄(·) is the largest singular value of a matrix.

From the set of frequency-domain design specifications, the dependency between feedback

and feedforward design includes additional constraints to the compensator design. Since a closed-

form solution to this optimization problem is not possible, primarily because of an intrinsic trade-off

between performance and robustness (sometimes called waterbed effect), an experienced control

designer should be able to find a solution that could satisfy the performance objectives for specific

applications.

Consequently, the results of loop shaping design of the feedforward and feedback controllers

in terms of maximum singular values of the sensitivity and complementary sensitivity functions are

shown in Figure 6.8a and 6.8b, respectively. First, the feedforward controller satisfy the reference

tracking objective for a frequency bandwidth up to 15 Hz. Beyond that frequency, the tracking

results are deteriorated due to model uncertainty. On the other hand, good disturbance rejection is

obtained with the feedback controller for frequencies up to 25 Hz, and reasonable noise rejection is

obtained for high-frequency content beyond this crossover frequency. But, the LQG regulator does

not offer any reference tracking guarantees, and the feedforward is the only instrument responsible

for reference tracking in the context of maRTHS testing.
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(a) Feedforward sensitivity functions (b) Feedback sensitivity functions

Figure 6.8: Loop shaping results for feedforward/LQG controller

6.6 Summary

In this chapter, a model-based compensator was proposed for synchronization of target and

measured signals in multi-axial real-time hybrid simulation (maRTHS). The model-based com-

pensator is designed such that it offers improved performance and robustness when controlling a

multi-input multi-output (MIMO) system. For that matter, a feedforward compensator with an

LQG/LTR feedback regulator were designed separately to satisfy frequency-domain specifications.

The feedforward compensator was developed using an inverse-based model approach. Then,

the transfer function model was a real polynomial matrix. Also, since the transfer function was

improper, a finite difference discretization was employed to estimate higher-order derivatives of the

target signals. Moreover, optimal control theory was considered to design the feedback regulator.

An output feedback LQG regulator was proposed, and the LTR procedure was required in order

to satisfy performance and robustness specifications in frequency domain.

Finally, the feedforward compensator is considered the main responsible for reference track-

ing in maRTHS testing, but with clear bandwidth limitations imposed by the accuracy of the

inverse-based models for high frequencies. Moreover, the feedback regulator performs in terms

of disturbance rejection in the low frequency range, and measurement noise rejection in the high

frequency range. But, there is no evidence of improved reference tracking performance when the

feedback regulator is implemented.

162



Chapter 7

Framework validation: small-scale
experimental test

7.1 Problem statement

This chapter presents a series of experiments to demonstrate the effectiveness of the proposed

framework. In particular, a prototype of a single-story, two bay frame structure is considered for this

study, as shown in Figure 7.1a. The frame consists of three columns with fixed ends, connected

through two rigid beams. Then, the center column is chosen as the experimental substructure,

which exhibits a nonlinear inelastic response. Both numerical and experimental substructures are

assumed to be connected through degree-of-freedom u, as shown in Figure 7.1b. The fundamental

frequency of the reference prototype structure is chosen as fn = 2 [Hz], with an intrinsic damping

ratio of ζ = 5%, and subjected to ground motion üg.

7.2 Description of test specimen

The test specimen selected for this validation study is a mild steel column with rigid connec-

tions at both ends, as shown in Figure 7.1c. The column has a uniform round bar cross-section with

a diameter of 31.75 [mm] (1.25 [in]), and a total length of 457.2 [mm] (18 [in]). The steel column

can undergo plastic deformations with sufficient ductility and toughness to experience multiple

cycles of inelastic loading without failure. Also, the specimen is sufficiently stiff in the axial direc-

tion, imposing severe constraints over the dynamics of the multi-actuator servo-hydraulic system.

Therefore, this specimen is an ideal subject to test the limits of the proposed methodology, and

serve as a testbed for maRTHS development.

Before conducting the dynamic test to evaluate the performance of the proposed experimen-

tal methodology, a cyclic test was conducted to obtain the empirical stiffness matrix of the test
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(a) Reference structure

(b) Numerical substructure (c) Experimental substructure

Figure 7.1: Substructuring of maRTHS validation test
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specimen for further reference and comparison purposes. The specimen was subjected to pure

translation ux and pure rotation θy, in Cartesian directions x and y, respectively. Subsequently,

the force fx and moment my measured at the end of the test specimen are obtained.

The relationship between forces and displacements is given by the following linear equation:

f = Kspecimenu (7.1) fx

my

 =

Kxx Kxθ

Kθx Kθθ


uxθy

 (7.2)

where the units are: fx [kN], my [kN-mm], ux [mm], θy [rad], Kxx [kN/mm], Kxθ [kN], Kθx [kN],

and Kθθ [kN-mm]. Figure 7.2 shows the relationship between measured forces and displacements.

Even though the relationship is not perfectly linear elastic, due to friction of bolted connections, or

seal friction of hydraulic actuators, the data can be approximated using a linear fit, for the purpose

of obtaining an empirical stiffness matrix for reference. Then, the empirical stiffness matrix is

obtained through linear regression of the experimental data:

Kspecimen =

0.994 226.2

229.6 75540

 (7.3)

Moreover, the empirical stiffness matrix is not symmetric due to either systematic and/or

random errors. Obviously, this result violates Maxwell-Betti’s reciprocal theorem, which is a fun-

damental principle of linear elastic structures. However, the differences between components Kxθ

and Kθx of the empirical stiffness matrix are considered to be small, with a normalized error of

approximately 1.5%. Therefore, a way to circumvent this issue is to average components Kxθ and

Kθx to obtain a symmetric empirical stiffness matrix:

Kcorrected
specimen =

0.994 227.9

227.9 75540

 (7.4)
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Figure 7.2: Elastic stiffness of steel rod column specimen
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7.3 Substructuring method

The equation of motion of the reference structure is given as follows:

mü+ cu̇+ r(u) = −müg (7.5)

where mass m and damping c coefficients are determined using the traditional relationships from

structural dynamics:

m =
k0

ω2
n

(7.6)

c = 2ζωnm (7.7)

while ωn = 2πfn is the natural fundamental frequency, and k0 is the initial elastic stiffness defined

by:

k0 =
∂r

∂u
(0) (7.8)

Subsequently, the substructuring is performed using the following definitions:

u = uN (7.9)

m = mN (7.10)

c = cN (7.11)

r(u) = kNuN + rE(uE) (7.12)

k0 = kN + kE (7.13)

Then, the equations of motion for both the numerical and experimental substructures are

given as follows:
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mN üN + cN u̇N + kNuN = −mN üg + gNb (numerical) (7.14)

rE(uE) = gEb (experimental) (7.15)

Henceforth, the interface compatibility and equilibrium are satisfied by:

uN = uE = utarget
x (interface compatibility) (7.16)

gNb = −gEb = −fmeas
x (interface equilibrium) (7.17)

For this study, the degree-of-freedom ux in Cartesian coordinates is chosen as the interface

lateral degree-of-freedom of the experimental substructure (i.e., ux = uN = uE), while all the other

Cartesian degrees-of-freedom are kept to zero values (i.e., uy = uz = θx = θy = θz = 0). Thus,

all Cartesian degrees-of-freedom are controlled simultaneously to satisfy the prescribed boundary

conditions at the interface of the hybrid system, even if one or more Cartesian cartesians have

prescribed zero values.

The numerical substructure is modeled using an LTI state-space form:

ẋN =ANxN + BNpN (7.18)

yN =CNxN + DNpN (7.19)

where xN = {uN , u̇N}T is the state vector; pN = {üg, fmeas
x }T is the input vector; and yN =

{uN , u̇N , üNabs}T is the output (measurement) vector. The state-space matrices are given as follows:
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AN =

 0 1

− kN

mN − cN

mN

 BN =

 0 0

−1 − 1
mN

 (7.20)

CN =


1 0

0 1

− kN

mN − cN

mN

 DN =


0 0

0 0

0 − 1
mN

 (7.21)

For this study, the effective numerical column is assumed to be have a linear-elastic con-

stitutive law with a lateral stiffness of knum = 2kexp, while the initial lateral stiffness of the test

specimen is approximated to kE = 1 [kN/mm]. Therefore, the initial lateral stiffness is equal to

k0 = 3 [kN/mm], and given a fundamental frequency of fn = 2 [Hz] and damping ratio ζ = 5%,

the values for mass and damping coefficients are equal to m = mN = 1.90× 10−2 [kN-s2/mm] and

c = cN = 2.30× 10−2 [kN-s/mm], respectively.

To solve the equations of motion, a 4th order Runge-Kutta is chosen as the numerical inte-

gration algorithm, with a fixed integration time step of ∆t = 1/1000 sec. The sampling time of the

controller and data acquisition system is also set to the same time step of ∆t = 1/1000 sec, hence

the real-time system works in single tasking mode.
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7.4 Selection of ground motions

In general, the selection criteria for ground motion records in seismic performance evaluation

should be associated to a specific hazard scenario for the structural system of interest. In particular,

researchers and practitioners must consider the variability in earthquake ground motion, which is

usually a function of site-specific conditions.

For this study, three ground motion records were chosen according to their importance and

destructive characteristics, without taking into account the variability of strong ground motion and

specific site conditions. The selected grounds motions are: (i) El Centro earthquake of May 18th,

1940, NS component of Imperial Valley Irrigation District substation in Imperial Valley, California;

(ii) 1994 Northridge earthquake of January 17th, 1994, NS component of Sylmar County Hospital

parking lot station in Sylmar, California; and (iii) Kobe earthquake of January 16th, 1995, NS

component of the Japanese Meteorological Agency station in Kobe, Japan. Herein, the ground

motion records are labeled ELC, NOR, and KOB, respectively. Both NOR and KOB records are

classified as near-fault ground motions, which have impulsive accelerations with large damaging

potential. Whereas, the ELC record exhibits characteristics of a typical far-field ground motion,

even though it was recorded by a near-fault station.

