
SimCenter	BootCamp
Time Title Presenter
Day 1 Programming	&	The C	Language

Day	2 Parallel	Programming:	MPI and	OpenMP

Day	3 Abstraction,	Struct &	C++

9:00-9:10 Welcome Frank

9:10-9:30 Git – Updating	your	repos

9:30-10:00 PI Frank	

10:00-10:30 Abstraction Frank

10:45-11:30 Abstraction in	C	with	struct and	pointers You

11:30-12:30 Exercise

12:30-1:30 LUNCH

1:30-2:00 Programming in	C++ Frank

2:00-5:00 Exercise	With	Frank Me and	You

Day	4 User Interface	Design	 &	Qt

Day	5 SimCenter &	Cloud Computing

NHERI

Abstraction
&

C Structures, the C++ Language
Frank McKenna

2

Outline
• Abstraction	
• C	Programming	Language	–

• Structures
• Container	Classes

• Object-Oriented	Programming
• C++

Definition	– Digital	Computer

“Digital	computer,	any	of	a	class	of	devices	capable	of	solving	problems	
by	processing	information	in	discrete	form.	It	operates	on	data,	
including	magnitudes,	letters,	and	symbols,	that	are	expressed	in	binary	
code	—i.e.,	using	only	the	two	digits	0	and	1.	By	counting,	comparing,	
and	manipulating	these	digits	or	their	combinations	according	to	a	set	
of	instructions	held	in	its	memory,	a	digital	computer	can	perform	such	
tasks	as	to	control	industrial	processes	and	regulate	the	operations	of	
machines;	analyze	and	organize	vast	amounts	of	business	data;	and	
simulate	the	behaviour of	dynamic systems	(e.g.,	global	weather
patterns	and	chemical	reactions)	in	scientific	research.”		(source:	
enclyopedia Britannica)

Abstraction	

• “The	process	of	removing	physical,	spatial,	or	temporal	details[2] or	
attributes in	the	study	of	objects	or	systems in	order	to	more	closely	
attend	to	other	details	of	interest”	[source:	wikippedia]

We	Work	in	Decimal

0,1,2,3,4,5,6,7,8,9

Computers	in	Binary	

0,1

Computer	Bit	(on/off)	(0,1)

We	Combine	Numbers

456
4*100	+	5*10	+	6

100 10 1

With	3	numbers	we	can	represent	any	number	0	through	999

What	can	we	represent	on	a	computer	with	3	bits

000
001
010
011
100
101
110
111

2				possibilities3

We	Combine	Numbers

101
1*4	+	0*2	+	1*1

4 2 1

With	3	numbers	we	can	represent	any	number	0	through	7

What	can	we	represent	on	a	computer	with	3	bits

000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

A
B
C
D
E
F
G
H

Computer	groups	bits	into	Bytes

1	Byte	=	8	bits

2				=	256	possibilities8

C	Data	Types

C	Character	Set

C	Program	to	Print	Character	Set

#include<stdio.h>
#include<conio.h>
int main() {

int i; clrscr();
printf("ASCII ==> Character\n");
for(i = -128; i <= 127; i++)

printf("%d ==> %c\n", i, i);
return 0;

}

charset.c

Float	and	Double	Point	Numbers	-
IEEE	754	standard

If	you	know	the	abstraction	you	can	go
In	and	modify	anything!

C	Structures

• A	powerful	tool	for	developing	your	own	data	abstractions

struct structNameName {
type name;
…..

};

What	Abstractions	for	a	Finite	Element	Method	
Application?

Node
Element

Constraint

Load

MatrixVectorDomain

What	is	in	a	Node?
• Node	number	or	tag
• Coordinates
• Displacements?
• Velocities	and	Accelerations??

2d	or	3d?
How	many	dof?
Do	We	Store	Velocities	and	Accel.

Depends	on	what	the	program	needs	of	it

Say	Requirement	is	2dimensional,	need	to	
store	the	displacements	(3dof)?

struct node {
int tag;
double coord[2];
double displ[3];

};

struct node {
int tag;
double xCrd;
double yCrd;
double displX;
double dispY;
double rotZ;

};
I	would	lean	towards	the	latter;	easier	to	extend	to	3d	w/o	changing	2d	
code,	easy	to	write	for	loops	..	But	is	there	a	cost	associated	with	
accesing arrays	instead	of	variable	directly	..	Maybe	compile	some	code	
and	time	it	for	intended	system

#includede <stdio.h>
struct node	{

int tag;
double	coord[2];
double	disp[3];

