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-ABSTRACT

The pscudodynamic test method is a relatively new experimental technique for evaluating
the seismic performance of structural models in a laboratory by means of on-line computer con-
trol simulation. It is especially efficient for testing structures that are too large, heavy, or
strong to be tested on available shaking tables. This report presents the resuits of analytical and
experimental studies that are carried out at Berkeley for evaluating the capabilities and limita-
tions of the pseudodynamic test method. A methad of impl_emeniation and results of several

verification tests are presented and discussed as weil.

The pseudodynamic test method combines well-established analytical techniques in struc-
tural dynamics with experimental testing. A test structure must be first idealized as a discrete-
parameter system, so that the equations of motion for the system can be represented by
second-order ordinary differential equations, Based on analylically prescribed inertial and
viscous damping characteristics of the system, as well as on structural restoring forces directly
measured during the test, the governing equafions of motion for the test specimen can be
solved by a step-by-step numerical integration method. The displacement response computed,
based on a specific earthquake excitation record, is then imposed on the test structure by means
of electro-hydraulic actuators. Thus, the quasi-statically imposed displacements of the test struc-
ture will resemble those that would actually be developed if the structure were tested dynami-

cally.

Based on the above procedure, three major sources of errors can be introduced into a
pseudodynamic test. First, the accuracy of the pseudodynamic method is limited by the reliabil-
ity of the analytical techniques employed. A discrete-parameter model may not realistically
reflect the actual dynamic characteristics of a continuous test specimen; and analytically
prescribed viscous damping may be a highly idealized energy dissipation mechanism. Second,
numerical integration can only yield an approximate solution to the equations of motion.
Numerical errors introduced can distort the actual dynamic response characteristics of a system.

Third, control and feedback errors are inevitable in most experiments. Since these errors are
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introduced into numerical computations through displacement control and restoring-force feed-

back, significant cumulative errors can be induced in pseudodynamic test results.

The above problems will be investigated in this report, which can be divided into three
major parts. In the first part, the fundamental theory of the pseudodynamic tesl- method is
examined. The adequacy of the analytical assumptions, and the reliability of the numerical
methods are evaluated. The results of these studies provide useful guidelines for the selection
of appropriate test specimens and realistic analytical models. The stability, accuracy, and error-
propagation characteristics of numerical integration methods used in pseudodynamic testing are
investigated, and guidelines for selecting appropriate integration time 'steps are obtained.
Numerical techniques for suppressing error-propagation effects are presented. The second part
discusses an implementation scheme for the pseudodynamic method. Some useful features of
computer software are mentioned. The .performance characteristics of necessary equipment are
described and instrumentation precautions are pointed out. The last part presents the results of
pseudodynamic tests recently performed at Berkeley. The results of these tests are correlated
with analytical and shaking table test results for verifying the capability and reliability of the

method.

In spite of certain limitations, the results of these studies indicate that the pseudodynamic
test method can be as realistic and reliable as shaking table tests. However, to obtain accurate
test results, high precision instruments and reliable numerical integration methods should be
used. The experimental error-propagation effects can be estimated by mathematical equations
and cén be efficiently mitigated by numerical means. In addition, it has been shown that the
method can provide better controlled experimental conditions than shaking table tests for large

and heavy specimens.
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CHAPTER 1
INTRODUCTION

1.1. Seismic Performance Tests

During a severe seismic event, a structure should be able to sustain large deformations
without collapse and be capable of dissipating substantial energy by inelastic deformations. By
taking advantage of the inelastic load-resistance and energy-dissipation capabilities of a struc-
ture, it may be possible to reduce construction costs considerably without sacrificing the safety
of the structure. Moreover, a ductile system provides a margin of safety against unusually
severe seismic events. The inelastic performance of a structure is, however, complex and
varies according to the intensity and frequency characteristics of seismic excitations, the
dynamic and restoring force characteristics of the structure as a whole, the detailing of local
critical regions within the structure, and the workmanship during construction. Although vari-
ous analytical methods are available to predict the inelastic response of a structure, the
confidence that can be placed in results obtained with thém is severely limited by the uncertain-
ties introduced by the simplified mathematical idealizaticn of the structure and of its nonlinear
member properties. For these reasons, experimental testing remains the most reliable means to
evaluate the inelastic behavior of structural systems and to devise structural details to improve
seismic performance. Various experimental methods are available for this purpose, such as
shaking table tests, forced-vibration tests, and quasi-static tests. In addition, an on-line
computer-control (or pseudodynamic) method has recently been developed [1] for assessing the
inelastic seismic performance of large-scale structural models which cannot be tested realisti-

cally or efficiently by conventional methods.

Shaking table testing is one of the most realistic and reliable experimental methods for
evaluating the inelastic seismic performance of a particular structure. Nevertheless, the size,
weight, and strength of structures which can be subjected to simulated earthquake excitations
are significantly limited by the capacity of available tables [2,3]. Installing a new shaking table

facility or increasing the capacity of an existing one is generally a very costly option. These
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limitations also require most structures to be tested at significantly reduced scales, and thus,
raise the problem of dymamic and material similitude [2,3]. In addition, problems of table-
structure interaction [4] may develop for heavy specimens. This leads to tremendous difficulties

in interpreting test results and in correlating them with analytical predictions.

Dynamic tests into the inelastic range can atso be performed using mechanical excitors
(5al, pulse generators [5b], or bilast-induced ground mwotions [6]. The excitations imposed by a
few excitors will probably result in different inertia-force distributions on structures than earth-
quake motions. Since the inelastic seismic response of a s(ructufe is sensitive to the distribution
and history of inertia forces, it may be difficult to interpret the resulis in terms of the actual
seismic performance of the test structure during earthquake excitations. However, such
methods are useful for evaluating the dynamic characteristics of a structure and for predicting
its elastic structural response. Blast induced ground motions can be similar in character to
seismic excitations. Nevertheless, the high costs required for these and other innovative
dynamic test methods might limit their use to special structures or complex problems involving

soil-foundation-structure interaction.

In view of these difficulties, quasi-static testing remains the most economical and versatile
experimental method for assessing and comparing the inelastic energy-dissipation capabilities
and failure mechanisms of different structural designs. In quasi-static tests, small structural sys-
tems or basic subassemblages from large structures are subjected to a prescribed load or defor-
mation history. Such tests utilize conventional equipment that is available in most structural
laboratories and allow for detailed observation of structural behavior during tests. To deter-
mine appropriate loading histories in these tests, an inelastic dynamic computer analysis can be
performed for the structure in guestion. The displacements computed at various locations in the
structure can then be used to control the experiment [7]. Unfortunately most mathematical
idealizations are much simpler than actual structural behavior, so that computed loading his-
tories are not likely to be realistic. Because of this, it is more common to assume g priori a

highly idealized deformation history that is characteristic of the general cyclic nature of seismic
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response [8]. Such prescribed displacement histories can be particularly valuable in: (i) assess-
ing the effect of different structural details on the inelastic behavior of structures by subjecting
different specimens to identical deformation histories; and (ii) studying the basic mechanisms
that affect the inelastic behavior of a particular structure by varying the amplitude, rate or pat-
tern of the applied deformation histories. However, it is not possible to directly relate the
energy-dissipation capacity of a specimen measured in this type of test with that required for
seismic safety. Consequently, questions continually arise with such experiments as to whether

the specimen is under- or over-tested.

To facilitate the formulation of more rational and reliable seismic-resistant design
methods, it is desirable to develop methods for prescribing more realistic displacement histories
for quasi-static tests. One potential method for doing this would be use of on-line computer
control methods. This so-called pseudodynamic test method has the potential for combining the
economy and versatility of conventional quasi-static testing with the realism of shaking table

tests.

1.2. The Pseudodynamic Test Method

The pseudodynamic test method uses the same basic equipment as conventional quasi-
static tests. It differs from the conventional quasi-static method in that the displacement history
imposed on a test specimen is determined by a computer during a test based on the measured
dynamic characteristics of the specimen and a specified seismic excitation record. These his-
tories are imposed on the specimen quasi-statically and should closely resemble those that
would be developed if the specimen were tested dynamically. To accomplish this, a test struc-
ture is first idealized as a discrete-parameter system, the inertial and damping characteristics of
which are analytically prescribed. The displacement response of the test specimen to a
prescribed seismic excitation is then evaluated by solving the governing equations of motion for
the system using well-established, step-by-step numerical integration algorithms. Based on the

measured restoring-force characteristics of the structure from the previous step or steps and the
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prescribed inertial and damping characteristics, the displacement response in each step of a test
is computed and imposed on the specimen using hydraulic actuators., This method, therefore,
utilizes the same numerical approach generally used in nonlinear structural dynamics, except
that structural restoring force characteristics are based directly on experimental feedback rather

than on idealized mathematical models.

Consequently, the pseudodynamic method can simulate the realistic seismic response of
structural specimens in a laboratory without the uncertainties associated with nonlinear
mathematical models of structures. The method provides more informative results, regarding
seismic performance of a structure, than conventional quasi-static testing by tafcing into account
the dynamic characteristics of a test specimen and of the excitation. However, it retains the
simplicity and versatility of quasi-static tests, provides well-controlled experimental conditions,
and allows for detailed observation of structural behavior during a test. Thus, the pseudo-
dynamic method offers a good alternative for seismic performance testing when shaking table

facilities are not available or the test requirements exceed the capabilities of available tables.

The pseudodynamic method has been successfully applied by Japanese researchers to tests
of various structural systems, including single-degree-of-freedom (SDOF) and multiple-degree-
of-freedom (MDOF) steei and reinforced concrete structures [9-11]. Thé results of these tests
correlated well with analytical and shaking table test results [10,11). However, certain mechani-
cal and numerical problems have been experienced in testing stiff systems which have large
numbers of degrees of freedom [12,13]. The major problems in these tests were identified to
be caused by errors in displacement control using electro-hydraulic actuator systems and the
sensitivity of numerical computations to experimental errors. To reduce displacement conirol
errors, improved actuator-control techniques are currently under development at the University
of Michigan, Ann Arbor [14]. The propagation of experimental errors in numerical computa-
tions has been investigated and methods for eliminéting or suppressing the error effects have
been developed at the University of California, Berkeley [15]. Experimental studies at Berkeley

also indicate that precise displacement control can be achieved if the electrical and mechanical
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components of an actuator-controller system are appropriately adjusted and if the load and velo-

city applied are within the capacities of the system.

According to the previous studies, one can obtain very reliable pseudodynamic test results
by using high performance test equipment, and appropriate instrumentation and numerical tech-
niques. However, problems related to the fundamental principles of the pseudodynamic method
have to be clearly understood by the user before it can be applied with confidence. It must be
realized that the structural discretization and numerical integration techniques used in pseudo-
dynamic testing only provide an approximate solution for the dynamic response of a test struc-
ture. The accuracy of test results depends largely on the selection of appropriate test specimens,
the determination of realistic discrete-parameter models, and the use of reliable numerical
methods. For example, a structure which has very uniformly distributed mass may require
such a large number of degrees of freedom in a discrete-parameter idealization that pseudo-
dynamic testing is no longer efficient. In order to insure accurate numerical results, the stability
and accuracy of the step-by-step integration method should be fully understood, especially with
regards to the selection of appropriate integration time intervals. Additionally, viscous damping,
strain-rate effects, and the performance of loading apparatus may all affect the results of pseu-
dodynamic tests and must be carefully considered in planning a test. These problems need to
be identified and carefully examined before the pseudodynamic method can be applied with

confidence.