The characteristics of each seismic record are provided in Table 7.1, and the first 30 seconds

of each ground motion record are presented in Figure 7.3. In addition, elastic response spectra for

each ground motion are calculated for reference purposes, and shown in Figure 7.4.
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(a) 1940 El Centro earthquake, Imperial Valley station, NS component

(b) 1994 Northridge earthquake, Sylmar station, NS component

(c) 1995 Kobe earthquake, KJMA station, NS component

Figure 7.3: Selected ground motion records
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(a) Spectral displacement (b) Spectral velocity

(c) Spectral acceleration

Figure 7.4: Elastic response spectra for 5% damping ratio
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7.5 Evaluation of model-based compensator for linear response

The model-based compensation method is evaluated through a series of experimental tests.

For this purpose, only linear elastic response of the test specimen is examined. Therefore, the scaling

of ground motion records is set to small values to avoid yielding of the specimen. Specifically, the

ELC ground motion is chosen for this study, with scaling factors of 3% and 10% of peak ground

acceleration (PGA).

The tracking performance in the time-domain is evaluated for three different control scenarios:

(i) no compensation (i.e. model-based compensation was disabled from the system); (ii) only

feedforward (FF) compensation; and (iii) feedforward-feedback (FF+FB) compensation. First, the

tracking performance is assessed by graphic inspection of the synchronization subspace plot (SSP),

where the measured displacement is plotted against the target displacement. Perfect tracking would

be the case where all points lay in a perfectly straight diagonal line with 1:1 slope, i.e. measured

and target signals are identical.

The SSP results for 3% and 10% scaled ELC ground motion are shown in Figures 7.5 and

Figure 7.6, respectively. Thus, the model-based compensation can effectively reduce experimental

errors due to multi-actuator coupling dynamics, because of a significant reduction of the counter-

clockwise elliptical loops associated to phase lag in the measured Cartesian response. Furthermore,

the model-based compensation is able to correct to some extent the undershoot errors at the

peak responses, a phenomenon that is associated to large specimen force reactions, as previously

discussed in Section 5.2.3. Still the undershoot error is not perfectly compensated, as illustrated at

the peak values from Figures 7.6b and 7.6c. Better undershoot compensation may be obtained for

another choice of DC gains for the feedforward compensator, which was obtained through system

identification of the inverse model as explained in Section 6.3.2.

Subsequently, two quantitative error measures are considered to compare the different com-

pensation strategies: (i) normalized peak absolute error (NPAE); and (ii) normalized root-mean-

square error (NRMSE). Both error measures are defined as follows:

NPAE =
max

∣∣∣umeas
x [k]− utarget

x [k]
∣∣∣

max
∣∣∣utarget
x [k]

∣∣∣ (7.22)

174



Experiment

Perfect Tracking

(a) No compensation

Experiment

Perfect Tracking

(b) Feedforward compensation

Experiment

Perfect Tracking

(c) Feedforward-feedback compensation

Figure 7.5: Synchronization subspace plots (SSPs) for different compensation scenarios, 3% scaled
ELC ground motion
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Experiment

Perfect Tracking

(a) No compensation

Experiment

Perfect Tracking

(b) Feedforward compensation

Experiment

Perfect Tracking

(c) Feedforward-feedback compensation

Figure 7.6: Synchronization subspace plots (SSPs) for different compensation scenarios, 10%
scaled ELC ground motion
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NRMSE =

√
1
n

∑n
k=1

(
umeas
x [k]− utarget

x [k]
)2

∣∣∣max(utarget
x [k])−min(utarget

x [k])
∣∣∣ (7.23)

where umeas
x [k] and utarget

x [k] are the measured and target Cartesian displacement in x direction at

time step “k”, respectively.

The error indices are presented in Tables 7.2 and 7.3 for tests subjected to the ELC ground

motion with 3% and 10% scaling, respectively. Both compensation methods (FF and FF+FB) yield

better tracking performance compared to the case without compensation, both in terms of nor-

malized peak absolute error (NPAE) and normalized root-mean-square error (NRMSE). However,

the improvement of performance given by the addition of feedback control is not evident com-

pared to feedforward control. Indeed, model-based compensation successfully reduces the tracking

errors during the experimental test; nevertheless, more studies on the model-based compensation

strategies should be conducted in the future.

Table 7.2: Error indices for ux reference tracking, 3% scaled ELC ground motion

Control strategy NPAE [%] NRMSE [%]

No Compensation 27.13 2.49
Feedforward 5.25 1.00
Feedforward-Feedback 5.23 1.01

Table 7.3: Error indices for ux reference tracking, 10% scaled ELC ground motion

Control strategy NPAE [%] NRMSE [%]

No Compensation 27.18 1.94
Feedforward 5.28 0.41
Feedforward-Feedback 5.31 0.41

In addition, the time-domain experimental results for 3% and 10% scaled ELC ground motion

are presented in Figures 7.7 and 7.9, respectively. These figures show a comparison between the

target, command, and measured signals of the ux coordinate at the interface with the test specimen,

when the feedforward-feedback model-based compensator is accounted. Two close-ups of a single

peak response is shown, where the measured signal shows good synchronization with the target

signal. Also, the command signal is always leading the target signal, which is an expected outcome
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of the feedforward compensator.

Likewise, and examination of the measured Cartesian coordinates uy, uz, θx, θy, and θz,

that are kept to zero values during the test, provides evidence on the cross-talk effects that were

not effectively compensated. For example, Figure 7.8 shows the results for 3% scaled ELC ground

motion, where the lateral and vertical translation coordinates, uy and uz, shows cross-talk response

of less than 0.04 mm and 0.1 mm, respectively; similarly, all cross-talk responses from rotation

DOFs are bounded to less than 0.04 deg. These results are considered to be small and within the

tolerance for the Cartesian measurement system as explained in Section 4.4.

Likewise, Figure 7.10 shows the results for 10% scaled ELC ground motion. Thus, an increase

in displacement demands on the hybrid system will slightly impact the reference tracking of the

other Cartesian coordinates that are supposed to remain static. The lateral and vertical translation

coordinates, uy and uz, shows cross-talk response of less than 0.1 mm and 0.3 mm, respectively;

while, all cross-talk responses from rotation DOFs are bounded to less than 0.1 deg. This results

are sufficient evidence that the maRTHS procedure can enforce the prescribed boundary conditions

at the interface between substructures for three-dimensional Cartesian space problems.

Indeed, the feedback controller has the main responsibility for ensuring zeroed Cartesian

coordinates. The reason being that for a zeroed target signal, the feedforward command signal

should be equal to zero. Therefore, the feedback command signal is the only responsible of reducing

the tracking error.
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(a) Time-history plot
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(b) Peak response

Figure 7.7: Structural response of maRTHS test for 3% scaled ELC ground motion (Cartesian ux
direction), feedforward-feedback compensation case
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Figure 7.8: Cross-talk responses of Cartesian coordinates, 3% scaled ELC ground motion,
feedforward-feedback compensation
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(a) Time-history plot
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Figure 7.9: Structural response of maRTHS test for 10% scaled ELC ground motion (Cartesian
ux direction), feedforward-feedback compensation case
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Figure 7.10: Cross-talk responses of Cartesian coordinates, 10% scaled ELC ground motion,
feedforward-feedback compensation
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7.6 Structural responses

7.6.1 Linear response of test specimen

As discussed previously, the performance of model-based compensation for the maRTHS test

in the linear regime is within the expectations for dynamic testing. Then, an inspection of the

structural responses of the hybrid system is performed. The force-displacement relationship of

the test specimen when subjected to 5% and 10% scaled ELC ground motion are presented in

Figures 7.11 and 7.12, respectively. These tests showed promising results for a test specimen with

predominant linear response.

An almost linear elastic response is observed for measured lateral force fx and bending

moment my, with some dissipation that could be associated to hysteresis of the metallic specimen,

friction at the joint connections, and/or seal friction inside the hydraulic actuators. Moreover, the

response of vertical force fz is attributed to large displacements.

Moreover, the results of measured lateral force fy, bending moment mx, and torsion moment

mz, are strictly related to tracking error of the corresponding Cartesian coordinates, and other

effects such as residual forces from the loading assembly; although, these measured forces are

considered to be small compared to fx and my. In addition, the torsion moment mz is another

good indicator of the synchronization between actuators X1 and X2 when the system is controlled

for θz = 0. Indeed, both actuators are not perfectly equal, and will eventually oppose each others

motion, which could raise an increase of torsion moment that was not intended for this study.
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Figure 7.11: Force-displacement relations of test specimen in Cartesian coordinates, subject to
5% scaled ELC ground motion, with feedforward-feedback compensation
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Figure 7.12: Force-displacement relations of test specimen in Cartesian coordinates, subject to
10% scaled ELC ground motion, with feedforward-feedback compensation

183



7.6.2 Nonlinear response of test specimen

Although the tests for linear response were successful, the performance assessment of maRTHS

tests with nonlinear response of the specimen is fundamental to validate the proposed framework.

Indeed, the combined action of the nonlinear specimen with the loading assembly may impact the

stability, performance and/or robustness of the model-based compensator.

Therefore, a series of experimental tests are conducted for larger ground acceleration, where

the displacement demands of the test specimen exceeds the yield displacement. The purpose for

these tests are to check the performance of the model-based compensator when the loading assembly

experiences nonlinear dynamics due to plastic deformations.

First, an inspection of the reference tracking of nonlinear testing is conducted, to analyze

the robustness of the model-based compensation in the presence of disturbances associated to

nonlinear dynamics. Figure 7.13 presents the synchronization results of tests conducted for three

ground excitations, with scaling factors chosen to yield the test specimen: (i) 20% scaled ELC

ground motion; (ii) 10% scaled NOR ground motion; and (iii) 10% KOB ground motion. These

tests show very good reference tracking, with some slight deterioration for large load reversals,

which are typical examples of impulsive loading in near-fault ground motion records.