};
void	nodePrint(struct node	*);

int main(int argc,	const char	**argv)	{
struct node	n1;		//	create	variable	named	n1	of	type	node
struct node	n2;
n1.tag	=	1;										//	to	set	n1’s	tag	to	1	..	Notice	the	DOT	notation
n1.coord[0]	=	0.0;
n1.coord[0]	=	1.0;
n2.tag	=	2;
n2.coord[0]	=	n1.coord[0];
n2.coord[0]	=	2.0;
nodePrint(&n1);
nodePrint(&n2);

}
void	nodePrint(struct node	*theNode){

printf("Node	:	%d	",	theNode->tag);				//	because	the	object	is	a	pointer	use	->	ARROW	to	access
printf("Crds:	%f	%f	",	theNode->coord[0],	theNode->coord[1]);
printf("Disp:	%f	%f	%f	\n",	theNode->disp[0],	theNode->disp[1],	theNode->disp[2]);

}

#includede <stdio.h>
typedef struct node	{.						
int tag;
double	coord[2];
double	disp[3];
}	Node;
void	nodePrint(Node	*);
void	nodeSetup(Node	*,	int tag,	double	crd1,	double	crd2);
int main(int argc,	const char	**argv)	{

Node	n1;
Node	n2;
nodeSetup(&n1,	1,	0.,	1.);
nodeSetup(&n2,	2,	0.,	2.);
nodePrint(&n1);
nodePrint(&n2);

}
void	nodePrint(Node	*theNode){

printf("Node	:	%d	",	theNode->tag);				
printf("Crds:	%f	%f	",	theNode->coord[0],	theNode->coord[1]);
printf("Disp:	%f	%f	%f	\n",	theNode->disp[0],	theNode->disp[1],	theNode->disp[2]);

}
void	nodeSetup(Node	*theNode,	int tag,	double	crd1,	double	crd2)	{

theNode->tag	=	tag;
theNode->coord[0]	=	crd1;
theNode->coord[1]	=	crd2;

Using	typedef to	give	you	to	give	the	new	struct a	name;
Instead	of	struct node	now	use	Node

Also	created	a	function	to	quickly	initialize	a	node

Clean	This	Up	for	Large	Project:
• Files	for	each	data	type	and	the	functions
• node.h,	node.c,	domain.h,	domain.c,	….

#include	“node.h”
#include	“domain.h”
int main(int argc,	const char	**argv)	{

Domain	theDomain;

domainAddNode(&theDomain,	1,	0.0,	0.0);
domainAddNode(&theDomain,	2,	0.0,	2.0);
domainAddNode(&theDomain,	3,	1.0,	1.0);

domainPrint(&theDomain);

//	get	and	print	singular	node
printf("\nsingular node:\n");
Node	*theNode =	domainGetNode(&theDomain,	2);
nodePrint(theNode);

}

Domain
• Container	class	to	store	nodes,	elements,	loads,	constraints,…
• What	storage	scheme	for	the	different	data	types?
• What	are	the	options:

• Array
• Linked	List
• Double	Linked	List
• Tree
• Hybrid	approaches	……

#ifndef _DOMAIN
#define	_DOMAIN

#include	"node.h”

typedef struct struct_domain {
Node	*theNodes;

}	Domain;
void	domainPrint(Domain	*theDomain);
void	domainAddNode(Domain	*theDomain,	int tag,	double	crd1,	double	crd2);
void	domainPrintNodes(Domain	*theDomain);
Node	*domainGetNode(Domain	*,	int nodeTag);
#endif

#ifndef _NODE
#define	_NODE

#include	<stdio.h>

typedef struct node	{
int tag;
double	coord[2];
double	disp[3];
struct node	*next;

}	Node;

void	nodePrint(Node	*);
void	nodeSetup(Node	*,	int tag,	double	crd1,	double	crd2);
#endif

void	domainAddNode(Domain	*theDomain,	int tag,	double	crd1,	double	crd2)	{
Node	*theNextNode =	(Node	*)malloc(sizeof(Node));
nodeSetup(theNextNode,	tag,	crd1,	crd2);

if	(theDomain->theNodes !=	NULL)	{
theNextNode->next	=	theDomain->theNodes;

}
theDomain->theNodes =	theNextNode;

}
void	domainPrintNodes(Domain	*theDomain)	{

Node	*theCurrentNode =	theDomain->theNodes;
while	(theCurrentNode !=	NULL)	{

nodePrint(theCurrentNode);
theCurrentNode =	theCurrentNode->next;

};
}
Node	*domainGetNode(Domain	*theDomain,	int nodeTag)	{

Node	*theCurrentNode =	theDomain->theNodes;
while	(theCurrentNode !=	NULL)	{

if	(theCurrentNode->tag	==	nodeTag)	{
return	theCurrentNode;

}	else	theCurrentNode =	theCurrentNode->next;
};
return	NULL;

}

Object	Oriented	Programming	and	C++

How	do	We	Now	Add	Elements	to	the	FEM	
code?