1.3. Objectives and Scope

The main objectives of this report are to examine the underlying theory for the pseudo-
dynamic test method and to evaluate its capabilities and limitations. In doing that, the funda-
mental problems related to structural idealization and numerical integration are investigated.
The implementation of the method is discussed as well to illustrate the development of neces-
sary experimental equipment and computer software. The performance characteristics of the

test equipment are examined to offer some guidelines for proper instrumentation and test




-6 -

preparation. Finally, the practicability and reliability of the pseudodynamic method will be
verified by correlating the results of several pseudodynamic tests recently performed at Berkeley

with analytical and shaking table test results,

In Chapter 2 of this report, we review some of the well-established analytical techniques
in structural dynamics and seek the theoretical justification for the pseudodynamic approach.
Furthermore, factors to be considered in selecting numerical integration algorithms applicable
to psendodynamic testing, and methods for their implementation are discussed. In Chapter 3,
the numerical properties of the selected integration methods ére examined. The stability and
accuracy of the methods in computing the dynamic response of linear and Inonlinear systems are
considered, and suggestions are offered for the selection of the most desirable method and the
determination of appropriate integration time intervals. The effects of experimental errors on
numerical computations, and numerical techniques for suppressing error-propagation effects are
briefly summarized from a previous study [15]. In Chapter 4, the adequacy of discrete-
parameter models in idealizing test structures is investigated. The determination of viscous
damping properties and the significance of strain-rate effects are also considered. In Chapter 5,
the implementation of the pseudodynamic method is briefly discussed based on the recently
instalied facility at Berkeley. The characteristics of various experimental eguipment are exam-
ined, and proper instrumentation techniques and error checking procedures are recommended.
The results of pseudodynamic tests on a simple SDOF system are presented and correlated with
analytical predictions, In Chapter 6, we presents the pseudodynamic test results of a tubular
steel frame which was previously tested on a shaking table. The results of the two experiments
are compared. The advantages and disadvantages of the two experimental methods are dis-
cussed. In Chapter 7, we offer general conclusions regarding the practicability and limitations of
the pseudodynamic method, as well as potential future applications, based on the analytical and

experimental studies presented herein.
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CHAPTER 2
THEORETICAL BACKGROUND

2.1. The Pseudodynamic Test Procedure

The pseudodynamic method combines well-established analytical techniques in structural
dynamics with experimental testing. A test structure is first idealized as a discrete-parameter
system such that the equations of motion for the system can be represented by a family of
second-order ordinary differential equations. The inertial and viscous damping characteristics of
the system are analytically prescribed, such that the dynamic characteristics of the test structure
are accurately represented. During a test, the equations of motion are solved by means of
direct step-by-step numerical integration. The displacement response computed in each step of a
test is imposed quasi-statically on the test structure by hydraulic actuators. The restoring forces
developed by structural deformations are, then, physically measured with load transducers, and
fed back to a numerical algorithm for the computation of displacement response in the next

step. A digital computer is used for all the numerical computations and experimental control.

In this chapter, theoretical justifications of the above procedure will be examined. The
implementation of different integration algorithms for pseudodynamic testing will be discussed.
The numerical characteristics of these algorithms and their adequacy for the experimental appli-
cation will be considered. Based on these understandings, we will identify the possible sources

of inaccuracies in pseudodynamic experiments.

2.2. Discrete-Parameter Structural Model

In a dynamic analysis, a structural system can be considered as an assemblage of structural
elements interconnected at a finite number of nodal points, at which the mass of the system is
assumed to be concentrated. The deformation state of this idealized discrete-parameter system
is completely determined by the degrees of freedom at the nodal points. This discretization
method is intended to simplify the analytical procedure for a structural system which actually

has uniformly distributed mass and an infinite number of degrees of freedom. The analyses of
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such continuous systems involve the solution of partial differential equations, which can be a
formidable task even for a very simple structure. However, the equations of motion for a
discrete-parameter system can be represented by a family of second-order ordinary differential

equations, which can be expressed in a matrix form as

ma+ev+kd=f 2.1

where m, ¢, and k are the mass, viscous damping, and stiffness matrices of the system; d is a
vector representing nodal displacements; v and a are the velocity and acceleration vectors,
which are, respectively, the firsi- and second-order time derivatives of d and f is an external
force excitation vector. As in the above equation, all vector and matrix quantities are
represented by boldfaced variables in this report. This matrix equation can be conveniently

solved by numerical methods with the help of a digital computer.

The equations of motion for a discrete-parameter system can be formulated by the finite
element method {16]. Using this analytical method, we can formulate the mass and stiffness
matrices of structural elements, from which we can assemble the global stiffness and mass
matrices of a structure by the direct stiffness method. The viscous damping matrix is usually
constructed based on some idealized modal damping properties of a system, e.g., the damping
can be conveniently assumed to be stiffness or mass proportional, or both. The total number of
degrees of freedom in such a system is the sum of degrees of freedom at ali nodal points. Con-
sequently, a discrete-parameter model can only represent a finite number of degrees of freedom
of a continuous system, and the higher mode effects of the system are neglected. It is, there-
fore, natural to realize that better solutions can be obtained by increasing the number of nodal
points or degrees of freedom of a model, In general, a small number of degrees of freedom will
be sufficient to provide an accurate solution because the higher frequency responses of a struc-
ture are usually insignificant under seismic excitations. The selection of nodal points or the
number of degrees of freedom depends on the physical properties of the structure and the

characteristics of external excitations.
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Consequently, the adequacy of a discrete-parameter model depends on how well the
dynamic behavior of a continuous system is represented by the vibration modes of the model
under a specific type of external excitation. Consider, for example, a steel braced frame shown
in Fig. 2.1a. The frame can be idealized as an assemblage of 36 elements interconnected at 20
nodal points (see Fig. 2.1b). Since each node can have three independent displacement com-
ponents, the frame has a total of 54 degrees of freedom after excluding the two fixed nodes at
the base. If the beam and column members of the frame are relatively stiff in axial deforma-
tions, then the total number of degrees of freedom can be reduced to 30 (see Fig. 2.1c). The
corresponding 30 x 30 stiffness and mass matrices of the frame can be 6btained by the finite
element method. However, further simplification is possible if most of the mass is concen-
trated at the story levels, such as the dead loads contributed by floor systems, and if the frame
is excited by horizontal ground accelerations dominated by relatively low frequencies. In that
case, only the six lateral degrees of freedom need to be considered in response computations
(see Fig. 2.1d). The stiffness of the reduced system can be derived from the original 30 x 30
matrix by static condensation. Since the rotational inertia at the nodal points is neglected and
the translational inertial effects at the floor levels can be considered as uncoupled, the mass

matrix becomes diagonal representing only the mass lumped at each story level.

It is apparent that significant computational effort is saved by the static condensation pro-
cedure. Even though the higher frequency responses of a system are lost in a reduced model, a
lumped-mass idealization (as the one in Fig. 2.2d) is, very often, preferred by an analyst
because of the computational efficiency and the fact that the higher frequency responses are

usually insignificant.

In pseudodynamic testing, a test structure has to be idealized as a discrete-parameter sys-
tem with the same considerations as above. Based on an idealized model, the mass and damping
matrices of a test structure are analytically constructed. Nevertheless, the restoring forces
developed by structural deformations at the selected nodal points are experimentally measured

during a test, such that analytical formulation of the stiffness matrix is not required. Although
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the pseudodynamic method is not restricted to any specific type of structural models, a
lumped-mass idealization can tremendously simplify the experimental setup and numerical for-
mulation. In addition, since structural displacements and restoring forces are imposed and
measured, respectively, at a selected set of degrees of freedom, and the mass matrix is con-
strucied accordingly, a static condensation procedure is implicitly applied to a structure during a
pseudodynamic test. Therefore, the result of a pseudodynamic test should be considered as a
quasi-statically simulated dynamic response of a reduced structural model. This result should
closely represent the actual dynamic behavior of the test struéture as long as the higher fre-

'

quency responses neglected by the model are insignificant.

Consequently, pseudodynamic testing should be theoretically as reliable as those general
analytical techniques. In addition to that, the stiffness property of a structure is experimentally
measured during a test, so that the uncertainties associated with the modeling of nonlinear

material behavior in structural analyses are avoided.

2.3, Numerical Schemes

2.3.1. General Step-By-Step Integration Methods

The equations of motion for a nonlinear structural system can be most conveniently
solved by a direct step-by-step integration method under any arbitrary external excitations. In
step-by-step integration, the duration 7" for which the structural response is to be evaluated is
divided into N equal time intervals As, i.e., At = T/N. By considering the equilibrium equa-
tions (Bq. (2.1}} at time equal to 0, At, 2A7,......, and NA¢, and assuming that the solution in
each step is a function of those in the previous step or steps, we can obtain an approximate
solution of the equations of motion. These numerical methods can, generally, be classified into
two types: explicit and implicit methods. We adopt the definition that an integration method is
explicit if the displacement solution in each step is assumed to be a function of previous step

solutions only. Otherwise, the method is considered as implicit.
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The stability and accuracy of an integration method are two important criteria for deter-
mining the reliability of the method. A stable method is defined as one by which the numerical
solution of a free-vibration response will not grow without bound for any arbitrary initial condi-
tions [17]. If a method is stable and if the numerical solution will approach the exact solution
as Ar approaches zero, then the method is convergent. This is an essential condition for
obtaining reliable numerical solutions. Many implicit methods are unconditionally stable, i.e.,
they are stable for any value of wAt, where w is a natural frequency of the system analyzed.
Explicit methods are, generally, conditionally stable, but are computationally more efficient. In
that case, numerical solutions become unstable when wAt exceeds a certain value. In spite of
that, explicit methods are usually more preferable than implicit methods when the number of
degrees of freedom of a structure is small, such that the magnitude of Ar is not severely res-

trained by the stability condition on the highest frequency mode of the structure.

One of the most general integration methods in structural dynamics is the Newmark Algo-

rithm [18], which assumes that

ma +eviy+kdy =1y (2.2)
dH‘] L d,' + At Y; + At?' l[% — B a; + B aH.]] (2.3)
Yis 1=V, + At [(l = '}') a; + Y ai+l] (24)

in which a,;,, v,;,, and d;;, are the acceleration, velocity, and displacement vectors, respec-
tively, at time equal to (i+1)A¢; and 8 and y are parameters selected by the user to achieve
desirable stability and accuracy properties. For example, by letting 8 equal to 1/4 and y equal to
1/2, we have the constant-average-acceleration method, which is implicit and unconditionally

stable. When g is zero, the a,,, term in Eq. (2.3) disappears and the method becomes explicit.
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2.3.2. Algorithms for Psendodynamic Application

From Egs. (2.2) to (2.4), we can observe that the determination of d,.., in terms of d;, v,,
and a; by an implicit integration method requires the explicit knowledge of stiffness matrix k.
Nevertheless, in pseudodynamic testing, only the product k-d;, , can be measured experimental-
ly as a restoring force vector r;, after d;,, is computed and physically imposed on a test struc-
ture. In general, the stiffness matrix of a nonlinear system cannot be accurately determined
during a pseudodynamic test. Even though r; and d; are known lin each siep of a test, we usual-
ly do not have sufficient information to compute the instantaneous lanéent stiffness k, for a
highly coupled MDOF nonlinear system. Where a method for determining the tangent stiffness
can be devised, the resulting values may be overly sensitive to errors in experimental measure-
ments. Furthermore, due to the change of tangent stiffness from one integration step to the
next, the solution of nconlinear differential equations by an implicit method usually requires
iterative corrections, which are highly undesirable for testing inelastic systems because the ine-
lastic restoring forces developed depend very much on the displacement history of the struc-
ture. The internal displacement cycles carried through during iterative corrections may result in
an erronecus convergence. To avoid these problems, explicit integration methods are recom-

mended for pseudodynamic testing.

Since only a limited number of structural degrees of freedom are generally involved in a
pseudodynamic test, the stability criterion imposed by an explicit ‘integration method will not
usually affect the efficiency of the test method. Furthermore, explicit methods are generally as
accurate as implicit ones. In the fellowing, the formulations and impiementation schemes of
four different explicit methods which have been recommended for pseudodynamic testing are
discussed. The adequacy of the methods for the experimental application is evaluated and com-

pared as well.