Next, the time history responses of the hybrid system are presented in Figures 7.14 through

7.19. Both measured and target signals in x Cartesian coordinate show very good agreement

overall, even for pulse loading, with slight undershoot errors at the peak responses. Furthermore,

the cross-talk responses are limited to relatively small values, which is translated in an adequate

reference tracking for all Cartesian coordinates.

Finally, the hysteretic responses of the test specimen are provided in Figures 7.20 through

7.22. As mentioned in the previous section, the specimen exhibits a primary action of shear fx

and bending my, with significant vertical reaction fz due to geometrical nonlinearities. Plastic

deformations are observed, with symmetric and stable hysteretic loops that are an important

instrument for energy dissipation.
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Experiment

Perfect Tracking

(a) 20% scaled ELC ground motion

Experiment

Perfect Tracking

(b) 10% scaled NOR ground motion

Experiment

Perfect Tracking

(c) 10% scaled KOB ground motion

Figure 7.13: Synchronization subspace plot (SSP) for nonlinear response of test specimen,
feedforward-feedback compensation
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(a) Time-history plot (b) Peak response

Figure 7.14: Structural response of maRTHS test for 20% scaled ELC ground motion,
feedforward-feedback compensation case

Figure 7.15: Cross-talk responses of Cartesian coordinates, 20% scaled ELC ground motion,
feedforward-feedback compensation
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(a) Time-history plot (b) Peak response

Figure 7.16: Structural response of maRTHS test for 10% scaled NOR ground motion,
feedforward-feedback compensation case

Figure 7.17: Cross-talk responses of Cartesian coordinates, 10% scaled NOR ground motion,
feedforward-feedback compensation
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(a) Time-history plot (b) Peak response

Figure 7.18: Structural response of maRTHS test for 10% scaled KOB ground motion,
feedforward-feedback compensation case

Figure 7.19: Cross-talk responses of Cartesian coordinates, 10% scaled KOB ground motion,
feedforward-feedback compensation
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Figure 7.20: Force-displacement relations of test specimen in Cartesian coordinates, subject to
20% scaled ELC ground motion, with feedforward-feedback compensation
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Figure 7.21: Force-displacement relations of test specimen in Cartesian coordinates, subject to
10% scaled NOR ground motion, with feedforward-feedback compensation
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Figure 7.22: Force-displacement relations of test specimen in Cartesian coordinates, subject to
10% scaled KOB ground motion, with feedforward-feedback compensation
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7.6.3 Comparisons between real-time and “fast” (continuous) hybrid

simulation

In addition, a brief study on the rate effects on the structural response of steel specimens was

conducted through the proposed framework. The hybrid system was subjected to 20% scaled ELC

ground motion with model-based compensation, and the speed of loading was modified to evaluate

the strain rate dependency of the test specimen.

The comparison between real-time test and ×2 slow motion test (i.e., the time axis of the

ground motion record was scaled by two times) is presented in Figure 7.23. Clearly, the rate of

loading has a significant impact on the structural response that will have an important effect both

locally and in the global response of the structural system. Therefore, this evidence is useful to

support the needs for maRTHS testing development.

(a) Shear force vs. lateral displacement (b) Bending moment vs. lateral displacement

Figure 7.23: Comparison of hysteretic response of test specimen for different rates of deformation,
subject to 20% scaled ELC ground motion, with feedforward-feedback compensation
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7.7 Limitations of loading assembly

For the case of severe loading, synchronization subspace plots shows a decrease on reference

tracking, a phenomenon that is primarily associated to the limits of the loading assembly to satisfy

both velocity and force demands over the test specimen.

First, for the case of 40% ELC ground motion, the SSP shown in Figure 7.24 demonstrates

that the direction of the ground motion changes the synchronization pattern of the test; the tracking

error is smaller when the hybrid system is subjected to −üg ground acceleration, compared to +üg

ground acceleration. This phenomenon is explained due to the impulsive nature of the selected

ground motion, where the larger pulse has a predominant direction, as observed in Figure 7.3a,

and the fact that all double-ended actuators have different capacities in extension and retraction.

This observation is exacerbated for the case of 60% ELC ground motion, as shown in Figure 7.25.

However, if the loading is applied slowly (e.g., ×3 slow motion), then the synchronization errors are

significantly reduced as observed in Figure 7.26. Thus, the loading assembly in its current state has

particular limitations that confine the practical applications of maRTHS testing for the simulation

of extreme events.

Experiment

Perfect Tracking

(a) +üg direction

Experiment

Perfect Tracking

(b) −üg direction

Figure 7.24: Synchronization subspace plot, 40% ELC ground motion
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Experiment

Perfect Tracking

(a) +üg direction

Experiment

Perfect Tracking

(b) −üg direction

Figure 7.25: Synchronization subspace plot, 60% ELC ground motion

Experiment

Perfect Tracking

(a) +ux direction

Experiment

Perfect Tracking

(b) −ux direction

Figure 7.26: Synchronization subspace plot, 60% ELC ground motion, with ×3 slow motion
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Recall that all actuators have a flow-pressure relationship associated to the servo-valve dy-

namics. Therefore, the velocity capacity of the actuator is limited by the pump supply (flow and

pressure), and the load force over the piston. If a specimen is attached to the actuator piston, the

reaction force of the specimen will limit how fast the piston can move.

To better understand the reasons for this limitations, an estimation of the load flow demand

is required. For this purpose, an estimation is obtained from the actuator stroke measurements.

First, the “i-th” piston velocity q̇i[k] is calculated from LVDT stroke measurements qi[k] using a

central difference approach:

q̇i[k] =
qi[k + 1]− qi[k − 1]

2∆t
∀i ∈ [1, 6], k ∈ [0, N ] (7.24)

To estimate the “i-th” actuator load flow demand Qdemand
L,i [k], the following calculation is

performed:

Qdemand
L,i [k] =


Aextq̇i[k] if q̇i[k] ≥ 0

Aretq̇i[k] if q̇i[k] < 0

∀i ∈ [1, 6], k ∈ [0, N ] (7.25)

where Aext and Aret is the effective piston area of a double-ended actuator when the piston is

extending and retracting, respectively:

Aext =
π

4
D2 (7.26)

Aret =
π

4
(D2 − d2) (7.27)

while D and d are the piston bore diameter and piston rod diameter, respectively. Similarly, the

total flow demand from the LBCB loading assembly is the summation of the actuator flow demands,

such that continuity is satisfied:

Qdemand
LBCB [k] =

6∑
i=1

Qdemand
L,i [k] (7.28)

Then, a comparison between loading assembly flow demands and pump flow capacity can be
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(a) 20% scaled (b) 40% scaled (c) 60% scaled

Figure 7.27: Total flow demand from LBCB vs. pump flow supply, ELC ground motion

obtained. In this study, the pump connected to the LBCB system is working at 37.85 [lpm] at

3,000 [psi]. Figure 7.27 shows the demand vs. capacity relation of total load flow, when the hybrid

test is performed in real-time with increased scaling for ELC ground motion. Indeed, the case of

20% ground motion scaling yields a good theoretical balance between total flow demand and pump

capacity to run the maRTHS test without prominent limitations. However, when 40% and 60%

scaling are considered, the transient flow demands exceeds the available flow capacity of the pump.

In these situations, the LBCB does not have enough power to move at the target rate with the

prescribed reaction forces due to the presence of the test specimen.

On the other hand, the estimation of pressure drop is required to determine the capacity load

flow of each servo valve. The pressure drop is a function of the force sustained by the actuator.

Then, the pressure drop of the “i-th” servo valve ∆Pi[k] is calculated with the following equation:

∆Pi[k] =


PS − τi[k]

Aext
if τi[k] ≥ 0

PS − τi[k]
Aret

if τi[k] < 0

∀i ∈ [1, 6], k ∈ [0, N ] (7.29)

while PS is the supply pressure, adjusted to 2, 500 [psi] through the service manifold of the LBCB

system; and τi[k] is the “i-th” load cell measurement. In addition, the “i-th” servo pressure drop

∆Pi[k] ranges between 0 (when actuator reaches the maximum load force) and Ps (when load force

is zero).

Subsequently, the “i-th” capacity load flow Qcapacity
L,i [k] is determined as follows:
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Qcapacity
L,i [k] = QR

√
∆Pi[k]

∆PR
∀i ∈ [1, 6], k ∈ [0, N ] (7.30)

in which QR and ∆PR are the rated flow and pressure drop of the servo valve, with values QR = 10

[lpm] and ∆PR = 1, 000 [psi]. Clearly, a decrease in pressure drop due to an increase in load force

can significantly reduce the load flow capacity for the actuators. Thus, this phenomenon creates

a limit over the velocity capacity, with severe limitations over the multi-actuator loading assembly

considered for real-time hybrid simulation.

Hence, the empirical flow-pressure relations for each actuator of the LBCB loading assembly

when the hybrid system is subjected to 60% scaled ELC ground motion are illustrated in Figures

7.28 through 7.33. Thus, the LBCB system has reached its limit to offer sufficient power to move

at the prescribed rate with the sustained load force, as observed by the load flow capacity vs.

demand relation for each single actuator. This phenomenon is appreciated at the peak response in

actuators X1 and X2 (Figures 7.28 and 7.29, respectively).

Furthermore, the large axial stiffness of the test specimen, and the proximity of the specimen

axis to the vertical actuator Z1, produces an extremely large pressure drop, where basically the Z1

actuator reaches QL = 0 and the actuator is not able to move at all (i.e., the actuator is locked).