• Want	2d	beam	elements
typedef struct struct_domain {

Node	*theNodes;
Constraints	*theConstraints;
Beam	*theBeams

}

And	Trusses!
typedef struct struct_domain {

Node	*theNodes;
Constraints	*theConstraints;
Beam*theBeams;
Truss	*theTrusses;

} Why	Not	Just	Elements	..	That	
requires	some	functional	pointers!

Problem	With	C	is	Certain	Data	&	Functions	
Separate	so	need	these	function	pointers

Object-Oriented	Programming	Offers	a	
Solution

Data Functions

Object-Oriented	Programming	overcomes	the	
problem	by	something	called	encapsulation ..	The	
data	and	functions(methods)	are	bundled	
together into	a	class.	 The	class	presents	an	
interface,	hiding	the	data	and	implementation	
details.	If	written	correctly	only	the	class	can	
modify	the	data.	The	functions	or	other	classes	in	
the	program	can	only	query	the	methods,	the	
interface	functions.

Object-Oriented	Programs	all	provide	the	ability	of	
one	class	to	inherit	the	behaviour of	a	parent	class	
(or	even	multiple	parent	classes).	This	allows	the	
Beam	and	Trusses	both	to	be	treated	just	as	
elements.	The	are	said	to	be	polymorphic.

tang()

print()

tang()

print()

tang()

print()

Beam Truss Shell

C++
• Developed	by	Bjourne Stroustroup working	at	Bell	Labs	(again)	in	
1979.		Originally	“C	With	Classes”	it	was	renamed	C++	in	1983.
• A	general	purpose	programming	language	providing	both	functional	
and	object-oriented	features.
• As	an	incremental	upgrade	to	C,	it	is	both	strongly	typed	and	a	
compiled	language.
• The	updates	include:
• Object-Oriented	Capabilities
• Standard	Template	Libraries
• Additional	Features	to	make	C	Programmng easier!

C++	Program	Structure

A	C C++	Program	consists	of	the	following	parts:
• Preprocessor	Commands
• Functions
• Variables
• Statements	&	Expressions
• Comments
• Classes

Hello	World	(of	course	C	Hello	World	also	works!)

#include <iostream>
using namespace std;

int main() {
/* my first program in C++ */
cout << “Hello World! \n";
return 0;

}

• The	first	line	of	the	program	#include	<iostream> is	again	
a	preprocessor	directive,	which	tells	a	C++	compiler	to	
include	the	iostreamfile before	starting	compilation.

• All	the	elements	of	the	standard	C++	library	are	declared	
within	what	is	called	a	namespace.	In	this	case	the	
namespace	with	the	name	std.	We	put	the	using	
namespace	std line	in	to	declare	that	we	will	make	use	of	
the	functionality	offered	in	the	namespace	std.

• The	next	line	int main() is	the	main	function.	Every	
program	must	have	a	main	function	as	that	is	where	the	
program	execution	will	begin.

• The	next	line	/*...*/ will	be	ignored	by	the	compiler.	It	is	
there	for	the	programmer	benefit.	It	is	a	comment.

• The	next	line	is	a	statement	to	send	the	message	"Hello,	
World!"	to	the	output	stream	cout,	casuing it	to	be	
displayed	on	the	screen.	

• The	next	statement	return	0; terminates	the	main()	
function	and	returns	the	value	0.

Code/C++/hello1.cpp

po
in
te
r,	
ne
w
()
	a
nd

de
le
te
()

#include <iostream>
using namespace std;

int main(int argc, char **argv) {
int n;
double *array1=0, *array2=0, *array3=0;

// get n
cout << "enter n: ";
cin >> n;

if (n <=0) {printf (“You idiot\n”); return(0);}

// allocate memory & set the data
array1 = new double[n];
for (int i=0; i<n; i++) {

array1[i] = 0.5*i;
}
array2 = array1;
array3 = &array1[0];

for (int i=0; i<n; i++, array3++) {
double value1 = array1[i];
double value2 = *array2++;
double value3 = *array3;
printf("%.4f %.4f %.4f\n", value1, value2, value3);

}
// free the array
delete array1[];
return(0);

}

Code/C++/memory1.cpp
You	should	not	malloc something	
and	delete	it	later	or	new	
something	and	free	it	later.	The	
bahviour is	undefined.	“The	
program	may	continue	normally,	it	
may	crash	immediately,	it	may	
produce	a	well-defined	error	
message	and	exit	gracefully,	it	may	
start	exhibiting	random	errors	at	
some	time	after	the	actual	
undefined	behavior	event”.