213 -
(i) The Basic Central Difference Method

The central difference method is one of the most widely used integration technigue in
dynamic analysis. It was initially selected by Japanese researchers for pseudodynamic testing
[19] because of its efficiency and accuracy. In the central difference method, the velocity and

acceleration are assumed to be represented by the following difference equations:

d.—d_,
YT T A (2.5)
l:l,'+| -2 df + di-—l .
Y&

By substituting these equations into the equilibrium equation

ma +ev, +r =f 2.7

where r; is the restoring force directly measured in a pseudodynamic test, we can soive for d;4,
in terms of d;, d,_;, and r;. It is, therefore, a two-step method. The application of this algo-

rithm to pseudodynamic testing is illustrated by the flow diagram in Fig. 2.2a.
(ii) The Summed-Form Central Difference Method

The summed form of the central difference method can reduce unfavorable rounding
errors which may occur in the basic central difference method when Ar is very smail {20]. This
method was suggested by Powers [21] for pseudodynamic testing. In this method, we define
z, = {d,.; — d;) / At. Conscquently, we have z,,—z =Ara,, and 2z, +2z =2v,,

according to Egs. (2.5) and (2.6). By substituting these relations into the equilibrium equation

ma;  +ev+ =15y (2.8)
we obtain

-1
T C
iy = + = lf,-l-l =Tyt 2

m C
2t AT 3” @9
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Although this method has a different numerical formulation, it is mathematicaily identical to
the basic central difference method. The implementation of the meihod for pseudodynamic

testing is shown in Fig. 2.2b.
(iii) The Newmark Explicit Method

An explicit form of the Newmark integration method can be obtained by letting 8 = 0 and
v =1/2 in Eqgs. (2.3) and (2.4}. Although this is a one step method, the algorithm is, again,
mathematically equivalent to the basic central difference method. The application of this algo-
rithm to pseudodynamic testing is suggested by Mahin and Williams [22], and is illustrated in

Fig. 2.2¢c.
(iv} The Modified Newmark Algorithm

The three explicit algorithms discussed above do not have a numerical dissipation pro-
perty. As will be shown later, numerical dissipation is useful for suppressing the spurious
growth of high frequency responses due to experimental errors in a MDOF test. A modified
Newmark explicit method was proposed by Shing and Mahin [15]. The numerical damping in
this algorithm is approximately frequency-proportional. This modified method has the following

formulation:

ma, + [1 + al Kk + i—z m] dyy=Ffu+ 2 K+ Epz_z m] d, (2.10)
2

doy=d +Ar v, + ATI 4, @2.11)

Yie1 = ¥; + % (ai -+ ai+l) (212)

in which k d,;, and k d; are replaced by r;,.; and r;, respectively, in pseudodynamic testing. By
substituting Eq. (2.11) into Eq. (2.10) and solving for a,,,, we can obtain a test algorithm as
shown in Fig. 2.2d. In this algorithm, damping is implicitly included in the numerical formuta-

tion such that the specification of a damping matrix ¢ is not required, The parameters « and p,
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which are selected by the user, determine the magnitude of numerical damping for each vibra-
tion mode of a system. We can see that the modified algorithm becomes the Newmark explicit
method by letting o and p equal to zero. The selection of values for the parameters will be dis-

cussed in more detail in the next chapter.

The first three algorithms discussed above are mathematically equivalent to one another
[15). Therefore, they have identical stability and accuracy properties. However, their numerical
characteristics can be different. For example, the basic central differenice method will have
significant error-propagation effects when erroneous displacemént feedback values are used in
the computations, while the other twoe methods are less sensitive to displacement feedback
errors [15]. In general, the modified Newmark algorithm is highly recommended for MDOF

testing where experimental error propagation can be significant in the higher modes.

2.4. Sources of Pseudodynamic Test Errors

We can observe from the above discussions that errors can occur from various sources in
a pseudodynamic test. A discrete-parameter model may not accurately reflect the actual dynamic
behavior of a continuous test specimen which has uniformly distributed mass. The exact damp-
ing characteristics of a structure are difficult to model since viscous, Coulomb, and other types
of damping mechanisms may all exist in reality. In addition, because of the quasi-static load
application in pseudodynamic testing, strain-rate effects may influence the inelastic response of
a structure. Besides these problems, numerical integration can only vield approximate solutions
to thé equations of motion. Furthermore, since experimental feedback is used in the numerical
computations and a large number of computation steps may be involved in a single test,
significant cumulative errors can occur in the final test result. The significance of these prob-
lems will be examined in the following two chapters; and limitations of the method will be
identified. Based on these studies, experimental and numerical guidelines can be established to

ensure reliable test results,
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CHAPTER 3
STEP-BY-STEP INTEGRATION METHODS

3.1. Sources of Numerical Errors

As pointed out in the previous chapter, numerical integration will only give an approxi-
mate solution to the equations of motion due to simplifying assumptions used in the numerical
procedure. An integration algorithm is considered as reliable if stability and accuracy can be
achieved with a reasonably small integration time interval A¢. Errors in numerical solutions are
often manifested in the form of frequency distortion and energy dissipation, as well as the
growth of a spurious root. Besides these intrinsic numerical problems, errors are inevitable in
experimental measurements. Errors in experimentally measured restoring forces are introduced
into numerical compuiations during pseudodynamic testing. Since these errors are usually
significantly larger than numerical errors caused by floating-point computations, severe cumula-
tive error growth can occur in a pseudodynamic test; and test results can be rendered unreliable

even though the intepration method used is stable and accurate.

In this chapter, we will investigate the numerical properties, as well as the reliability, of
the four explicit integration methods which have been recommended for pseudodynamic appli-
cation. Analytical techniques for evaluating the stability and accuracy of numerical integration
methods in solving linear differential equations have been well established. The approach used
by Hilber, et al. [23] will be followed here because of its consistency with structural dynamics
problems. The reliability of the integration methods in solving nonlinear equations will be con-
sidered as well. The results of these studies are illustrated with numerical examples. Effects of
numerical errors on seismic response computations will be studied, so that practical guidelines
can be obtained for the selection of appropriate integration time intervals in -pseudodynamic
testing. Furthermore, experimental error propagation in numerical computations was investi-
gated in a previous study [15], the results of which will be summarized in the last section of

this chapter.
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3.2. Numerical Stability and Accuracy

3.2.1. Linear Systems

In the following analysis, we consider a linear elastic SDOF system. However, the results
obtained herein are applicable to linear MDOF systems in general by means of modal superpo-
sition. In solving the equation of motion for a linear elastic SDOF system, a step-by-step

integration algorithm can be written in a recursive matrix form [17,23] as

Xio1= A X4 L [y : (3.1)

where x; is a solution vector which contains the appropriate displacement, velocity, and/or
acceleration terms associated with step / or steps previous to that. The parameter » is an
integer which is equal to either 0 or 1, depending on the specific numerical method considered.
The matrix A is called the amplification matrix and the vector L is the load vector. The scalar

fi+, 1s the external force excitation applied.

In the case of a free-vibration response, we have

X,=Ax,_;=A"x, (3.2)

where xg is the initial vector. If the integration method is stable and is applied to an under-
damped system, then Eq. (3.2) should yield a bounded oscillatory response for any arbitrary ini-
tial vector x,, according to our definition of stability. If the matrix A is NxN in dimension and

has N distinct eigenvalues, A, Aj,....., and Ay, then there exists a diagonal matrix J such that

J=0"1A"® (3.3)

in which ® = [¢,, ¢,,...., ¢N_] and J = diag (Aj, Aj,....., Ay); the vectors ¢, are the eigenvec-
tors of A corresponding to the eigenvalues A,. Hence, we can obtain from Egs. (3.2) and (3.3)

a numerical solution of the free-vibration response as
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d"=C1 A+ Ad + .. + oy )\;ﬂr (34)

where d, is the displacement value at step »# and is an element of x,,, and ¢, ¢;,..... ar¢ con-
stants determined from initial conditions. For most one- and two-step algorithms, the matrix A
can be formulated as a 2x2 or 3% 3 matrix. Consequently, in order that Eq. (3.4) represents a
bounded oscillatory response, two of the eigenvalues of A, A, ,, should be complex conjugates
and x5} < |A;,! < 1. These are the stability conditions for an integration algorithm. The third
eigenvalue Ay (if it exists) is called the spurious root since it does not stand for a realistic
numerical solution of free vibration. Therefore, if the stability conditions are satisfied, A and

k4 can be represented.as

)\1!2 =4 +*iB= e(“gi’}ﬁ (35)

where / = v—i, and 4 and B are real numbers such that (42 + B?) < 1. In addition, £ and

are defined as follows:

- 2 2
§=__1n(Ai-B) (3.6)
20
) = arctan | = (3.7
By substituting Eq. (3.5) into Eq. (3.4) and assuming N = 3, we can obtain
dy = e 5 (¢} cos @AM + ¢y $in BAM) + c3 A (3.8

in which @ = /A¢. Since the closed-form solution of an underdamped free-vibration response

is
d(t) = e % (¢c; coswpt + ¢y 5inwpt) (3.9

where £ is the viscous damping ratio and wp is the natural response frequency with damping,

we can physically interpret that £ and @ are the corresponding quantities in a numerical
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solution. If no damping is considered in the equation of motion, then £ is purely a numerically

induced phenomenon. Therefore, the magnitude of numerical damping £ and the percentage of

frequency distortion (@ — w)/@ in an undamped free vibration can be considered as measures

of numerical inaccuracies. These numerical properties will be considered for each of the explicit

integration methods in the following.

(i) The Basic Central Difference Method

From Egs. (2.5) to (2.7), we can write the numerical solution of an underdamped free-

vibration response using the basic central difference method as
do=Q2-w0*AY) d —d_,
This equation can be represented in the recursive form:
Xit1 = AX;

with

d;
Xi = \di-

and

By solving the eigenvalue problem (A — X\ I) = 0, we have
Al.2 =4 +iB
where

A w? Ar?

(3.10)

(3.11)

(3.12)
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, Vé — (0 Ar? — 2)?

o 2

Stability. The stability conditions require that (42 + B?) < 1 and that B is a real number.
Since (4% + B?) is always equal to 1 here, according to Eq. (3.12), we have numerical stability

governed by the condition that

(> AP — 22 < 4 (3.13)

which requires

0L wAr 2 (3.14)

" Consequently, the central difference method is stable as long as wA7 is less than 2.

Accuracy. By substituting the values of 4 and B in Eq. (3.12) into Egs. (3.6) and (3.7), we

have

£=0 (3.15)

and

L |4 w? AP = 2)?
At 2—w? AP

gl

Therefore, the numerical solution by the central difference method is energy conserved when
no external force or damping is present. The only source of numerical inaccuracy is the fre-
quency or period distortion introduced by the method. The percentage of frequency distortion
is a function of wht according to Eq. (3.15). In Fig. 3.1, we plot the percentage of period dis-
tortion (7' — T)/T against At/T, where T (= 2 #r/w) is the real natural period of a system and
T (= 2 /@) is the apparent period of the numerical solution. We can observe that period dis-
tortion will approach zero as At/ T goes to zero, and that a reasonably accurate solution can be

obtained (less than 1% distortion) when A¢/T is less than 0.05. This level of accuracy is
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comparable to those of the most reliable implicit methods.

Based on these stability and accuracy properties, the central difference method is adequate

for pseudodynamic application.
(ii) The Summed-Form Central Difference Method

The summed form of the central difference method has the following solution scheme for

an underdamped free-vibration response:
dH.l - d, + Af Z; . (3.16)
Zi1 = 2, — 0? At diy

which can be represented in a recursive form as Eq. (3.11) with

d;
X =1, (3.17)

and

1 At
A= —w?At 1—w?Af?

It can be shown that the eigenvalues of matrix A are identical to those of the basic central
difference method. Therefore, its stability and accuracy properties are identical to those of the

basic formulation.
(iii) The Newmark Explicit Method

The Newmark explicit method has the following solution scheme for a free-vibration

response:

2
d,‘+]=d"+At V,‘+A_t

y %

Vigi=Ww + % (ﬂ,‘ =+ ai+l) (3.18)
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- 2
841 =— 0" diy

which can be expressed in a recursive form as Eq. (3.11) with

d;
X; =1y (3.19)
a;
and
As?
1 Af >
Ao —w?At w?A1Y Ar—w?AP
2 2 2
A2
—w? —w?At wA!
] 2

Again, the first two eigenvalues, A, of matrix A here are identical to those of the previous
two methods; and Ay = 0. Therefore, its stability and accuracy properties are identical to those
of the previous methods as well. These results agree with the fact that the three numerical

methods are mathematically identical [15].
(iv} The Modified Newmark Algorithm

Based on Eqgs. (2.10) to (2.12), the modified Newmark explicit algorithm can be written in

a recursive matrix form with

d,
X; =4 At (3.20)
Atz a;
and

1

1 1 5
_| e Q* p 1_ Q2 p
A= > 1-{1+e) Ty 3 (1+a) YR

QJ
-0 —(l+a)Q%p -—(l+a)T-J;—

|
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in which € = o Ar.