Indeed, this may be a possible explanation of the reduced synchronization results on the SSP shown

in Figures 7.25.
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Figure 7.28: Actuator X1 flow-pressure relations, subject to 60% scaled ELC ground motion
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Figure 7.29: Actuator X2 flow-pressure relations, subject to 60% scaled ELC ground motion
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Figure 7.30: Actuator Y1 flow-pressure relations, subject to 60% scaled ELC ground motion
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Figure 7.31: Actuator Z1 flow-pressure relations, subject to 60% scaled ELC ground motion
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Figure 7.32: Actuator Z2 flow-pressure relations, subject to 60% scaled ELC ground motion
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Figure 7.33: Actuator Z3 flow-pressure relations, subject to 60% scaled ELC ground motion
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7.8 Summary

In this chapter, the experimental study of a steel column specimen was considered to validate

the proposed maRTHS methodology. The reference structure was chosen as a one-story frame

building with a single degree-of-freedom associated to its lateral displacement. For substructuring

purposes, only the ux coordinate was considered as the interface degree-of-freedom of the hybrid

system, while the other Cartesian coordinates of the loading assembly were commanded a zero

signal.

Good reference tracking is achieved when model-based compensation is considered for the

dynamic test. Also, the feedforward controller is responsible for the outstanding reference tracking

capabilities of the model-based compensator, whereas the performance of the feedback controller

did not offer a substantial improvement. In addition, the proposed methodology was able to

successfully track all the controlled Cartesian coordinates simultaneously, with tracking errors that

are considered be sufficiently small. Moreover, the resulting nonlinear response of the test specimen

due to increased seismic excitation did not degrade heavily the tracking performance of the hybrid

system. But, for experiments with severe loading, the hybrid system reached its maximum dynamic

capacity, which is mainly associated to the hydraulic power supply.
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Chapter 8

Conclusions and Future Studies

8.1 Conclusions

In this dissertation, a framework for multi-axial real-time hybrid simulation (maRTHS) has

been presented. This framework offers the opportunity to increase the class of structures that can

be experimentally tested using the hybrid simulation technique. The framework employs a multi-

actuator loading assembly to prescribe three-dimensional loads and boundary conditions at the

interface between numerical and experimental substructures. The complexities of the implemen-

tation are presented, and the methodology for kinematic transformations, equipment calibration,

system identification, and control design are discussed in detail.

The implementation was performed in the Newmark Civil Engineering Laboratory at the

University of Illinois at Urbana-Champaign. A small-scale Load and Boundary Condition Box

(LBCB) was chosen as the multi-actuator loading assembly, controlled in real-time by a dSpace

micro-controller unit through an analog interface with the LBCB servo-controller unit. The control

algorithms were developed using Matlab/Simulink program, which provides great flexibility for code

development and deployment.

Kinematic transformations between Cartesian coordinates and actuator and sensor coor-

dinates were developed. These relationships are fundamental to control the loading platform in

Cartesian space using commands to the individual actuators through the servo-controller unit. Two

kinematic transformations were introduced: (i) inverse kinematics, from Cartesian to actuator co-

ordinates; and (ii) forward kinematics, from actuator/sensor to Cartesian coordinates. Although

both transformations are nonlinear, the former is an explicit function, and it can be easily imple-

mented in this framework. However, the forward kinematic transformation is a nonlinear implicit

relationship, without a closed-form solution. Thus, an approximation to this transformation was
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required for real-time implementation. A linearized forward kinematic transformation was pre-

sented, that exhibits good accuracy for fast transformations of the measured Cartesian coordinates

of the controlled motion center. The kinematic transformation components for maRTHS testing

were validated experimentally using a precise Cartesian contact-less dynamic measuring machine.

Following, a study on the dynamic modeling of the multi-actuator loading assembly in Carte-

sian space was presented. The models obtained in this chapter were required to develop the model-

based compensators that are fundamental for synchronization purposes between hybrid substruc-

tures. To achieve a good representation of the physics of the loading system, system identification

for multi-input, multi-output (MIMO) systems was developed. The procedure consisted in the

experimental estimation of the frequency response functions (FRF) for the MIMO system. Then,

a MIMO transfer function model was identified such that the error between the experimental FRF

data and the model was minimized. Although, a good fit for the off-diagonal components of the

MIMO system was hard to achieve using the system identification tools. In addition, different

challenges were introduced regarding the correct way to obtain state-space models with minimal

realizations, which is a requirement for optimal control design. Nevertheless, the models developed

in this section matched well with the experimental data for frequency bandwidth of interest, and

satisfied all the necessary conditions for control design.

Subsequently, model-based compensation for maRTHS testing was developed. The method

consists of a feedforward-feedback architecture for compensation of multi-actuator dynamics for

real-time dynamic testing. The feedforward compensator had the role of synchronizing the target

(reference) signals from the numerical substructure with the measured signals from the experimen-

tal substructure. To this end, the feedforward compensator was designed using an inverse-based

model approach, where an experimental FRF was obtained for the inverse system, and then system

identification was performed to create an improper transfer function model. The improper terms

of this transfer function were approximated a finite differences approach for real-time implemen-

tation. In addition, a feedback regulator was introduced to increase the robustness of the system

for high-frequency noises and disturbances that can be associated with model uncertainty. Both

feedforward and feedback components are designed to meet frequency-domain specifications for

improved reference tracking and disturbance/noise rejection for a given operation bandwidth.
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Finally, validation of the maRTHS framework was carried out for a single-story building

structure. Good reference tracking performance of the target boundary conditions was obtained

in an accurate, reliable and stable manner. Although the boundary conditions of the example

were rather simple, the potential of the maRTHS framework to control multiple-degree-of-freedom

motion in real-time was demonstrated. Moreover, this small-scale implementation can potentially

provide a test-bed for future research applications to verify and evaluate rate-dependent materials

and components that can be used for the design of structural systems subjected to multi-axial

dynamic loading.

8.2 Future Studies

8.2.1 Complex boundary conditions in maRTHS tests

The validation of the maRTHS framework, as described in Chapter 7, considered a structural

system with a simple choice of substructuring, where only translational motion was enabled at the

interface between substructures. While the framework was developed, validation using a more

general substructuring choice would involve the incorporation of all six degrees-of-freedom (DOF)

at the end of a beam-column element. Thus, further experimental tests are required to assess the

performance of the model-based compensator when imposing all DOFs in Cartesian coordinates

using the multi-actuator loading assembly to enhance the capabilities of this framework.

8.2.2 Mixed-mode control in maRTHS testing

The model-based compensation algorithm described in Section 6.2 considered only the ref-

erence tracking problem for motion in Cartesian coordinates. But, if other physical quantities

are prescribed at the interface between substructures, such as Cartesian forces, then the proposed

technique is not suitable for tracking of multi-metric variables.

Thus, by combining mixed-mode control with maRTHS testing, it would be possible to dy-

namically controlling both displacement and force DOFs simultaneously is possible. This situation

would be ideal to impose gravity loads and overturning moments due to seismic actions over three-

dimensional test specimens.
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To achieve this purpose, a similar procedure described by Nakata et al. (2007) could be

employed; however, additional studies are required on the necessary provisions for stable and

robust performance in real-time dynamic tests. Alternatively, the additional compliance technique

for force-controlled RTHS could be explored (Chae et al., 2018; Shao and Reinhorn, 2012).

8.2.3 Model-based adaptive compensation

The proposed compensation algorithm for multi-actuator loading assemblies was based on a

model previously derived using system identification techniques, as described in Chapter 5. The

derived models are obtained considering the interaction with the test specimen attached to the

loading assembly, by performing a random excitation test. However, this test is usually performed

using the test specimen before the maRTHS test takes place. Although the magnitude of random

excitation required to complete this task is considered to be small, there is a chance that the spec-

imen could be damaged after completing the system identification procedure, and its structural

properties will not be necessarily representative of the undamaged scenario for structural perfor-

mance assessment purposes. Moreover, the model-based compensator is designed with a fixed

linearized model of the experimental substructure. Thus, any change of its structural properties

while conducting the maRTHS test could impact the stability and accuracy of the experimental

test, especially for nonlinear specimens with strength and stiffness degradation or hardening effects.

Therefore, more studies should be conducted on the improvement of feedforward compen-

sation for nonlinear systems by employing adaptive control techniques (e.g., Chen et al., 2015).

This feature could be extremely useful to provide a simpler, rational, and flexible approach for

maRTHS testing. For example, system identification and model-based compensator design could

be performed once for the bare LBCB system, i.e., without specimen interaction. Then, when

the specimen is connected to the LBCB, the adaptation of the feedforward parameters during the

real-time test would allow for improved compensation that captures specimen interaction with the

multi-actuator system, together with better stability and robustness guarantees for safe execution.
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8.2.4 Large-scale implementation of maRTHS framework

In Chapter 7, the validation of the maRTHS framework was performed over a small-scale

experimental substructure. Although the tests were satisfactory, further study is required regarding

any potential problems that this framework could experience when large servo-hydraulic actuators

are utilized on the multi-actuator loading assembly.

One of the large-scale Load and Boundary Condition Boxes (LBCB) in the Newmark Civil

Engineering Laboratory (NCEL) at the University of Illinois at Urbana-Champaign has been up-

graded to accommodate dynamic loading, where new servo-valves, manifolds, and accumulators

were installed by the manufacturer to allow for the increased dynamical capabilities of the multi-

actuator system. Further contributions are anticipated to upgrade the full-scale LBCB dynamic

testing equipment at Newmark Civil Engineering Laboratory to implement the maRTHS frame-

work developed throughout this dissertation. Also, continued collaborations with Newmark Civil

Engineering Laboratory is expected for the development of user-friendly and flexible interfaces of

this proposed framework to allow for practical applications on future experimental testing research.

Finally, the development of guidelines to help end-users design and conduct maRTHS experiments

will be required as well.