St
rin

gs
#include <iostream>
#include <string>
using namespace std;

int main(int argv, char **argc) {
string pName = argc[0];
string str;
cout << "Enter Name: ";
cin >> str;

if (pName == "./a.out")
str += " the lazy sod";

str += " says ";
str = str + "HELLO World";
cout << str << "\n";
return 0;

}

Pa
ss
	b
y	
Re
fe
re
nc
e

#include <iostream>
using namespace std;
void sum1(int a, int b, int *c);
void sum2(int a, int b, int &c);
int main(int argc, char **argv) {

int x = 10;
int y = 20;
int z;
sum1(x,y, &z);
cout << x << " + " << y << " = " << z << "\n";
x=20;
sum2(x, y, z);

cout << x << " + " << y << " = " << z << "\n";
}

// c by value
void sum1(int a, int b, int *c) {
*c = a+b;

}

//	c	by	ref
void	sum2(int a,	int b,	int &c)	{
c =	a	+	b;
}

Classes
A	class	in	C++	is	the	programming	code	that	defines	the	methods	(defines	the	api)	in	
the	class	interface	and	the	code	that	implements	the	methods.	For	classes	to	be	
used	by	other	classes	and	in	other	programs,	these	classes	will	have	the	interface	in	
a		.h	file	and	the	implementation	in	a	.cpp (.cc, .”.cxx", or ".c++”)	file.

Programming	Classes – Header	Files

class	Shape	{
public:
virtual	~Shape();
virtual	double	GetArea(void)	=0;
virtual	void	PrintArea(ostream &s);

};

• keywod class defines	this	as	a	class,	Shape is	the	name	of	
the	class

• Classes	can	have	3	sections:
1. Public:	objects	of	all	other	classes	and	program	

functions	can	invoke	this	method	on	the	object
2. Protected:	only	objects	of	subclasses	of	this	class	can	

invoke	this	method.
3. Private:	only	objects	of	this	specific	class	can	invoke	

the	method.
• virtual	double	GetArea(void)	=	0	,	the	=0;makes	this	an	

abstract	class.	(It	cannot	be	instantiated.)	It	says	the	class	
does	not	provide	code	for	this	method.	A	subclass	must	
provide	the	implementation.

• virtual	void	PrintArea(ostream &s)	the	class	provides	an	
implementation	of	the	method,	the	virtual a	subclass	may	
also	provide	an	implementation.

• virtual	~Shape()	is	the	destrcutor.	This	is	method	called	
when	the	object	goes	away	either	through	a	delete	or	
falling	out	of	scope.

class	Rectangle:	public	Shape	{
public:
Rectangle(double	w,	double	h);
~Rectangle();
double	GetArea(void);
void	PrintArea(ostream &s);	

protected:
//	shared	by	subclasses

private:
double	width,	height;
static	int numRect;

};

• class	Rectangle:	public	Shape	defines	this	as	a	class,	Rectangle
which	is	a	subclass	of	the	class	Shape.

• It	has	3	sections,	public,	protected,	and	private.
• It	has	a	constructor	Rectangle(double	w,	double	h)	which	states	

that	class	takes	2	args,	w	and	h	when	creating	an	object	of	this	
type.

• It	also	provides	the	methods	double	GetArea(void)	and	void	
PrintArea(ostream &s);	 Neither	are	virtual	which	means	no	
subclass	can	provide	an	implementation	of	these	methods.

• In	the	private	area,	the	class	has	3	variables.	Width	and	height	are	
unique	to	each	object	and	are	not	shared.	Numrect is	shared	
amongst	all	objects	of	type	Rectangle.

class	Shape	{
public:
virtual	~Shape();
virtual	double	GetArea(void)	=0;
virtual	void	PrintArea(ostream &s);

};

• class	Circle:	public	Shape	defines	this	as	a	class	Circle which	is	a	
subclass	of	the	class	Shape.

• It	has	2	sections,	public	and	private.
• It	has	a	constructor	Circle(double	d)	which	states	that	class	takes	

1	arg d	when	creating	an	object	of	this	type.
• It	also	provides	the	method	double	GetArea(void).	
• There	is	no	PrintArea()	method,meaning this	class	relies	on	the	

base	class	implementation.	
• In	the	private	area,	the	class	has	1	variable	and	defines	a	private	

method,	GetPI().	Only	objets of	type	Circle	can	invoke	this	
method.

class	Shape	{
public:
virtual	~Shape();
virtual	double	GetArea(void)	=0;
virtual	void	PrintArea(ostream &s);

};

class	Circle:	public	Shape	{
public:
Circle(double	d);
~Circle();
double	GetArea(void);

private:
double	diameter;
double	GetPI(void);

};

Programming	Classes –Implementation	Files
• 2	methods	defined.	The	destructor	
~Shape()	 and	the	PrintArea()	method.