Stability. Matrix A has eigenvalues

Aa= A = (4 — 412 (3.21)
and
Ay=0
where
A =1- (1+a)—-—'%

Ay=1—-aQ*—p

To satisfy the stable oscillatory condition, we must have 4f < 4, <€ 1, such that A, 2 aT€ com-
plex conjugates and |M,z| < 1. When A} = A,, the algorithm will have a non-oscillatory solu-
tion, but the solution will remain stable as long as 4, < 1. The condition 47 € 4, implies
that

_1+Vl—(1+a)p<n 1+V1-(+a)p

1+« 1+« (3.22)

and from 4, € 1, we have

Q ;1/—5 (3.23)

To obtain approximately frequency-proportional numerical damping, we should select p to be
negative and e positive. Under these assumptions, the conditions in Egs. (3.22) and (3.23) are

equivalent to

1+ /T—-{0+a)p
,/—%gng + Vi talp (3.24)
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This {s the stability condition for the modified Newmark explicit algorithm. By letting « and p
equal to zero, we have the same condition as Eq. (3.14).

Accuracy. According to Egs. (3.6) and (3.7), the eigenvalues from Eq. (3.21) will give the fol-

lowing numerical properties:

;- nd _2“.(.?2”—") (3.25)
and
w = 1 arctan lﬁ
Ar A
where
A=1—-(1+a)%—2— 7
B={02— (1 +a) QTZ+-% 2]1/2

Therefore, this method is not energy-conserving if @ and p are not equal to zero. From Eq.
(3.25), we can see that £ = 0 when { = —p/a. For (! < V—p/a, damping is negative and
the solution becomes unstable, i.e., energy is added into the numerical solution, In Fig. 3.2, we
plot £ against wAr for & equal to 0.1 and 0.5, respectively. In both curves, v—p/« is 0.1. We
can see that damping increases with increasing «. Consequently, by an appropriate combination
of o and p, one can have a zero or small damping for the fundamental mode while having a
significantly greater damping for a higher frequency. This characteristic is very useful for
suppressing the spurious growth of higher mode responses due to experimental errors in

MDQOF testing.

According to Eq. (3.25), the frequency distortion here is similar to those in the previously

discussed methods when () is close to ~/—p/a or when numerical damping is small. Frequency
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distortion will increase with larger numerical damping. However, large damping is only used
for the insignificant higher frequency modes of a MDOF system. Consequently, reliable results
can be obtained by the modified Newmark method if sufficiently small At is used and appropri-

ate numerical damping characteristics are selected.

3.2.2. Nonlinear Systems

The stability and accuracy properties of numerical integration methods in solving non-
linear differential equations are not very well understood due to ihe lack of an analytical evalua-
tion technique. These properties were usually evaluated via numerical ex;;eriments in past stu-
dies, which sometimes brought contradictory results. However, it can be shown that uncondi-
tionally stable implicit methods can become unstable when applied to nonlinear problems with
large integration time intervals [24]. The cause of this instability can be attributed to two fac-
tors. First, solving a nonlinear equation by means of an implicit integration method usually
requires an approximate solution procedure, such as iterative correction, tangent-modulus or
pseudo-force approximation. The additional errors introduced by an approximate solution pro-
cedure will affect the stability and accuracy of the solution acquired. Consequently, the stability
and accuracy of a nonlinear solution can no longer be determined by the characteristics of the
integration method alone [24]. Furthermore, a nonlinear solution can be unstable even though
a converged solution is attained by iterative corrections in each integration step. This can be
explained by a spurious energy growth which may occur in numerical solutions of nonlinear
equations [25]. To visualize this fact, we must realize that the force-deformation relation of a
nonlinear system cannot be exactly traced with discretized displacement increments during a
step-by-step integration procedure, as shown in Fig. 3.3. As integration time interval increases,
the discrepancy will grow such that significant erroneous energy effects will be introduced into
the solution. If energy is continuously added into a system, then numerical instability will
result. Based on these observations, the difficulties involved in evaluating the numerical proper-

ties of nonlinear solution techniques can be easily recognized.
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Since explicit integration methods can provide a direct solution for a nonlinear equation,
the problem associated with an approximate solution procedure does not exist here. However,
for nonlinear systems, the integration time interval selected should always be sufficiently smali
so that the nonlinear behavior can be accurately traced with the discretized displacement incre-
ments. Disregarding the energy effects, the stability and accuracy characteristics of the explicit
methods for linear systems are locally valid for nonlinear systems by the fact that a nonlinear
system can aiways be considered as a piecewise linear system, in which the tangent stiffness will
dictate the numerical characteristics. This implies that the Ar selected for a linear system will
remain conservative if the system becomes nonlinear and if the nonlinearity is of the softening
type, as long as the nonlinear behavior can be accurately traced with the Ar selected. This is
because the effective At/ T ratio will be smaller as a system becomes less stiff. The opposite will

be true for a hardening system.

3.2.3. Numerical Examples

To illustrate the previous discussions, the Newmark explicit method was used for comput-
ing the free-vibration response of several SDOF systems, Three types of stiffness properties
were used: linear elastic, nonlinear elastic, and inelastic force-deformation relations, which are
shown in Fig. 3.4. The linear elastic system had a unit mass and a stiffness of 4 #* kip/in. such
that the natural period was 1 sec. The nonlinearities of the other two systems were modeled by
the Menegotto-Pinto relation (see Fig. 3.4). They had initial asymptotic stiffnesses of 4 #*
kip/in. such that their natural periods would approach 1 sec as vibration amplitudes decreased.
In these simulations, free-vibration response was induced by releasing the system from rest at a

1 in. deformation from the initial zero force position.

The numerical results for the linear elastic system are shown in Fig. 3.5. At Af equal to
0.01 sec, the numerical solution was very accurate and could be considered as the exact solution
of the problem, according to Fig. 3.1. At Ar equal to 0.10 sec, a small period shrinkage could

be observed. The period shrinkage increased when As was increased to 0.20 sec. The solution
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became unstable when Ar was 0.32 sec, as predicted by Eq. (3.14). In Fig. 3.5, the response
curves at the large integration time intervais were smoothed by cubic spline interpolations. It
should be noted that the Newmark explicit method is energy conserving for linear systems. In
this example, the vibration amplitudes always remained at 1 in. no matter what iniegration time

interval was used, as long as wAr was within the stability limit.

The results for the nonlinear elastic system are shown in Fig. 3.6. At Ar equal to 0.1 sec,
the soluiton was less accurate than that for the linear system. More significant frequency shrink-
age and amplitude loss could be observed in the free-vibration response. Furthermore, large
alternating amplitude changes were observed at At equal to 0.20 sec, indicating both energy
growth and energy decay in the oscillations, However, the solution remained stable even when
At was increased to (.40 sec, These phenomena are consistent with our discussions in the pre-
vious section. The erroneous energy effects in solving the nonlinear problem are the major
source of inaccuracies as shown by the hysteretic curves in Fig. 3.7. We can observe from the
figure that significant energy changes were introduced by the apparent force-deformation rela-

tions when Ar was large.

The resuits for the inelastic system are shown in Fig. 3.8, from which we can see that the
vibration amplitudes increased as At was increased. Therefore, more energy was added into the
system when a larger At was used (see Fig. 2.3 b). However, the solution still remained stable

when At was (.32 sec.

From these numerical experiments, we can summarize that nonlinear solutions are usually
less accurate than linear solutions when integration time intervals are large, due to the energy
effects introduced by the discretized displacement increments. However, the stability limit will
increase if the nonlinearity is of the softening type and if continuous energy growth does not

occur, since the effective A¢/ T ratio is reduced.
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1.3, Effects of Numerical Errors on Seismic Response

As we have already seen, numerical integration introduces freque.ncy distortion such that
a numerically computed response always has a frequency slightly different from that of the ori-
ginal system. The effect of frequency distortion on seismic response solutions can be observed
from a typical linear elastic response spectrum of the El Centro 1940 earthquake (NS com-
ponent) in Fig. 3.9a. The spectral curve with zero viscous damping shows that the maximum
response amplitude varies drastically with structural period. Within the period range of most
structures (i.e., from 0 to 1 sec.), a slight period shift can bring the maximum response ampli-
tude from a peak to a trough or vice versa in the spectrum. This suggests that even a slight
period distortion introduced by a numerical algorithm can significantly change the magnitude of
seismic response of a linear elastic system which has little or no damping. In Fig. 3.9b, the
effect of period shrinkage on the maximum response amplitude is graphed for three different
structural periods. The error index € on the y-axis is defined as the ratio of the maximum dis-
placement which is obtained by an exact solution after a period shift over that obtained at the
exact period. it is apparent that a structure with a period of 0.35 sec. can have more than 20%
error even though the period shrinkage is less than 1%. However, the effect of period shrink-
age varies with structural period and depends on the frequency characteristics of the input spec-
trum as well. The plots in Fig. 3.9b are consistent with the results of numerical experiments,
such as the response envelopes shown in Fig. 3.10. These envelopes of displacement amplitudes
were computed by the central difference method based on the El Centro record. It can be seen
that a more accurate solution can be obtained with the structural period of 0.45 sec than with
the period of (.35 sec when the A/ T ratios are less than 0.06. This is, of course, only true for
the El Centro record. Different trends might be observed if a different earthquake record is

used.

Fortunately, structurai response will not be so sensitive to period change when viscous
damping exists (see Fig. 3.9a) or when inelastic structural deformation occurs. This is illus-

trated by the error spectra in Fig. 3.11. The error index e here is the ratio of the peak



u D0

displacement amplitude computed by the central difference method over the exact value. The
error spectrum for the linear elastic system with 5% viscous damping shows smaller errors than
the one without damping. Similarly, errors are smaller in the spectrum of elasto-plastic sys-
tems. It should also be pointed out that the energy effects introduced by the discretized dis-

placement increments are smaller in elasto-plastic systems than in general nonlinear systems.

Since structural specimens will usually deform beyond their elastic limits in pseudo-
dynamic testing and damping is very often included, a small frequency distortion introduced by
numerical integration can generally be neglected. In general, the selection of a At/T ratio for a
pseudodynamic test should follow three criteria. First, the Ar selected ShOI‘Jid locally satisfy the
stability condition of an integration algorithm during nonlinear structural testing. Secr-)nd, large
frequency distortion should be avoided by using a reasonably small A¢/T ratio. Lastly, the At
selected should be able to produce sufficiently small displacement increments so that the non-

linear force-deformation relation of a test structure can be traced accurately.

3.4. Experimental Error Propagation

In addition to the numerical errors mentioned above, experimental feedback errors are
introduced into numerical computations during pseudodynamic testing. The cumulative effect
of these errors can be realized by the fact that incorrect displacements imposed on a test struc-
ture will result in erroneous force feedback; and the errors in force feedback will in turn lead to
erroneous displacements being computed in the next step. Due to this error cumulation, a
pseudodynamic test result can be rendered unreliable even though the experimental errors

introduced in each step are relatively small.