8.2.5 Multi-point interface boundary conditions

The Load and Boundary Condition Boxes (LBCB) available at Newmark Civil Engineering

Laboratory (NCEL) are a modular and flexible solution to design hybrid simulation tests for large

and complex experimental substructures. In particular, this capability has been considered to

impose multi-point interface boundary conditions over large test specimens, by using multiple

LBCB systems connected with the test specimen at different locations (e.g., Mahmoud et al.,

2013).

Although, the capability of including multiple LBCBs for maRTHS testing have not been

considered in this study, leaving an opportunity to extend this framework for the coordination

of multiple dynamic LBCBs in real-time. For this matter, is essential to study the associated

kinematic constraints of loading assemblies with several actuators coupled through the respective

loading platforms as well thought the interactions with the test specimen. In addition, the si-
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multaneous coordination of multiple actuators will impose a heavy burden over the computational

resources of the micro-controller if a centralized approach for model-based compensation and in-

tegration of numerical substructures is considered. Further studies will be required to understand

the restrictions in hardware and software, and find solutions that could accommodate for reliable

testing.

8.2.6 Inertial effects in test specimens

The stability and accuracy of the multi-actuator model-based compensator for maRTHS

testing was verified both numerically and experimentally in Chapters 6 and 7 respectively. However,

this validation was performed under the assumption that the experimental substructure consisted

of a test specimen without significant inertial effects, such as large masses physically build and

installed over the loading platform.

When a sufficiently large mass is installed on the multi-actuator loading assembly, achieving

system stability and robustness could be much harder. Thus, further studies are required to inspect

whether the model-based compensation proposed in this framework will be sufficient to compensate

for inertial effects when conducting maRTHS testing.
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Appendix A

Calculation of Jacobian matrix for
kinematic transformations

Let si ∈ R3 be the Cartesian coordinates of the “i-th” joint of a parallel manipulator, as

presented in Chapter 4. The equation for this vector is given by:

si = p + Rbi − ai, (i = {1, . . . , n}) (A.1)

where p ∈ R3 and R ∈ R3×3 are the translation vector and rotational matrix that represents the

position of the body frame with respect to the global frame; ai = {axi, ayi, azi}T are the fixed

end coordinates of the “i-th”joint relative to the fixed frame, and bi = {bxi, byi, bzi}T are the

free end coordinates of the “i-th” joint relative to moving frame; and n is the total number of

joints connected to the moving platform. Then, given the inverse kinematic transformation (IKT)

formula:

qi = qi(ux, uy, uz, θx, θy, θz)

= ‖si‖

= ‖p(ux, uy, uz) + R(θx, θy, θz)bi − ai‖ (A.2)

q = q(u) (A.3)

where q = {q1, q2, . . . , qn}T is the vector of joint strokes of the parallel manipulator, and u =

{ux, uy, uz, θx, θy, θz}T is the Cartesian coordinates of the manipulator’s loading platform.

By performing a Taylor series expansion around the Cartesian coordinate uk at step “k”:
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δq ≈ Jδu (A.4)

where δq = qk+1−qk is the joint coordinate increment, δu = uk+1−uk is the Cartesian coordinate

increment, and J ∈ Rn×6 is a Jacobian matrix defined in indicial notation by:

Jrs =
∂qr
∂us

(uk), ∀r = {1, . . . , n}, s = {1, . . . , 6} (A.5)

or in matrix form:

J =


∂q1
∂u1

(uk) · · · ∂q1
∂u6

(uk)

...
. . .

...

∂qn
∂u1

(uk) · · · ∂qn
∂u6

(uk)

 (A.6)

sx = sin θx cx = cos θx (A.7)

sy = sin θy cy = cos θy (A.8)

sz = sin θz cz = cos θz (A.9)

Then, the analytic expressions to obtain the i-th row of the Jacobian matrix are obtained as

follows:

∂qi
∂ux

=
1

2qi
{2ux − 2axi − 2byi(cxsz − czsxsy) + 2bzi(sxsz + cxczsy) + 2bxicycz} (A.10)

∂qi
∂uy

=
1

2qi
{2uy − 2ayi + 2byi(cxcz + sxsysz)− 2bzi(czsx − cxsysz) + 2bxicysz} (A.11)

∂qi
∂uz

=
1

2qi
{2uz − 2azi − 2bxisy + 2bzicxcy + 2byicysx} (A.12)
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∂qi
∂θx

=
1

2qi
{2 [byi(sxsz + cxczsy) + bzi(cxsz − czsxsy)]

× [ux − axi − byi(cxsz − czsxsy) + bzi(sxsz + cxczsy) + bxicycz]

− 2 [byi(czsx − cxsysz) + bzi(cxcz + sxsysz)]

× [uy − ayi + byi(cxcz + sxsysz)− bzi(czsx − cxsysz) + bxicysz]

+2(byicxcy − bzicysx)(uz − azi − bxisy + bzicxcy + byicysx)} (A.13)

∂qi
∂θy

=
1

2qi
{2(bzicxcycz − bxiczsy + byicyczsx)

× [ux − axi − byi(cxsz − czsxsy) + bzi(sxsz + cxczsy) + bxicycz]

− 2(bxicy + bzicxsy + byisxsy)(uz − azi − bxisy + bzicxcy + byicysx)

+ 2(bzicxcysz − bxisysz + byicysxsz)

× [uy − ayi + byi(cxcz + sxsysz)− bzi(czsx − cxsysz) + bxicysz]} (A.14)

∂qi
∂θz

=
1

2qi
{2 [bzi(sxsz + cxczsy)− byi(cxsz − czsxsy) + bxicycz]

× [uy − ayi + byi(cxcz + sxsysz)− bzi(czsx − cxsysz) + bxicysz]

− 2 [byi(cxcz + sxsysz)− bzi(czsx − cxsysz) + bxicysz)]

× [ux − axi − byi(cxsz − czsxsy) + bzi(sxsz + cxczsy) + bxicycz]} (A.15)
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Appendix B

Dynamic model of multi-axial loading
assembly

B.1 Transfer function

The multi-input, multi-output transfer function can be represented as a rational function

matrix:

Gyu(s) =
1

d(s)
N(s) (B.1)

where d(s) ∈ R(s) is a scalar monic polynomial, equal to the least common multiple of the denom-

inators from each entry of the matrix; and N(s) ∈ Rp×m(s) is a matrix polynomial.

For the case of the small-scale LBCB loading assembly with a steel column specimen attached

to its loading platform, the transfer function in Cartesian coordinates was reduced to remove the

weakly observable output uz. Therefore, the transfer matrix is 5×5 square matrix, with p = m = 5.

The structure of the identified transfer system is the following:

Gyu(s) =
1

d(s)



n11(s) n12(s) n13(s) n14(s) n15(s)

n21(s) n22(s) n23(s) n24(s) n25(s)

n31(s) n32(s) n33(s) n34(s) n35(s)

n41(s) n42(s) n43(s) n44(s) n45(s)

n51(s) n52(s) n53(s) n54(s) n55(s)


(B.2)

y =
{
uMeas
x , uMeas

y , θMeas
x , θMeas

y , θMeas
z

}T
(B.3)

u =
{
uCmd
x , uCmd

y , θCmd
x , θCmd

y , θCmd
z

}T
(B.4)
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The polynomial coefficients for both denominator and numerator array are presented as

source code for Matlab as follows.

Denominator

d(s) =

N∑
k=1

dks
N−k, N = 19 (B.5)

Listing B.1: Denominator polynomial

1 den = [1, 2.306e+06, 9.087e+08, 3.533e+11, 7.795e+13, 1.488e+16, 2.139e+18, 2.619e+20,

2.575e+22, 2.133e+24, 1.42e+26, 7.689e+27, 3.15e+29, 9.447e+30, 1.658e+32, 3.18e+33,

1.45e+34, 2.82e+34, 9.33e+34];

Numerator

nij(s) =
N∑
k=1

nij,ks
N−k, N = 19 (B.6)

Listing B.2: Numerator polynomial

1 num{1,1} = [0, 0, 0, 3.392e+09, 1.2e+12, 9.441e+14, 1.759e+17, 3.665e+19,

4.628e+21, 5.22e+23, 4.422e+25, 3.013e+27, 1.549e+29, 6.11e+30, 1.003e+32, 2.561e+33,

1.241e+34, 2.322e+34, 8.299e+34];

2

3 num{1,2} = [0, 0, 0, 5.664e+08 , -3.595e+10, 2.382e+13 , -1.045e+15, 3.632e

+17 , -1.098e+19, 2.351e+21 , -5.763e+22, 5.173e+24, -1.62e+26 , -2.664e+27 , -1.458e+29 , -4.299e

+30, -2.34e+31, 5.298e+31 , -1.633e+32];

4

5 num{1,3} = [0, 0, 0, 7.662e+09, 2.319e+11, 3.139e+14, 9.791e+15, 4.982e+18,

1.538e+20, 3.841e+22, 1.083e+24, 1.447e+26, 3.225e+27, 2.272e+29, 2.806e+30, 8.369e+31,

5.826e+32, 1.15e+33, 4.269e+33]

6

7 num{1,4} = [0, 0, 0,-7.026e+09, 1.181e+12 , -5.747e+14 , -1.845e+16 , -1.848e

+19 , -1.338e+21 , -2.555e+23 , -1.622e+25 , -1.474e+27, -6.34e+28 , -2.981e+30 , -4.144e+31 , -1.237e

+33, -5.05e+33 , -1.172e+34 , -3.191e+34]

8
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9 num{1,5} = [0, 0, 0, 3.487e+09 , -1.447e+12 , -1.824e+14 , -7.639e+16 , -8.176e+18,

-1.25e+21 , -9.389e+22 , -7.537e+24, -3.59e+26 , -1.462e+28 , -2.004e+29 , -6.455e+30 , -2.088e

+31 , -4.185e+32 , -5.219e+31 , -2.146e+33]