• The	Destructor	just	sends	a	string	to	cout.
• The	PrintArea methods	prints	out	the	area.	
It	obtains	the	area	by	invoking	the	this
pointer.

• This	pointer	is	not	defined	in	the	.h	file	or	
.cpp file	anywhere	as	a	variable.	It	is	a	
default	pointer	always	available	to	the	
programmer.	It	is	a	pointer	pointing	to	the	
object	itself.

Shape::~Shape()	{
cout <<	"Shape	Destructor\n";
}

void
Shape::PrintArea(ostream &s)	{
s	<<	"UNKOWN	area:	"	<<	this->GetArea()	<<	"\n";
}

tang()

print()

• int Rectangle::numRect =	0 creates	the	
memory	location	for	the	classes	static	
variable	numRect.

• The	Rectangle::Rectangle(double	w,	double	
d)	is	the	class	constructor	taking	2	args.

• the	line	:Shape(),	width(w),	height(d)	is	the	
first	code	exe.	It	calls	the	base	class	
constructor	and	then	sets	it’s	2	private	
variables.

• The	constructor	also	increments	the	static	
variable	in	numRect++;	That	variable	is	
decremented	in	the destructor.

int Rectangle::numRect =	0;

Rectangle::Rectangle(double	w,	double	d)
:Shape(),	width(w),	height(d)
{

numRect++;
}

Rectangle::~Rectangle()	{
numRect--;
cout <<	"Shape	Destructor\n";
}

double
Rectangle::GetArea(void)	{

return	width*height;
}

• Last	but	not	least!Circle::~Circle()	{
cout <<	"Shape	Destructor\n";

}

Circle::Circle(double	d)	{
diameter	=	d;

}

double
Circle::GetArea(void)	{
return	this->GetPI()	*	diameter	*	diameter/4.0;

}

Double
Circle::GetPI(void)	{

return	3.14159;
}

A	main.c
#include	<iostream>
#include	"shape1.h"

using	namespace	std;

int main(int argc,	char	**argv)	{
Circle	s1(2.0);
Shape	*s2	=	new	Rectangle(1.0,	2.0);
Shape	*s3	=	new	Rectangle(3.0,2.0);

s1.PrintArea(cout);
s2->PrintArea(cout);
s3->PrintArea(cout);

return	0;
}

s2	and	s3	are	pointers	to	objects	created	with	new.	To	invoke	
methods	on	these	objects	from	our	pointer	variables	we	use	
the	ARROW	->

s1	is	a	variable	of	type	Circle.	To	invoke	methods	on	this	
object	we	use	the	DOT	.

When	we	run	it,	results	should	be	as	you	
expected.	Notice	the	destructors	for	s2	and	
s3	objects	not	called.	The	delete was	not	
invoked.	Also	notice	order	of	destructor	
calls,	base	class	destructed last.

Containers

Domain.h
#ifndef _DOMAIN
#define	_DOMAIN

#include	"Domain.h"
#include	<map>
class	Node;
using	namespace	std;

class	Domain	{
public:
Domain();
~Domain();

Node	*getNode(int tag);
void	Print(ostream &s);
int AddNode(Node	*theNode);

private:
map<int,	Node	*>theNodes;

};
#endif

• To	store	the	nodes	we	are	using	a	built	in	STL	container	of	type	
map<int,	Node	*>;

• The	#ifndef,	#define,	#endif are	important	to	put	in	every	header	
file	to	potentially	stop	compiler	going	into	an	infinite	loop.

Domain.cpp
Node	*
Domain::getNode(int tag){
Node	*res	=	NULL;

//	create	iterator	&	iterate	over	all	elements
std::map<int,	Node	*>::iterator	it	=	theNodes.begin();

while	(it	!=	theNodes.end())	{
Node	*theNode =	it->second;
if	(theNode->GetTag()	==	tag)	{
res	=	theNode;
break;
}
it++;

}
return	res;
}

We	create	an	iterator	for	our	particular	map.
Then	we	simply	iterate	until	we	either	find	the	
node	we	want	or	we	reach	the	end	of	the	
elements	in	the	map.

Syntax	is	bloody	awful,	but	they	are	very	
powerful.