3.4.1. Sources and Effects of Experimental Errors

Experimental errors are introduced into a pseudodynamic result during the control and
feedback processes of a test as shown in Fig. 3.12. A computed displacement response usually

cannot be exactly imposed on a test structure. The displacement control errors can be caused by
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instability or lack of sensitivity of the actuator-controller system, miscaiibration of displacement
transducers, or real-to-integer and digital-to-analog (D/A) conversions of control signals. The
displacements or restoring forces measured from a test structure may aiso be different from the
actual quantities due to measurement errors, e.g., the frictional force in actuator connections
may influence the restoring-force measurements. If the erroneous displacement and force feed-
back values are used in the numerical computations, then the computed response will be in
error as well. This can be illustrated by a numerical simulation using a SDOF linear elastic sys-
tem. In the simulation, random errors were introduced into the numerically computed displace-
ments and restoring forces in each step, and the erroneous values were used to compute the
displacement response in the next step, The errors introduced into the displacement feedback
had a standard deviation of ¢, and those into the force feedback had a standard deviation of
k.o, where k was the stiffness of the system. Without any external excitation to the system,
spurious displacement responses (i.e., cemulative errors) due to random errors were obtained
by the central difference and Newmark explicit methods, respectively, as shown in Fig. 3.13. It
can be observed that the central difference method is very sensitive to random errors as the
maximum curmulative errors obtained were approximately 1000, in this example. However, the

cumulative errors produced by the Newmark explicit method were much smaller.

3.4.2. Error-Propagation Characteristics

The above example illustrates that the mathematically identical methods can have
different experimental error-propagation characteristics due to the different numerical formula-
tions. The results of a previous study [15] indicate that the Newmark explicit and the summed-
form centrai difference methods have identical error-propagation properties which are different
from those of the basic central difference method. The basic central difference method can
become unstable when displacement-feedback errors are introduced into the numerical compu-
tations and when wA¢t is very smail. This is shown in Fig. 3.14 where error amplification factors

{C| and |D| are plotted against wA¢ for the three explicit integration methods. The absolute
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value |C| is an amplification factor for cumulative displacement-feedback errors, while the
value |D| is the factor for cumulative force-feedback errors. These factors are functions wA¢
only. From Fig. 3.14, we can observe that |D| is always much smaller than |C| when wA¢ is
less than 0.5, and that |C| will approach infinity as wAr goes to zero in the basic central
difference method. Therefore, we can conclude that numerical results will always be more accu-
rate if the computed displacements are used instead of the measured ones in the step-by-step
computations. By using the computed displacements, displacement-feedback errors are elim-
inated and all three explicit methods will have identical erroi‘-propagation characteristics as

shown in Fig. 3.14.

Even if the computed displacements are used in the step-by-step integration, displacement
control errors are still introduced into the numerical computations through the resulting force-
feedback errors (Fig. 3.12). Force-feedback errors can have significant effects on experimental
results depending on whether the errors are random or systematic in nature. Systematic errors,
which often result from poor performance of experimental equipment or improper instrumenta-
tion techniques, can induce a significant cumulative error growth due to resonance-like effects.
Random errors may result from electrical noise or other less well-defined sources. Their effects
are less severe. The cumulative error bounds for the two types of experimental errors have
been derived for linear elastic systems [15], and are shown in Figs. 3.15 and 3.16, respectively.
In both cases, cumulative errors increase with the number of integration steps. However, reduc-
ing the integration time interval Ar can significantly reduce the cumulative growth of random
errors. For example, if we reduce Ar by half while keeping the total analysis duration constant,
as indicated by moving from point 4 to point B in Fig. 3.15, the cumulative errors can be
reduced by more than 40%. In the case of systematic errors, the same reduction in Ar would
only reduce cumulative errors by approximately 10%, as shown in Fig. 3.16. In general, if sys-
tematic errors are present, cumulative errors will approach a relatively significant lower bound
as At goes to zero. The undesirable properties of systematic errors can be attributed to some

consistent energy increasing or dissipating effects. Figs. 3.15 and 3.16 also indicate that the
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larger wAr is, the faster will be the rate of cumulative error growth with respect to the number
of integration steps. Therefore, the higher modes of a MDOF system will be more sensitive to

experimental errors than the lower ones,

To illustrate the error-propagation phencmenon, analytical simulations were performed
with a 2-degree-of-freedom system shown in Fig., 3.17a. The exact response of the system to
the El Centro ground motion was dominated by its fundamental frequency (see Fig. 3.17b).
Random and systematic errors were then introduced into the computations by round-off and
truncation, respectively, in the real-to-integer conversions of displacement control signais. It
can be shown that truncation errors are energy increasing [15]. In both cases, the numerical
results are contaminated with the second mode frequency (see Figs. 3.17c and 3.17d). In the
case of systematic errors, the spurious second mode effect grew very rapidly. In general, the
higher mode effects induced by energy increasing systematic errors are the major threats to

numerical stability in MDOF testing.

3.4.3. Improvemeni Methods

Due to the error-propagation effects, experimental errors should be eliminated or reduced
to insignificant levels in any test. This may not be always possible, especially in systems which
have many degrees of freedom. In such systems, even small errors can propagate very rapidly
in the higher modes. Under that circumstance, numerical methods can be used to mitigate the
error-propagation effects [15]. The most efficient method to remove the spurious higher mode
effects is to iniroduce frequency-proportional numerical damping, e.g., by using the modified
Newmark algorithm (Fig. 3.2). As an example, a two-story shear building with inelastic inter-
story force-deformation relations was numerical simulated by using the Menegotto-Pinto model.
Under the influence of energy increasing systematic errors, the numerically computed response
of the system to the Bl Centro excitation had a significant second mode effect (see Fig. 3.18).
The modified Newmark algorithm was, then, used to damp out the spurious higher mode

response. The a and p parameters selected were 0.4 and -0.016, respectively, such that the
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numerical damping was about 0.9% for the first mode and 13.6% for the second if the system
remained approximately linear. As a result, the second mode response was efficiently removed
by the large numerical damping, while the fundamental mode was only slightly affected (Fig.
3.19). A method based on conservation of energy has also been developed to compensate for
the energy changes caused by systematic errors [15]. This method is especially efficient for
correcting force-measurement errors due to large frictional effects which are more or less con-

stant throughout a test.

In general, inelastic systems have less severe error—propaéation problems than linear sys-
tems. Furthermore, most of the systematic errors in pseudodynamic testing can be eliminated
or significantly reduced by using high performance equipment, and proper instrumentation and
test techniques. These experimental errors can be easily detecied in a test system by monitor-

ing the displacement error signals or the unusual energy changes during some preliminary iests

[15].
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CHAPTER 4
STRUCTURAL IDEALIZATIONS

4.1. Structural Idealization Errors

In addition to the numerical and experimental errors discussed before, the reliability of
pseudodynamic test results basically depends on the realism of an idealized test model. An
unrealistic model will not accurately reflect the actual dynamic characteristics of a test structure.
As poinied out in Chapter 2, structural idealization involves analytical modeling of the inertial
and viscous damping characteristics of a test specimen. In doing that, a continuous structural
system is considered as a discrete-parameter system which has the mass concentrated at a lim-
ited number of degrees of freedom. The dynamic characteristics of a discrete-parameter model
may not closely resemble those of a continuous structure since only a limited number of vibra-
tion modes are considered in the model. The higher mode effects of a continuous system are
lost and the lower frequencies may be distorted. Besides that, the nonlinear properties of struc-
tural materials are, very often, dependent on the rate of loading. Therefore, the nonlinear
behavior of a structure tested quasi-statically may not be 1he same as that under actual dynamic
excitations. Furthermore, damping is a difficult property to model since various damping
mechanisms may exist in a real structure, such as viscous, Coulomb, and hysteretic dampings.
Coulomb and hysteretic dampings are automatically taken into account in g pseudodynamic test,
while viscous damping is specified in the numerical equation. Because of the difficulties in iden-
tifying one damping effect from the other in a real vibration test, the determination of the exact

viscous damping property of a structure is not possible.

The significance of the above problems will be examined in this chapter. Certain evalua-
tion criteria will be established to assess the accuracy of discrete-parameter models in pseudo-
dynamic testing. The significance of strain-rate and viscous damping effects on inelastic seismic
response will be studied with numerical simulations. Although the pseudodynamic test method
has its limitations, it is possible to show that accurate test results can be obtained if adequate

considerations are given to the selection of a test specimen and of structural model
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Other inaccuracies may also exist in a pseudodynamic test, such as the concentration of
load application through hydraulic actuators, and the geometric effects on force and displace-
ment measurements during large deformations. However, most of these problems can be

avoided by a careful design of test apparatus and by the use of proper testing techniques.

4.2. Accuracy of Discrete-Parameter Models

A structure has to be idealized as a discrete-parameter model in order to be tested pseudo-
dynamically. The stiffness properties of a test structure are directly measured during a test in
terms of restoring forces developed by structural deformations at specified degrees of freedom.
However, the mass matrix of the system has to be constructed with analytical assumptions.

Consequently, the reliability of a test model depends entirely on the realism of the inertial pro-

perties assumed.

The mass matrix of a structure is usually assembled from mass matrices of structural ele-
ments by the direct stiffness method. Two general approaches are available for constructing ele-
ment mass matrices [16]. One is by simple lumping of element mass at nodal points, and the
other is by a finite element method using displacement shape functions of structural elements.
These two methods are shown in Fig. 4.1 for a uniform beam element which has mass m per
unit length. The consistent-mass matrix formed by the finite element method includes the rota-
tional, as well as the translational, inertia of a beam; and the inertial effects are coupled
between the different degrees of freedom. The lumped-mass matrix is based on a simple
assumption that the total mass of a beam is equally divided and concentrated at the two end
nodes; the inertial effects are not coupled. Consequently, the former is a more rational
approach than the later. In general, the consistent-mass formulation is more accurate than the
lumped-mass method, if identlicai nodal points are selected in both cases, because of the larger
number of degrees of freedom considered at each nodal point in a consistent-mass model.

Nevertheless, the rotational inertia considered in a consistent-mass formulation not only
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requires a greater computational effort, but also impose loading and instrumentation difficulties
on pseudodynamic experiments. For this reason, lumped-mass formulations are usually pre-

ferred in the experiments.

It is generally true that the accuracy of discrete-parameter models can be improved by
increasing the number of degrees of freedom. However, a small number of degrees of freedom
can very often provide sufficient accuracy if the structure considered has a significant amount of
mass actually concentrated at the selected nodal points. Therefore, to assess the reliability of
the lumped-mass approach in pseudodynamic testing, we will consider structures which have
various degrees of mass concentration. Simple, but representative, structural examples will be
used in these studies. As a result, approximate guidelines can be established for evaluating the

adequacy of a structure for pseudodynamic testing.

4,2.1. Evaluation Criteria

To evaluate the reliability of discrete-parameter models, we consider a uniform cantilever
column which has a length L and a concentrated mass m at the top (Fig.4.2a). The cotumn
itself has a uniform mass # per unit length. The elastic modulus and cross-sectional moment of
inertia of the column are £ and [/, respectively. The equation of motion for the system under a

horizontal base acceleration a, can be represented by a partial differential equation as

O | . B _
El —+m~—=—ma 4.1
ay4 atZ £ .
in which the lateral displacement » of the column is a function of the y-coordinate along the
fength of the column, and time ¢. The free-vibration response of the system, i.e., the response

when a, = 0, can be solved from Eq. (4.1) by separation of variables with the following boun-

dary conditions:
w(,0) = u' 0,1} =0

u"(L,)=10 (4.2)
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Efu™(L,t)=m (L)

where the primes and dots represent differentiations with respect to y and ¢, respectively, The
resulting ordinary differential equations can then solved to obtain the natural frequencies w,
and mode shapes ¢, {y) of the system. To find the response of the system to seismic excila-
tions, we can express the closed-form solution of Eq. (4.1} in the following form by means of

modal superposition:

u () =3 6,0 7,0 @3)
Py

in which the ¥, {r)’s arc the displacement response in the modal coordinates. It should be
noted that a continuous system has an infinite number of vibration modes. The above equation
is true because of the orthogonality properties of the mode shape functions ¢,(y) [16]). For a

uniform column, the ¢, {(y)’s satisfy the following orthogonality conditions:

i,
J 6,00 6,00 @y =0 (4.4)
0

L
[ 60 d5G) @y =0
0

for m = n. By substituting Eq. (4.3} into Eq. (4.1) and using the above conditions, we can

obtain a systemn of uncoupled equations of motion:

V(0 + wl 7, (1) =— %— a, (1) (4.5)
where
L
L, = f L0 dy +m g, (L) (4.6)

A
M, = [ $20) dy + m $2L)
0
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forn =1, 2,....., co. The value M, is considered as the generalized mass for vibration mode #,
and L, is a load modification factor. Consequently, the solution of Eq. (4.1) can be easily
obtained by solving the individual modal equations and superimposing the results as indicated
in Eq. (4.3). Based on this approach, we can wriie

L;

u(y,f)mzimtﬁ,-(y) V(1) (4.7)

where

i
Vi) = f a, (1) sin w; (t—7) dr
0
The last equation is called the Duhamel integral. The quantity ¥, (z), which is usually called the

spectral pseudo-velocity response, depends on the characteristics of the excitation a, (+) and the

natural frequency w,. In addition, the bending moment developed in the column will be

m0.0 = B 3 ;—m 6,"0) V(1) 4.8)
Therefore, in the absence of resonance effects or when disregarding the value of ¥, (s), modal
participations in the displacement response are determined by the L,/ (M:w;) factor. In the case
of bending moment, the frequency w; in L;/{(M;w;) is canceled out by an identical term in
&;" (). In this respect, modal participations depend mainly on the load factors L,/M;. Accord-
ing to Eqgs. (4.7) and (4.8), it is true that the bending moment response will have a larger parti-
cipation of higher mode effects than the displacement response. In general, if the L;/M,’s are
negligibly small for the higher frequency modes, the infinite series representing the displace-

ment and bending moment in Eqs. {(4.7) and (4.8) can be truncated without affecting the accu-

racy of the solutions.