10

11 num{2,1} = [0, 0, 0, 1.065e+09, 6.606e+10, 4.309e+13, 2.168e+15, 6.034e+17,

2.699e+19, 3.393e+21, 1.641e+23, 6.743e+24, 4.722e+26, 3.703e+27, 4.057e+29, 2.622e+30,

1.024e+32 , -2.673e+31, 2.481e+32]

12

13 num{2,2} = [0, 0, 0, 2.371e+09, 4.644e+11, 1.133e+15, 1.692e+17, 4.317e+19,

4.726e+21, 5.869e+23, 4.476e+25, 3.181e+27, 1.523e+29, 5.82e+30, 9.553e+31, 2.347e+33,

1.099e+34, 2.114e+34, 7.232e+34]

14

15 num{2,3} = [0, 0, 0, 1.914e+10, 1.404e+12, 2.615e+15, 3.23e+17, 8.597e+19,

8.693e+21, 1.108e+24, 8.104e+25, 5.816e+27, 2.728e+29, 1.027e+31, 1.696e+32, 4.093e+33,

1.896e+34, 3.692e+34, 1.242e+35]

16

17 num{2,4} = [0, 0, 0, 3.011e+09, 6.928e+11, 9.367e+14, 1.251e+17, 3.295e+19,

3.24e+21, 4.212e+23, 2.939e+25, 2.14e+27, 9.655e+28, 3.536e+30, 5.939e+31, 1.374e+33,

6.734e+33, 1.19e+34, 4.534e+34]

18

19 num{2,5} = [0, 0, 0,-4.953e+09 , -5.596e+11 , -2.697e+14, -2.73e+16 , -5.282e

+18 , -4.409e+20 , -4.529e+22 , -2.792e+24, -1.58e+26 , -6.245e+27 , -1.338e+29 , -2.893e+30 , -3.027e

+31 , -1.481e+32, 6.706e+31 , -2.014e+33]

20

21 num{3,1} = [0, 0, 0, 2.264e+08 , -1.221e+10, 9.514e+12 , -6.241e+14, 1.438e

+17 , -1.091e+19, 9.604e+20 , -7.972e+22, 2.936e+24 , -2.314e+26, 4.133e+27 , -1.751e+29, 1.262e

+30 , -2.944e+31, 7.465e+30 , -2.266e+32]

22

23 num{3,2} = [0, 0, 0,-1.283e+09, 9.361e+10 , -3.229e+13, 6.339e+15 , -2.484e+16,

1.246e+20, 4.538e+21, 9.394e+23, 3.302e+25, 2.588e+27, 5.608e+28, 1.358e+30, 2.142e+31,

7.882e+31, 2.282e+32, 4.026e+32]

24

25 num{3,3} = [0, 0, 0, 1.027e+10, 2.501e+12, 1.576e+15, 2.495e+17, 5.246e+19,

5.904e+21, 6.771e+23, 5.253e+25, 3.58e+27, 1.734e+29, 6.475e+30, 1.08e+32, 2.602e+33,

1.234e+34, 2.342e+34, 8.17e+34]

26

27 num{3,4} = [0, 0, 0, 5.111e+09, 9.436e+11, 4.044e+14, 6.553e+16, 1.171e+19,

1.421e+21, 1.481e+23, 1.252e+25, 7.963e+26, 4.215e+28, 1.502e+30, 2.646e+31, 6.124e+32,

3.044e+33, 5.455e+33, 2.036e+34]

28

29 num{3,5} = [0, 0, 0,-1.507e+09, 1.224e+11 , -6.636e+13, 4.694e+15, -1.03e+18,

6.625e+19 , -6.645e+21, 4.169e+23, -1.54e+25, 1.086e+27 , -1.954e+27, 7.339e+29, 2.97e+30,
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1.551e+32 , -2.146e+31, 1.071e+33]

30

31 num{4,1} = [0, 0, 0, 6.639e+08, -5.03e+10, 1.442e+13 , -3.911e+15, -1.13e

+17 , -8.513e+19, -4.43e+21 , -7.211e+23 , -2.947e+25 , -2.293e+27 , -5.153e+28 , -1.401e+30 , -1.981e

+31 , -1.542e+32, -1.9e+32 , -1.068e+33]

32

33 num{4,2} = [0, 0, 0,-1.189e+08 , -4.065e+10 , -2.563e+13 , -4.232e+15 , -9.091e

+17 , -1.018e+20 , -1.212e+22 , -9.182e+23 , -6.611e+25 , -3.066e+27 , -1.256e+29 , -1.911e+30 , -5.098e

+31 , -2.198e+32 , -4.551e+32 , -1.341e+33]

34

35 num{4,3} = [0, 0, 0, 1.298e+09, 2.511e+10, 4.091e+13 , -9.303e+14, 4.58e

+17 , -3.022e+19, 2.42e+21, -1.83e+23, 7.984e+24 , -1.251e+26, 1.946e+28, 9.148e+28, 8.769e

+30, 6.942e+31 , -1.141e+31, 5.291e+32]

36

37 num{4,4} = [0, 0, 0, 1.009e+10, 1.648e+12, 1.586e+15, 2.336e+17, 5.429e+19,

5.965e+21, 7.174e+23, 5.499e+25, 3.869e+27, 1.856e+29, 7.147e+30, 1.171e+32, 2.899e+33,

1.379e+34, 2.604e+34, 9.119e+34]

38

39 num{4,5} = [0, 0, 0,-5.928e+09, 4.881e+11 , -2.006e+14, 2.627e+16 , -1.782e+18,

4.952e+20, 3.779e+21, 3.985e+24, 1.005e+26, 1.258e+28, 2.996e+29, 7.756e+30, 1.336e+32,

8.816e+32, 1.292e+33, 5.735e+33]

40

41 num{5,1} = [0, 0, 0, 3.919e+08, 1.088e+11, -4.96e+13 , -1.647e+15 , -2.009e

+18 , -9.198e+19 , -2.419e+22 , -8.206e+23 , -1.023e+26 , -2.153e+27 , -9.005e+28 , -1.112e+30 , -2.205e

+31 , -1.072e+32 , -1.981e+32 , -7.035e+32]

42

43 num{5,2} = [0, 0, 0, 7.021e+07 , -7.732e+10 , -2.108e+13 , -5.778e+15 , -9.215e

+17 , -1.253e+20 , -1.301e+22 , -1.072e+24 , -7.091e+25 , -3.466e+27 , -1.267e+29 , -2.128e+30, -5.06e

+31 , -2.296e+32 , -4.227e+32 , -1.634e+33]

44

45 num{5,3} = [0, 0, 0, 3.95e+09, 4.259e+11, 1.743e+14, 2.18e+16, 3.328e+18,

4.076e+20, 3.447e+22, 3.352e+24, 1.878e+26, 1.101e+28, 4.413e+29, 7.117e+30, 1.971e+32,

6.836e+32, 1.847e+33, 4.429e+33]

46

47 num{5,4} = [0, 0, 0,-2.887e+09 , -1.067e+11 , -1.539e+14 , -1.175e+16 , -3.459e

+18 , -3.081e+20 , -3.848e+22 , -3.077e+24 , -2.001e+26 , -1.135e+28 , -3.984e+29 , -7.457e+30 , -1.647e

+32 , -9.806e+32 , -1.558e+33 , -7.336e+33]

48

49 num{5,5} = [0, 0, 0, 5.644e+08, 6.767e+11, 7.686e+14, 1.516e+17, 3.279e+19,

4.226e+21, 4.842e+23, 4.137e+25, 2.851e+27, 1.47e+29, 5.871e+30, 9.594e+31, 2.469e+33,

1.209e+34, 2.234e+34, 8.091e+34]
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B.2 State-space model

The reduced-order state-space realization is obtained using the Control Systems Toolbox

in Matlab, and stored as a continuous-time state-space system on variable sysred. Then, the

state-space matrices in compressed sparse column format are presented as follows.

Listing B.3: Reduced-order state-space model

1

2 >> sparse(sysred.A)

3

4 ans =

5

6 (1,1) -0.3500

7 (2,1) -117.2957

8 (1,2) 117.2957

9 (2,2) -0.3500

10 (3,3) -0.0807

11 (4,3) -87.1080

12 (3,4) 87.1080

13 (4,4) -0.0807

14 (5,5) -55.5823

15 (6,5) -92.0661

16 (5,6) 92.0661

17 (6,6) -55.5823

18 (7,7) -55.1178

19 (8,7) -86.2675

20 (7,8) 86.2675

21 (8,8) -55.1178

22 (9,9) -62.5264

23 (10 ,9) -78.5177

24 (9,10) 78.5177

25 (10 ,10) -62.5264

26 (11 ,11) -49.7527

27 (12 ,11) -67.4119

28 (11 ,12) 67.4119

29 (12 ,12) -49.7527

30 (13 ,13) -18.2806

31 (14 ,13) -32.2685

32 (13 ,14) 32.2685

33 (14 ,14) -18.2806

34 (15 ,15) -6.6601
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35 (16 ,15) -4.9226

36 (15 ,16) 4.9226

37 (16 ,16) -6.6601

38 (17 ,17) -0.5251

39 (18 ,17) -2.5055

40 (17 ,18) 2.5055

41 (18 ,18) -0.5251

42

43 >> sparse(sysred.B)

44

45 ans =

46

47 (1,1) 0.0429

48 (2,1) -0.0163

49 (3,1) 0.0091

50 (4,1) -0.0162

51 (5,1) -0.0328

52 (6,1) -0.4234

53 (7,1) 0.4438

54 (8,1) 0.0266

55 (9,1) 5.2815

56 (10 ,1) 1.0500

57 (11 ,1) -1.6147

58 (12 ,1) 6.8055

59 (13 ,1) 0.0315

60 (14 ,1) -0.6698

61 (15 ,1) -0.0940

62 (16 ,1) -1.3703

63 (17 ,1) 0.0120

64 (18 ,1) 0.0785

65 (1,2) 0.0755

66 (2,2) -0.2140

67 (3,2) 0.0165

68 (4,2) 0.0347

69 (5,2) -7.5481

70 (6,2) -0.6386

71 (7,2) 0.8663

72 (8,2) 0.4348

73 (9,2) -0.8748

74 (10 ,2) -0.3693

75 (11 ,2) -0.3950

76 (12 ,2) -0.3234
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77 (13 ,2) 2.0663

78 (14 ,2) -3.0582

79 (15 ,2) 1.0189

80 (16 ,2) -2.0266

81 (17 ,2) -0.1243

82 (18 ,2) 0.0785

83 (1,3) -0.2388

84 (2,3) 0.2934

85 (3,3) 0.0961

86 (4,3) -0.1101

87 (5,3) -14.9745

88 (6,3) -1.4931

89 (7,3) 1.6836

90 (8,3) 2.5473

91 (9,3) -2.6731

92 (10 ,3) -0.6487

93 (11 ,3) -0.6011

94 (12 ,3) 2.4353

95 (13 ,3) -1.5822

96 (14 ,3) 3.4167

97 (15 ,3) -1.1774

98 (16 ,3) 2.7194

99 (17 ,3) 0.2842

100 (18 ,3) -0.2647

101 (1,4) -0.1630

102 (2,4) -0.1157

103 (3,4) 0.0573

104 (4,4) 0.0088

105 (5,4) -5.0050

106 (6,4) -3.6994

107 (7,4) -0.9270

108 (8,4) 15.6338

109 (9,4) 0.1778

110 (10 ,4) -1.3451

111 (11 ,4) -0.0399

112 (12 ,4) -1.6046

113 (13 ,4) -0.9270

114 (14 ,4) 1.3462

115 (15 ,4) -0.5745

116 (16 ,4) -0.1499

117 (17 ,4) -0.0136

118 (18 ,4) 0.2444
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119 (1,5) -0.1568

120 (2,5) 0.0838

121 (3,5) -0.2018

122 (4,5) -0.1776

123 (5,5) 1.6704

124 (6,5) 0.3700

125 (7,5) -1.8294

126 (8,5) -1.2419

127 (9,5) -12.5135

128 (10 ,5) 0.9031

129 (11 ,5) -1.4442

130 (12 ,5) 14.6551

131 (13 ,5) 0.6250

132 (14 ,5) 0.1654

133 (15 ,5) -0.1034

134 (16 ,5) 0.3437

135 (17 ,5) 0.0710

136 (18 ,5) -0.0873

137

138 >> sparse(sysred.C)

139

140 ans =

141

142 (1,1) 0.2524

143 (2,1) -0.3696

144 (3,1) 0.2814

145 (4,1) 0.0180

146 (5,1) 0.0419

147 (1,2) -0.0606

148 (2,2) -0.0401

149 (3,2) -0.0695

150 (4,2) 0.0507

151 (5,2) -0.0132

152 (1,3) 0.0589

153 (2,3) 0.0604

154 (3,3) -0.0646

155 (4,3) 0.0006

156 (5,3) -0.0234

157 (1,4) -0.2882

158 (2,4) -0.0016

159 (3,4) -0.0296

160 (4,4) 0.0752
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161 (5,4) -0.0011

162 (1,5) -0.2000

163 (2,5) 3.0400

164 (3,5) 1.1083

165 (4,5) 1.0467

166 (5,5) -0.6071

167 (1,6) 1.4241

168 (2,6) 17.2503

169 (3,6) 6.8390

170 (4,6) -1.8725

171 (5,6) -0.9999

172 (1,7) -3.6309

173 (2,7) -0.4326

174 (3,7) -0.6729

175 (4,7) 9.5545

176 (5,7) 0.4230

177 (1,8) 0.5549

178 (2,8) 4.3598

179 (3,8) 1.2792

180 (4,8) -1.3315

181 (5,8) 0.1299

182 (1,9) -0.7075

183 (2,9) 1.1600

184 (3,9) 0.6235

185 (4,9) -1.0348

186 (5,9) 1.3893

187 (1,10) -13.3875

188 (2,10) 1.3091

189 (3,10) 0.0826

190 (4,10) 1.0171

191 (5,10) 6.2863

192 (1,11) 8.7176

193 (2,11) 0.1492

194 (3,11) 0.5312

195 (4,11) 0.3770

196 (5,11) 3.8431

197 (1,12) 0.9705

198 (2,12) 0.3080

199 (3,12) 0.3052

200 (4,12) 0.1032

201 (5,12) -0.7928

202 (1,13) 0.4336
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203 (2,13) 0.1066

204 (3,13) -0.8062

205 (4,13) 0.2695

206 (5,13) 0.1862

207 (1,14) -0.2926

208 (2,14) -1.2558

209 (3,14) 2.4092

210 (4,14) -0.2131

211 (5,14) -0.1176

212 (1,15) 0.0356

213 (2,15) 0.2591

214 (3,15) -0.7688

215 (4,15) 0.0219

216 (5,15) 0.1115

217 (1,16) -0.2032

218 (2,16) -0.1929

219 (3,16) 0.5802

220 (4,16) -0.1712

221 (5,16) 0.0000

222 (1,17) 0.1787

223 (2,17) 0.1455

224 (3,17) -0.0799

225 (4,17) 0.0573

226 (5,17) -0.0892

227 (1,18) -0.1891

228 (2,18) 0.0284

229 (3,18) -0.2225

230 (4,18) -0.0471

231 (5,18) 0.0427

232

233 >> sparse(sysred.D)

234

235 ans =

236

237 All zero sparse: 5x5
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Appendix C

Dynamic models for MIMO
feedforward-feedback compensation

C.1 Feedforward compensator

For the case of the small-scale LBCB loading assembly with a steel column specimen attached

to its loading platform, the model of the MIMO inverse system was identified using an improper

transfer function with three zeroes and no poles for each component of the real polynomial matrix.

Kff(s) =



k11(s) k12(s) k13(s) k14(s) k15(s) k16(s)

k21(s) k22(s) k23(s) k24(s) k25(s) k16(s)

k31(s) k32(s) k33(s) k34(s) k35(s) k36(s)

k41(s) k42(s) k43(s) k44(s) k45(s) k46(s)

k51(s) k52(s) k53(s) k54(s) k55(s) k56(s)

k61(s) k62(s) k63(s) k64(s) k65(s) k66(s)


(C.1)

where kij(s) is a third degree polynomial.

kij(s) =
N∑
k=1

kij,ks
N−k, N = 4 (C.2)

The polynomial coefficients for the polynomial array are presented as Matlab source code as

follows.

Listing C.1: Feedforward polynomial coefficients

1 k{1,1} = [5.713e-07, 0.0001742 , 0.01855 , 1.081];

2 k{1,2} = [2.414e-08, 5.277e-06, 0.0008014 , 0.05637];

3 k{1,3} = [0];

4 k{1,4} = [-2.42e-08 , -4.651e-06, -0.001943 , -0.1301];

5 k{1,5} = [7.407e-08, 6.664e-05, 0.007643 , 0.5448];

6 k{1,6} = [3.146e-07, 4.805e-05, 0.001507 , -0.1203];
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7 k{2,1} = [9.461e-09, 8.369e-06, 0.0005533 , 0.03675];

8 k{2,2} = [5.264e-07, 0.0001423 , 0.01739 , 1.202];

9 k{2,3} = [0];

10 k{2,4} = [-6.2e-07 , -0.0002351 , -0.02874, -1.891];

11 k{2,5} = [ -2.479e-07 , -5.979e-05, -0.00513 , -0.2445];

12 k{2,6} = [1.03e-07, 2.988e-05, 0.002762 , 0.03685];

13 k{3,1} = [-1.18e-07, -2.74e-05, -0.003177 , -0.1744];

14 k{3,2} = [9.629e-08, 2.725e-05, 0.003301 , 0.2295];

15 k{3,3} = [0];

16 k{3,4} = [ -1.301e-07 , -4.446e-05, -0.005431 , -0.3544];

17 k{3,5} = [4.374e-08, 1.359e-05, 0.001731 , 0.1483];

18 k{3,6} = [ -4.342e-08, -5.23e-06 , -8.864e-05, 0.002719];

19 k{4,1} = [ -2.935e-09, 2.235e-07 , -3.067e-05, -0.00215];

20 k{4,2} = [ -1.638e-08 , -3.439e-06 , -0.0005143 , -0.01886];

21 k{4,3} = [0];

22 k{4,4} = [3.504e-07, 0.0001437 , 0.01609 , 1.178];

23 k{4,5} = [ -9.123e-08 , -1.988e-05, -0.003222 , -0.2452];

24 k{4,6} = [1.913e-08 , -1.202e-07, 9.746e-05, 0.005654];

25 k{5,1} = [3.878e-08, 1e-05, 0.001188 , 0.06405];

26 k{5,2} = [ -2.042e-08 , -5.575e-06 , -0.0007046 , -0.04647];

27 k{5,3} = [0];

28 k{5,4} = [1.368e-08, 1.33e-05, 0.001143 , 0.06414];

29 k{5,5} = [4.084e-07, 0.0001239 , 0.01409 , 0.9799];

30 k{5,6} = [ -2.313e-08 , -8.685e-06, -0.00124 , -0.09044];

31 k{6,1} = [5.108e-08, 1.248e-05, 0.0007437 , 0.009343];

32 k{6,2} = [2.139e-08, 4.139e-06, 0.0006322 , 0.02771];

33 k{6,3} = [0];

34 k{6,4} = [ -1.599e-08, -1.19e-05, -0.001737 , -0.1559];

35 k{6,5} = [3.091e-08, 1.146e-05, 0.00168 , 0.112];

36 k{6,6} = [6.766e-07, 0.000186 , 0.01999 , 1.131];
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C.2 Feedback regulator

The LQG controller was developed using the Control Systems Toolbox in Matlab, and stored

as a continuous-time state-space system on variable Kfb. Then, the state-space matrices in com-

pressed sparse column format are presented as follows.