Similarly, the displacement response of a N -DOF discrete-parameter model can be written

as



N L
u= g{ 7 Iw.- o, V(1) (4.9)
where
L=¢ mr ' (4.10)
M =¢m¢,

In this case, the displacement and mode-shape functions are repfaced by vector quantities u and
¢, respectively; and r is an influence coefficient vector which represents structural displace-
ments due to a unit base displacement. By comparing Eq. (4.9) with Eq. (4.7), we can conclude
that the accuracy of a discrete-parameter model depends on: (i) the realism of the load factors
L,/ M, represented by the discrete-parameter model (Eq. (4.10)) with respect to the values
obtained from the continuous system (Eq. (4.6)); (ii) the significance of the higher mode
effects neglected by the discrete-parameter model, i.e., the magnitudes of L,/A/li,- for i > N;
(iii) the accuracy of the lower frequencies w, represented by the discrete-parameter model; and
(iv) the accuracy of the mode shape vectors ¢, with respect to the true mode shapes ¢, (y).
These will be our evaluation criteria in the following studies. The influence of higher mode
effects also depends on the frequency content of the external excitations. This can be safely

neglected here since V¥, (r) will generally decrease with higher modes.

4.2.2. Lumped-Mass Models

The uniform cantilever column considered previously (Fig. 4.2a) can be modeled as a
SDOF or MDOF lumped-mass system (see Fig. 4.2b - 4.2e). As the number of DOF increases,
the behavior of a discrete-parameter model will approach that of a continuous system. This can
be illustrated by considering a uniform system without mass concentration, i.e., a column with
m =0, The load factors L;/M;, computed by means of Eq. (4.6) for the uniform column, z'are

plotted as a solid line in Fig. 4.3a. We can observe that modal participations drop significantly at
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the higher modes and the vibration modes greater than the 6th have a negligible influence. This
implies that the truncation of the higher mode effects by using a discrete-parameter model is
justifiable. The load factors L,/M,, obtained by means of Eq. (4.10) for discrete-parameter
models shown in Figs. 4.2b to 4.2e, are plotted in Fig. 4.3a as well. It is apparent that the larger
the number of degrees of freedom is, the more realistic are the modal participations
represented by a model. When the number of degrees of freedom is very large {(e.g., by using
a 24-DOF consistent-mass model shown in Fig. 2.4f), the load factors represented by a
discrete-parameter model are very close to those of the continuous system. Similarly,
significant improvements can be observed in the lower mode frequencies as the number of
degrees of freedom increases (see Fig. 4.3b). Although the higher mode frequencies are less
accurate than the lower ones, the participations of the higher modes are less significant. From
these observations, we can conclude that a discrete-parameter model can be very reliable if the

number of degrees of freedom considered is sufficiently large.

In general, we are interested in the seismic performance of buildings or other load carry-
ing structures which have a significant amount of mass concentrated at specific locations.
Lumped-mass maodels can be very realistic in representing such structures, For example, con-
sider a column with a concentrated mass at the top (Fig. 4.2a). The load factors L,/M,,
obtained by means of Eq. (4.6), are plotted in Fig. 4.4a at various ratios of mass concentration.
The x-axis of the figure represents the ratio of the concentrated mass at the top of the column
over the mass of the column alone. We can observe that the higher mode participations drop
rapidly to insignificant levels as mass concentration increases. At 90% mass concentration (i.e.,
& mass ratio of 10), the column can be accurately viewed as a SDOF system. Similarly, the fre-
quency errors in a SDOF lumped-mass model are very small at high mass concentration levels,

as shown in Fig. 4.4b,

Similar improvements can be observed in systems with multiple concentrated masses.
Figs. 4.5 10 4.7 show the results for columns which have two, three, and four equal masses,

respectively, concentrated at equal distances. A 24-DOF consistent-mass model (see Fig. 4.2f)
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is used as the evaluation criterion. In these figures, the x-axis represents the ratio of the total
concentrated mass over the mass of the column alone. From these results, we can conclude that
the dynamic characteristics of a system which has N concentrated masses can be accurately
represented by a N-DOF lumped-mass model when the ratio of the total concentrated mass is
high. The variation of frequency errors of the highest mode of a system with respect to mass
concentration is similar to that of the single concentrated mass example, while the frequency
errors in the lower modes are much smaller, as shown in Figs. 4.5b to 4.7b. Furthermore, the
larger the number of concentrated masses is, the more accuraté are the lower frequencies and
the less significant are the higher modes. Consequently, a system with a large number of con-

centrated masses can be modeled very accurately by the mass lumping method.

The accuracy of mode-shape vectors ¢, of a discrete-parameter model can be indicated by
the bending curvatures of a column due to modal deformations. In Fig. 4.8, we compare the
first mode frequency errors with the base curvature errors due to the first mode deformation of
the columns with various mass concentrations. It can be seen that the curvature errors are

smaller than the frequency errors.

According to the above examples, we can conclude that lumped-mass models can be reli-
ably used for load carrying structures if the total concentrated mass constitutes more than 80%
of the total system mass. This criterion can be satisfied by most building systems, which carry a

significant amount of dead load at each floor level.

4.2.3. Simplified Consistent-Mass Models

The consistent-mass formulation in Fig. 4.1a includes the rotational inertia of a beam.
This is usually insignificant, and increases both the computational effort and the complexity of
the loading apparatus in pseudodynamic experiments. On the other hand, the lumped-mass for-
mulation is not very accurate‘for systems which have uniformly distributed masses, unless large
numbers of degrees of freedom are used. A simplified consistent-mass approach which neglects

the rotational inertia can avoid the implementation problems and improve the accuracy of a
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discrete-parameter model. This approach uses the same consistent-mass matrix shown in Fig.
4.1a, but assumes that the terms related to the rotational inertia are zero. In this way, the

4 % 4 consistent-mass matrix for a beam element is reduced to a 2 % 2 tri-diagonal matrix.

Fig. 4.9a shows a 3-DOF system with the simplified consistent-mass formulation. The
number of degrees of freedom involved is the same as the lumped-mass model. However, the
more rational ireatment of the inertial properties (by including the coupling of inertia forces) in
this case improves the accuracy of the discrete-parameter model, as shown by the frequency
errors in Fig. 4.9b. The improved accuracy of the simplified consistent-mass formulation can
also be observed by comparing the load factors and frequency errors in Fig.  4.10 with those in
Fig. 4.3. In Fig. 4.10, only the lateral degrees of freedom are considered as in the lumped-mass

case.

4.3. Strain-Rate Effects

Due to different rates of loading, the inelastic behavior of a structure in a pseudodynamic
test may differ from that in an actual seismic response. Most structural materials exhibit strain-
rate dependent inelastic properties. However, strain-rate effects vary from one material to
another, In general, the larger the strain-rate is, the higher will be the inelastic sirength. Since
loads are applied quasi-statically in a pseudodynamic test, a test structure will usually exhibit a

lower inelastic strength,

For mild steel, the yield and ultimate stresses increase with the rate of loading. Manjoine
[26] showed that the yield and ultimate stresses of mild steel increase by 170% and 40%,
respectively, when the strain rate is increased from 10~%/sec to 10°/sec at room temperature.
Fortunately, the seismic response of most structures is dominated by the fundamental structural
periods which generally vary from 0.1 sec to 1 sec. These response periods will not induce
significant strain-rate effects in steel structures. Consider, for example, that the variation of

strain in a structural member during a seismic response is governed by

€=a €, sin wf (4.11)
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where a is a constant indicating the maximum inelastic deformation (or ductility) experienced
by the member, €, is the yield strain, and w is the fundamental frequency of the structure. The

rate of change of strain would, therefore, be

€=ace€, wcoswl (4.12)

Thus, the maximum strain rate €, is a€,w. Since most structures are designed such that a is
less than 10 and w is less than 60/sec (i.e., period > 0.1 sec), €,y is usually smaller than
0.6/sec by assuming that e, = 0.0012 (i.e., A36 steel). According to Manjoine’s resuits, this
will cause no more than 30% increase in yield stress and 10% increase in‘ultimate strength. In
addition, the yielding of structural members will not occur simultaneously and the maximum
strain rates usually occur at very small strain levels, where the deformation is basically elastic,
as shown by Egs. (4.11) and (4.12). Since strain rates have a negligible influence on elastic
properties, the highest strain rates often occur where they have the least effect. At large inelas-
tic deformations where strain-rate effects can be significant, strain rates are usually reduced to
insignificant levels. Consequently, strain-rate effects are generally insignificant on the global
behavior of steel structures. Forced-vibration tests performed by Hanson [27] on tubular steel
columns showed that the dynamic force-deflection hysteresis curves of the columns were very
close to the static curves when the vibration periods were about 0.3 sec and the maximum

deflections were 2 times the yield deflection.

The effects of strain rates on the seismic response of a structure can be illustrated with
numerical simulations. Fig. 4.11 shows a SDOF system which has the nonlinear behavior
modeled by the Menegotto-Pinto relation. The increased inelastic resistance due to a high strain
rate can be simulated by shifting the asymptotic bound of the nonlinearity curve upward, as
shown in Fig. 4.11b. The results in Fig. 4.12 indicate that a 10% increase in inelastic resistance

has very little influence on the response history.

Consequently, the strain-rate effects are generally negligible in testing steel structures. In

spite of that, a pseudodynamic test should be performed at a reasonable rate. If the time of a
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test is too long, strain-aging can occur. On the other hand, if a test is too fast, the real inertial
effects enter into the restoring-force measurements. Neither of these is desirable. The pause
between displacement increments should be small as well so that no stress relaxation will occur.
In general, strain-rate effects are material dependent. The strength and deformation of
reinforced-concrete structures might be more sensitive to strain rates due to the cracking of
concrete materials, This phenomenon has not been well studied. Probably, more experimental

data are required to clarify this effect.

4.4, Energy Dissipation

Mechanical vibration of any real system will experience an amplitude decay when no
external excitations are present. This energy dissipation is most conveniently modeled by a
viscous damping mechanism in analytical simulations. However, other forms of energy dissipa-
tion mechanisms exist in real systems, such as Coulomb damping due to friction and hysteretic
damping due to inelastic behavior of materials. These damping mechanisms have very different

characteristics as will be discussed in the following.
Viscous damping can be represented by a dash-pot model (Fig. 4.13a) in which the damp-

ing force is proportional to the velocity of motion. The equation of motion for a SDOF system

with viscous damping can be written as

ma()+cv()+kdlt)=r@) (4.13)

in which ¢ is the damping coefficient. The magnitude of viscous damping in an analytical model
is usually specified in terms of a damping ratio ¢ which is equal to ¢/(2mw). If damping is less
than the critical, i.e., £ < 1, the free-vibration amplitude of a viscously damped system has a

logarithmic decay:

dyyy = dy e’ (4.14)
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in which 4, is the vibration amplitude at time ¢, and d,,, is the amplitude after » cycles (Fig.