Listing C.2: LQG state-space model

1

2 >> sparse(Kfb.A)

3

4 ans =

5

6 (1,1) -280.3596

7 (2,2) -194.9325

8 (3,3) -168.4553

9 (4,3) -176.7843

10 (3,4) 176.7843

11 (4,4) -168.4553

12 (5,5) -195.1131

13 (6,5) -135.9876

14 (5,6) 135.9876

15 (6,6) -195.1131

16 (7,7) -179.5517

17 (8,7) -134.2377

18 (7,8) 134.2377

19 (8,8) -179.5517

20 (9,9) -0.6983

21 (10 ,10) -52.3513

22 (11 ,10) -216.8903

23 (10 ,11) 216.8903

24 (11 ,11) -52.3513

25 (12 ,12) -46.4842

26 (13 ,12) -185.6338

27 (12 ,13) 185.6338

28 (13 ,13) -46.4842

29 (14 ,14) -43.6515

30 (15 ,14) -166.3473

31 (14 ,15) 166.3473

32 (15 ,15) -43.6515

33 (16 ,16) -34.5484

34 (17 ,16) -150.4171
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35 (16 ,17) 150.4171

36 (17 ,17) -34.5484

37 (18 ,18) -39.8315

38 (19 ,18) -118.3478

39 (18 ,19) 118.3478

40 (19 ,19) -39.8315

41 (20 ,20) -0.5004

42 (21 ,20) -117.3994

43 (20 ,21) 117.3994

44 (21 ,21) -0.5004

45 (22 ,22) -0.1163

46 (23 ,22) -87.1010

47 (22 ,23) 87.1010

48 (23 ,23) -0.1163

49

50 >> sparse(Kfb.B)

51

52 ans =

53

54 (1,1) 1.7228

55 (2,1) -2.6176

56 (3,1) 0.2538

57 (4,1) -0.1520

58 (5,1) 7.6212

59 (6,1) -17.7861

60 (7,1) -1.9802

61 (8,1) 13.2886

62 (9,1) 0.0001

63 (10 ,1) 0.3070

64 (11 ,1) -0.1425

65 (12 ,1) -3.8670

66 (13 ,1) -3.7970

67 (14 ,1) 0.1212

68 (15 ,1) 4.4950

69 (16 ,1) 2.3746

70 (17 ,1) 2.9223

71 (18 ,1) -0.0227

72 (19 ,1) -0.0164

73 (20 ,1) 0.0338

74 (21 ,1) 0.0159

75 (22 ,1) 0.0191

76 (23 ,1) -0.0049
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77 (1,2) -8.9674

78 (2,2) -2.2550

79 (3,2) -3.0488

80 (4,2) -11.9181

81 (5,2) -0.5773

82 (6,2) -4.6952

83 (7,2) 7.9723

84 (8,2) 0.6262

85 (9,2) 0.0534

86 (10 ,2) -3.9720

87 (11 ,2) 3.2917

88 (12 ,2) 0.0287

89 (13 ,2) 0.3620

90 (14 ,2) 1.0310

91 (15 ,2) 1.7814

92 (16 ,2) 0.1774

93 (17 ,2) 0.7755

94 (18 ,2) 1.4804

95 (19 ,2) -0.6450

96 (20 ,2) -0.0618

97 (21 ,2) 0.0675

98 (22 ,2) -0.0165

99 (23 ,2) 0.0098

100 (1,3) -29.0741

101 (2,3) -12.4093

102 (3,3) -12.7978

103 (4,3) -41.3267

104 (5,3) -4.9272

105 (6,3) -14.7017

106 (7,3) 29.8664

107 (8,3) -2.3994

108 (9,3) -0.0251

109 (10 ,3) -12.4376

110 (11 ,3) 12.0530

111 (12 ,3) 0.0721

112 (13 ,3) 0.7966

113 (14 ,3) 3.0662

114 (15 ,3) 5.7679

115 (16 ,3) 1.6137

116 (17 ,3) 2.3131

117 (18 ,3) 1.6569

118 (19 ,3) -2.5226
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119 (20 ,3) -0.0796

120 (21 ,3) 0.1206

121 (22 ,3) 0.0067

122 (23 ,3) 0.0012

123 (1,4) 5.1982

124 (2,4) 0.7528

125 (3,4) -0.1294

126 (4,4) 6.6094

127 (5,4) -9.9192

128 (6,4) 24.6526

129 (7,4) -2.0587

130 (8,4) -12.2104

131 (9,4) -0.0341

132 (10 ,4) 2.2021

133 (11 ,4) -1.5543

134 (12 ,4) 4.3461

135 (13 ,4) 4.3751

136 (14 ,4) -2.9195

137 (15 ,4) -4.4708

138 (16 ,4) -2.1966

139 (17 ,4) -2.3245

140 (18 ,4) -1.5857

141 (19 ,4) 0.7519

142 (20 ,4) 0.0174

143 (21 ,4) -0.0897

144 (22 ,4) 0.0031

145 (23 ,4) -0.0020

146 (1,5) 5.4584

147 (2,5) 1.8252

148 (3,5) 2.6265

149 (4,5) 7.4102

150 (5,5) -11.4650

151 (6,5) 20.8479

152 (7,5) 0.5891

153 (8,5) -18.4145

154 (9,5) -0.0113

155 (10 ,5) 2.1764

156 (11 ,5) -2.1999

157 (12 ,5) 3.6313

158 (13 ,5) 4.3101

159 (14 ,5) -0.8198

160 (15 ,5) -7.7957
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161 (16 ,5) -1.5230

162 (17 ,5) -4.6326

163 (18 ,5) -0.9855

164 (19 ,5) 0.8281

165 (20 ,5) -0.0266

166 (21 ,5) -0.0852

167 (22 ,5) -0.0488

168 (23 ,5) -0.0203

169

170 >> sparse(Kfb.C)

171

172 ans =

173

174 (1,1) 2.1548

175 (2,1) -3.6499

176 (3,1) -33.4944

177 (4,1) -15.8750

178 (5,1) 1.8363

179 (1,2) -4.0682

180 (2,2) 0.9599

181 (3,2) -17.0821

182 (4,2) -7.3672

183 (5,2) 4.5828

184 (1,3) -0.4066

185 (2,3) 1.4331

186 (3,3) 29.4731

187 (4,3) 9.0964

188 (5,3) 2.1621

189 (1,4) -0.0946

190 (2,4) -1.7552

191 (3,4) -18.4109

192 (4,4) -11.8466

193 (5,4) 3.5758

194 (1,5) 3.1778

195 (2,5) 0.3911

196 (3,5) 2.4791

197 (4,5) -13.2796

198 (5,5) -3.6041

199 (1,6) -1.9224

200 (2,6) -0.2011

201 (3,6) 3.4016

202 (4,6) 10.2908
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203 (5,6) 3.8140

204 (1,7) 0.3927

205 (2,7) 0.2612

206 (3,7) 1.2926

207 (4,7) -5.2556

208 (5,7) 6.0809

209 (1,8) 0.2001

210 (2,8) 0.1077

211 (3,8) 4.6423

212 (4,8) 11.0188

213 (5,8) -3.4499

214 (1,9) 0.2199

215 (2,9) 0.1224

216 (3,9) -0.0026

217 (4,9) 0.0230

218 (5,9) -0.1086

219 (1,10) -0.1635

220 (2,10) 1.1893

221 (3,10) 22.6593

222 (4,10) 5.6480

223 (5,10) 0.5704

224 (1,11) 0.3744

225 (2,11) -1.6226

226 (3,11) -26.2111

227 (4,11) -8.8953

228 (5,11) 0.4343

229 (1,12) 2.1889

230 (2,12) 0.1261

231 (3,12) 4.6263

232 (4,12) -13.4021

233 (5,12) -8.4024

234 (1,13) 0.0401

235 (2,13) 0.1939

236 (3,13) 3.4274

237 (4,13) -6.9055

238 (5,13) 4.7504

239 (1,14) -0.2595

240 (2,14) -0.3943

241 (3,14) -0.9839

242 (4,14) 1.0123

243 (5,14) 5.7159

244 (1,15) -1.7512
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245 (2,15) 0.0540

246 (3,15) 2.3901

247 (4,15) -5.8050

248 (5,15) 1.1850

249 (1,16) -3.3123

250 (2,16) 0.5085

251 (3,16) 0.6141

252 (4,16) -2.5589

253 (5,16) -2.2286

254 (1,17) 3.4734

255 (2,17) -0.1579

256 (3,17) -0.1828

257 (4,17) 0.6625

258 (5,17) 6.3050

259 (1,18) -0.3796

260 (2,18) 4.0502

261 (3,18) -3.3286

262 (4,18) -0.4247

263 (5,18) -0.1929

264 (1,19) -0.3616

265 (2,19) 5.0541

266 (3,19) -1.9681

267 (4,19) 0.1930

268 (5,19) -0.2526

269 (1,20) -0.2680

270 (2,20) 0.5518

271 (3,20) -0.1618

272 (4,20) 0.0117

273 (5,20) -0.0756

274 (1,21) -0.0837

275 (2,21) -0.4271

276 (3,21) 0.2940

277 (4,21) -0.1415

278 (5,21) -0.1074

279 (1,22) 0.1591

280 (2,22) 0.0922

281 (3,22) -0.0602

282 (4,22) -0.0073

283 (5,22) 0.0415

284 (1,23) -0.0313

285 (2,23) 0.1135

286 (3,23) -0.0588
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287 (4,23) 0.0061

288 (5,23) -0.0315

289

290 >> sparse(Kfb.D)

291

292 ans =

293

294 All zero sparse: 5x5
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