4.13b).

Coulomb damping is due to friction. The magnitude of friction depends on the texture of
contact surfaces and the normal force applied onto the surfaces. For a SDOF system in Fig.
4.14a, the frictional force F is Wpu, where W is the weight of the block and w, is the
coefficient of dynamic friction for the contact surfaces. The frictional resistance in this case is,
therefore, of constant magnitude and is opposite to the direction of motion. Consequently, the

equation of motion for such a system is

ma(t) + Fsign(v) +k d(t)=f() (4.15)

where sign(v) is the sign of velocity at any time instant ¢. The decay of free-vibration ampli-
tude due to Coulomb damping (Fig. 4.14b) is linear:

AF

- (4.16)

dyyy = d, —

This also implies that the influence of Coulomb damping becomes insignificant if the response

amplitude is relatively large or if the stiffness of a system is high, i.e., % << d,.

Hysteretic damping is another form of energy dissipation, due to the inelastic behavior of
structural materials (Fig. 4.15). This can occur even if the deformation of a structure is within
the expected elastic limit because of localized yieldings which can be caused by residual stresses
in steel, stress concentrations at joints, and premature yielding due to combined axial and bend-
ing stresses in a truss for example. In addition, some materials do not have a clearly defined
yield point.

In a real vibration test, all three energy dissipation mechanisms may exist. Therefore, it is
difficult to define the damping properties of a structure in terms of any single form. It is a com-
mon practice to measure structural damping in terms of an equivalent viscous damping ratio

€., This is realistic, of course, only if the effects of Coulomb and hysteretic dampings are
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relatively small, and it may not be adequate for other vibration amplitudes,

in a pseudodynamic test, Coulomb and hysteretic dampings are automatically inciuded in
response computations by using the actual resioring forces measured from the test structure.
However, viscous damping has to be analytically specified. Care should be taken in selecting an
adequate viscous damping ratio for a test structure, in order to prevent over- or under-
estimation of the damping effect, This can usually be done by comparing the pseudodynamic
free-vibration response simulation which does not include viscous damping with the actual
free-vibration response of the structure. The difference between the equivalent viscous damp-
ings measured in the two cases indicates an approximate amount of viscous damping required

to be considered in a pseudodynamic test.

Sometimes, unrealistically high Coulomb damping may exist in a pseudodynamic test due
to unusually high frictional forces in hydraulic actuator connections or in special structure sup-
porting apparatus. These are generally negligible if the frictional forces are small with respect
to the stiffness of the structure. Other erroneous energy effects (either energy adding or energy
dissipating) may occur in a pseudodynamic test due to experimental errors {Sec. 3.4). These

should be carefully checked, and eliminated or compensated for before any major test [15].

The viscous damping properties may change as a structure deforms inelastically.
Nevertheless, the energy dissipation becomes dominated by hysteretic damping as soon as
significant inelastic deformations occur (see Chapter 6 for example). Therefore, the change of
viscous damping in inelastic testing can often be neglected. This can be illustrated by the results
of numerical simulations in Fig. 4.16. We can observe that a 2% viscous damping has a
significant influence on the elastic response (Fig, 4.16a), but it has negligible effects in ap ine-

lastic system (Fig. 4.16b).

Finally, we can conclude that although the exact damping properties of a structure are
difficult to measure, reasonable viscous damping values can be assigned to a pseudodynamic
test structure through careful considerations of various damping mechanisms. Since equivalent
structural dampings measured from most vibration tests vary between 1 and 2%, a small

discrepancy in damping will not affect the reliability of inelastic testing.
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CHAPTER 5
IMPLEMENTATION AND VERIFICATION TESTS

5.1. Introduction

The theoretical background and analytical evaluations of the pseudodynamic test method
have been presented in the previous chapters. The feasibility of the method has been verified
based on theoretical considerations, which indicate that the reliability of pseudodynamic results
depends on the mechanical properties of the test structure, the adequacy of the modeling
assumptions used, and the accuracy of the numerical method selected. However, according to
the error-propagation_ properties 6f the numerical algorithms, it is obvious that the accuracy of
the experimental results also depends largely on the experimental techniques adopted, the
design of the test apparatus, as well as on the performance of the test equipment. Reliable test
results can be obtained only if appropriate considerations are given to each of the above items.
This chapter is devoted to the practical implementation of the pseudodynamic method. A typi-
cal implementation scheme will be discussed by referring to the system recently installed at the
Structural Engineering Laboratory at Berkeley. Some desirable features of the computer
software will be mentioned. In addition, the precision and the performance characteristics of the
necessary test equipment will be examined. As a result, precautions for instrumentation and
test performance can be identified. By utilizing the experimental system installed at Ber-keley,
verification tests were performed on a simple SDOF steel specimen. The results of these tests

will be presented and correlated with analytical simulations.
5.2. Implementation Method

5.2.1. Experimental System and Procedure

As discussed in Chapter 2, the discretization of a structure for pseudodynamic testing
involves the selection of structural degrees of freedom which can realistically describe the

dynamic behavior of the specimen. These structural degrees of freedom are usually specified at
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locations where most of the system mass is concentrated. Following the discretization pro-
cedure, we can write the equations of motion for 2 general MDOF test structurg in a matrix

form:

ma+cecv+r=f (5.1)

where m and ¢ are the analytically constructed mass and viscous damping matrices of the struc-
ture; and r is the linear or nonlinear restoring-force vector related to the structural deforma-
tions developed at the specified degrees of freedom. Using one of the explicit step-by-step
integration algorithms illustrated in Fig. 2.2, we can readily solve Egq. (5.1) for the dynamic

response of a structure to any external excitation f specified in a pseudedynamic test.

During a pseudodynamic test, the displacement response computed in each step is quasi-
statically imposed on a test structure by means of electro-hydraulic actuators, which are physi-
cally attached to the structure at locations where the structural degrees of freedom are defined.
The restoring forces developed by the structure, due io the deformations applied, are then
measured by load transducers and returned to the main computer through a data acquisition
unit. Based on the displacements computed in the previous step or steps, as well as on the
corresponding restoring forces measured during the test, the displacement response in the next
step is computed by means of a step-by-step integration method. This procedure is repeated
until the test is completed. Thus, a pseudodynamic test proceeds in a stepwise manner, through
which the dynamic response of a structure is quasi-statically simulated by using a numerical
algorithm, and appropriate loading and data acquisition apparatus that are available in most

structural laboratories.

In reality, the experimental setup for pseudodynamic testing is very similar to that for
conventional quasi-static tests. The same test equipment required by conventional quasi-static
testing is used here, such as actuator-controller systems which impose specified displacements
on & test structure, a data acquisition unit which collects data from measurement instruments,

and a mini-computer that stores the acquired data. However, a computer is alse used for the
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computation of displacement response during a pseudodynamic test. Therefore, the conversion
of the conventional quasi-static testing technique to the pseudodynamic method requires the
development of computer software which computes the structural response and automates the
displacement control and data acquisition processes during a test. A ramp generalor must also

be built to transfer the displacement signals from the computer,

A typical implementation scheme of the pseudodynamic method, which is used at Berke-
ley, is shown in Fig. 5.1. The test algorithm is implemented in a mini-computer, which per-
forms the foilowing major functions in each step of a test: (i) re;td the data channels of the data
acquisition upit and store the data in a disc file; (ii) calculate the displacément response using
step-by-step integration: and (iii) send the displacement signals to actuator controllers, so that
correct dispacements will be imposed on a test structure. The structural displacements com-
puted in each step are sent as voltage signals through a multi-channel ramp generator (D/A
converter} to actuator controllers, each of which commands a hydraulic actuator to impose the
specified displacement at each structural degree of freedom. The ramp speeds for all channels
are so proportioned that the displacement increments for all degrees of freedom of a structure
are reached simultaneously. The restoring forces developed by the specimen, as well as other

measurements of structural behavior, are then returned to the computer as voltage signals

through a high speed data acquisition unit (A/D converter}.

The above procedure is repeated in every step of a test. The total time required for a sin-
gle test is the sum of the time intervals AT taken by each of these steps. Each time interval
can be subdivided into two phases: the hold period and the ramp period, during which various
tasks are being performed, as shown in Fig. 5.2. These tasks are properly synchronized so that
long pauses between displacement increments are avoided and correct data are acquired at the
end of the ramps. During the hold period of the interval, data acquisition and numerical com-
putations are performed. Data acquisition staris immediately after the ramps stop. The displace-
ments computed are checked so that they will not exceed the ramp limits. The hold period is

usually a small fraction of a second if a high speed data acquisition system is used. For a 20
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kHz and 128 data channel unit, which is currently used at Berkeley, all channels can be read in
6.4 milliseconds. The ramps start if all the displacements computed are within the limits. Dur-
ing this second half of the interval, several tasks are performed concurrently: (i) the acquired
data are recorded in a disc file; (ii) the excitation record is read; (ii) all data are checked to
make sure that they are within the calibrated limits; and (iv) selected data channels are plotied
for graphical display. Therefore, the ramp speed should be selected such that the ramps stop
after all these tasks are completed. This will minimize the hold period and ensure that succes-
sive displacement increments are applied more or less continuously, and thus preventing stress
relaxation problems. The ramp speed required depends mainly on the amount of data being
plotted during a test and the operation speed of ploiters. It varies from a fraction of a second,
which is the base rate of the system clock, to a few seconds, The maximum ramp speed is also
limited by the sensitivity of the actuator-controller system which follows the ramp signals, and
the actuator servo-valve flow capacity. On the whole, each step of a pseudodynamic test can be

performed in less than one second.

5.2.2. Computer Software

Based on the implementation scheme shown in Fig. 5.1, a pseudodynamic {est program
has be.en developed at Berkeley. The program can be divided into two separate execuiion
modes: (i) the operation mode; and (ii) the test mode, Besides the basic functions discussed
before, the program also includes several useful features which can improve the reliability as
well as the capabilities of the pseudodynamic test method. The main features of the program

are shown in Fig. 5.3, and will be discussed in the following.
(i) The Operation Mode

The operation mode comprises a set of macro commands by which all the available func-

tions of the program can be called. The major functions of the program are the following;
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(1) initialization of test parameters;

(2} measurement of structural stiffness;
(3) execution of the test mode:

(4) unloading of a tested structure;

(5} reduction of test data,

The test parameters which need to be initialized at the beginning of a test include: (a) the cali-
bration factors of the measurement instruments; (b) the number of structural degrees of free-
dom considered; (c) the coefficients of the mass and viscous damping matrices, (d) the parame-
ters for the integration algorithm used; and (e) the ramp speed. The structural stiffness can be
measured automatically before and after a test by muiltiple sampling of the load-deformation
relations of the structure at various degrees of freedom. A least square fit is performed on each
set of sampled data to obtain the stiffness coefficients. Based on the measured stiffness and
specified mass matrix, the natural frequencies and mode shapes of the structure can be com-
puted. After a test, a structure can be automatically unloaded by an iterative approach using
the initial elastic stiffness of the structure. This is especially convenient for MDOF testing.
Finally, experimental data can be immediately reduced and plotted after a test. Arithmetic
operations can be performed among the data collecled from various channels to extract mean-

ingful results.
(ii) The Test Mode

Pseudodynamic testing can be started by calling the test mode from the operation mode.
The test mode performs all the necessary tasks, shown in Fig. 5.2, in each step of a pseudo-
dynamic test. These include numerical integration, control of structural deformations, and col-
lection of test data, Besides the basic operations, the following functions are also incorporated,

as shown in Fig. 5.3:
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Test execution can be manually terminated or temporarily interrupted before completion,
and restarted to continue the interrupted test. This allows readjustment of experimental
apparatus or re-calibration of instruments during a test, or continuation of a test after an

unexpected interruption.

The discrepancy between the specified and measured displacements is monitored during a
test. Spectral analysis can be performed on the displacement errors io detect the existence
of systematic errors which are highly undesirable. Test execution will be automatically

interrupted if the measured errors exceed a certain limjt.

Linear elastic testing can be performed by using the modal superposition method. The
response of each mode can be calculated. The erroneous energy growth or decay in each

mode can be monitored so that appropriate hysteretic energy compensation can be applied.

The modified Newmark integration method which has numerical dissipation is imple-
mented. Appropriate numerical dissipation can be selected (Sec. 2.3.2) to damp out the

spurious growth of high frequency modes without significant effects on the lower ones.

Hysteretic energy compensation is available for correcting energy growth or decay due to
systematic experimental errors (Sec. 7.2, Reference 15). This is appiicable to either SDOF

or MDOF testing.

In addition to the above features, conventional quasi-static testing can be performed as a special

case of the general pseudodynamic test method, during which data acquisition and displacement

or load application are carried out automatically. Experimental data can be combined and plot-

ted for graphical display during a test. Furthermore, multiple components of excitation, which

are very common under real seismic conditions, can also be applied in a pseudodynamic test, so

that tests on three-dimensional structural systems can be performed.
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5.2.3. Test Equipment

The reliability of pseudodynamic testing depends very much on the quality and perfor-
mance of the instruments used. Due to the error-propagation characteristics of the numerical
integration algorithms, errors introduced into the displacement control and force measurement
can induce a significant growth of cumulative errors during a test. For this reason, high preci-
sion control and measurement instruments are recommended for pseudodynamic testing. The
performance features of these instruments and their error sources are briefly discussed here, as

well as the means to minimize the errors.
(i) Measurement Transducers

The displacements imposed on a structure and the restoring forces developed are meas-
ured by displacement and load transducers, respectively. These are electronic devices which
correlate the displacement or force variations with voltage changes. A perfect device will give
an exactly linear correlation. Since the output of a displacement transducer is fed back to an
actuator controller in the closed-loop displacement control, and the force measurement from a
load transducer is used for the computation of displacement response, the accuracy of these

devices is directly related to the reliability of pseudodynamic test results.

Errors associated with displacement transducers are commonly caused by: nonlinearities
exhibited in the displacement-to-voltage conversions; lack of sensitivity, which impairs the sta-
bility of the closed-loop displacement control; and improper calibration. These errors are usually
insignificant if good quality devices and proper calibration techniques are used. The accuracy of
displacement control and measurement also depends on the installation of a transducer. If a
transducer is installed to measure the actuator displacement instead of the direct structural dis-
placement, then the flexibility of the actuator support will influence the actual displacement
being imposed on the structure. Furthermore, geometric effects may become significant under

large deformations.

Load transducers are mounted on actuator pistons. A well-designed and properly cali-

brated load transducer should be very reliable. However, the transducer readings may still be
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in error if the actuators are not properly aligned or if the frictional forces in actuator clevises
are relatively large. Geometric effects are, again, important if large displacements are imposed
on a structure such that the measured force significantly differs from the component in the

assumed direction of loading.
(i) Actuator-Controller System

The response of an actuator-controller system (see Fig. 5.4) to a displacement command
depends on the capacity of the servo-valve which drives the hydraulic actuator, and the gain
setting on the controller which commands the servo-valve, If the gain is low, the system may
respond sluggishly (Fig. 5.5a). If the gain is too high, the system may become unstable, and
the actuator will overshoot and osciilate about the commanded displacement (Fig. 5.5b). Either
of the above situations is undesirable in a pseudodynamic test because of the erroneous dis-
placement and restoring-force values being fed back to the computer. Significant cumulative
errors can occur in pseudodynamic results if the force feedback errors due to overshooting or
undersiiooting are consistently introduced into the numerical computations. Therefore, an
optimal gain should be selected such that the actuator response will closely follow the command
signal (Fig. 5.5¢). The maximum response speed of an actuator is limited by the capacity of the
servo-valve (which is specified in terms of gallons of fluid flow per minute). In general, the
selection of servo-valve capacity depends on the size of the actuator and the velocity require-
ment. .Extensive experimental studies on actuator performance have been carried out at Berke-
ley; and problems related to the selection of controller and actuétor parameters have been
investigated. These are the topics of a future report. Some control theories have also been
developed at the University of Michigan, Ann Arbor [14]. These studies provide valuable
information for achieving accurate displacement control during a pseudodynamic test. Besides
the precision of dispacement control, some other features of a controller system should also be
looked upon. For example, an interlock unit which shuts off all actuators when displacements
exceed certain limils or when large displacement errors are detected is very useful for prevent-

ing unintented damages to a test specimen.
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(i) Ramp Generator and Data Acquisition Unit

The ramp generator is a digital-to-analog (D/A) converter which transmits displacement
commands from the computer to actuator controllers. Consequently, floating-point displacement
values computed by the pseudodynamic algorithm have to be converted into integer numbers
before they can be sent to the D/A converter, which translates binary integer numbers to ana-
log voltage signals. A 12-bit binary D/A converter has a resolution limit of 1/2048 (2/2'2) of
the full calibration range. In other words, displacement increments smaller than d,,,,/2048 are
lost in the data transfer, where d,,, is the maximum displacemént for which the system is cali-
brated. This resolution error can be relatively significant if the maximulm displacement cali-
brated for is substantially larger than that to be actually imposed. The ramp signal for each dis-
placement increment can be sent as a linear (Fig. 5.6a), Haver-sine (Fig. 5.6b), or other fum‘:-
tion. According to the experimental studies, Haver-sine or other functions which have zero
ramp terminal velocities can significantly improve the performance of an actuator. For a
MDOF test, a multi-channel ramp generator is required. However, all ramps should start and
stop simultaneously in spite of the different displacement increment for each ramp (Fig. 5.6c).
The data acquisition unit is an A/D converter which translates analog feedback from measure-
ment instruments to digital signals, which are returned to the main computer. The unit
currently used at Berkeley (Fig. 5.7) is capable of scanning 128.data channels in 6.4 mil-

liseconds. Again, resolution errors are produced during this A/D conversion.

The resolution errors in the displacement-command and force-feedback signals are intro-
duced into the numerical computations. If truncations are used in the real-to-integer and A/D
conversions, the resolution errors will be of systematic nature which can induce a significant
error-propagation effect. Consequently, to minimize the effects of resolution errors, one should
(i) calibrate the instruments close to the maximum values which would actually be expected
during a test, and (ii) use round-off instead of truncation during the real-to-integer and A/D

conversions.




- 56 -

The effects of instrumentation errors on pseudodynamic testing can be significant. There-
fore, good instrumentation techniques and a careful error checking procedure should be fol-
lowed in a pseudodynamic test {see Fig. 5.3). These are discussed in greater detail in Reference

15.

5.3, Verification Tests

5.3.1. Test Description

Verification tests were performed to examine the reliability of the pseudodynamic method.
A SDOF cantilever system which had a concentrated mass at the top was selected for these
tests (Fig. 5.8). The cantilever column was fabricated from a W6x 16 I-section. One end of the
column was welded to a thick plate which was bolted to a concrete reaction block; and the other
end was attached to a hydraulic actuator piston through a clevis, representing the tip which car-
ried the concentrated mass. A detailed test layout is shown in Fig. 5.9. The length of the
column, from the fixed to the pinned end, was 48 in. It was assumed that the concentrated
mass was 0.01305 kip-sec?/in., and that the column itself had zero mass. The system was tested
horizontally and the gravity effect of the mass was neglected. No viscous damping was included

in the analytical formulation.

The displacement of the column top was monitored by an internal LVDT installed within
the actuator. Since the reaction frame of the actuator was very stiff when compared with the
column stiffness, the internal LVDT should give a very accurate measurement of the lateral
displacement of the column. The restoring force was measured by a load cell mounted on the
actuator piston. A 12-bit binary ramp generator was used to send out the displacement com-
mands and a 14-bit data acquisition unit was used to collect the restoring force measurements.
Because of the high speed data acquisition system used and the responsiveness of the actuator-
controller system, a test with a 15 sec. excitation record and a 0.01 sec. integration time inter-

val could be completed in about 25 min. 1t should also be meniioned that only two data
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channels (displacement history and displacement errors) were being displayed by a digital
plotter during the tests. The displacement and load transducers were carefully calibrated so that
the maximum readings were close to the values actually experienced by the specimen during
gach test. Consequenily, errors introduced by the real-to-integer and A/D conversions were
negligibly small.

A sequence of pseudodynarmic tests were performed with the SDOF system. A pseudo-
dynamic free-vibration test was first carried out by introducing a short duration impulse excita-
tion. This was followed by a linear elastic test using the El Centro 1940 (NS), 0.1g ground
acceleration. Finally, the system was tested for inelastic response under tk;e El Centro 0.8 and
Miyagi Oki .45g ground motions. The resulis of these tests were compared with analytical

simulations.

5.3.2. Test Results
(i) Linear Elastic Response

The elastic stiffness of the specimen was 3.56 kip/in. based on the nominal dimensions of
the column. However, the actual stiffness measured in a static test was 3.75 kip/in. (which was
5% higher than the predicted value). According to the 0.01035 kip-sec?/in. mass specified in
the pseudodynamic formulation and the column stiffness measured, the system should have a
natural period of (.33 sec. Based on these properties, an.alytical simulations were performed
{(with zero viscous damiping), the results of which are shown in Fig. 5.10. Fig. 5.10a shows the
free-vibration response of the system under an impulse excitation, and Fig. 5.10b illustrates the

linear response of the system to the EI Centro 0.1g ground acceleration.

The free-vibration response obtained by pseudodynamic testing is shown in Fig. 5.11a. We
can observe that the vibration period was almost identical to that predicted by analysis.
Nevertheless, significant amplitude decay can be observed in the pseudodynamic result. This
was apparently attributable to energy dissipation caused by the friction in the actuator clevis, as

shown by the hysteretic loops in Fig. 5.11b. For the vibration amplitudes considered, this
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Coulomb damping had an equivalent viscous damping ratio of 1.6%. This can be verified by
comparing the pseudodynamic free-vibration response with the result of an analytical simulation
using 1.6% viscous damping (Fig. 5.11a). Similarly, the pseudodynamic response of the system
to the El Centro 0.1g ground acceleration closely matched the analytical result which had 1.6%

viscous damping (Fig. 5.12).
(i} Inelastic Response

The pseudodynamic response of the system to the El Centro 0.8g ground acceleration is
shown in Fig. 5.13. Significant yielding was developed at the fixed end of the column, as can
be observed from the displacement drift shown in the figure. The force-displacement hysteretic
curves of the column shown in Fig. 5.14a indicate significant inelastic energy dissipation during
the test. An analytical simulation was performed. The inelastic hysteretic behavior of the
column was modeled by the Menegotto-Pinto relation as shown in Fig. 5.14b. By comparing the
result of the nonlinear simulation with the pseudedynamic responsa (Fig. 5.13), we can observe
that the correlation between the two results is good although no viscous damping was inciuded
in the analysis. Ii is obvious that Coulomb damping had a negligible effect on the inelastic
response. The major discrepancy between the two results is that the analytical simulation had a
slightly more significant displacement drift than the pseudodynamic response. This is most
likely caused by analytical modeling defects. As shown in Fig. 5,14, the shapes of the hysteretic
curves used for the nonlinear model are not exactly identical to those measured in the pseudo-

dynamic test,

The inelastic response of the system to the 0.45g Miyagi Oki record is shown in Fig. 5.15.

Again, the pseudodynamic response and the analytical simulation show good correlation.

53.3.3. Comments

The above test results show that the dynamic response of a structure can be reallistically
simulated by pseudodynamic testing. Although an unrealistically high Coulomb damping was

observed in the linear elastic test results, the damping effect became insignificant in the
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inelastic response. This can be explained by two reasons. First, as we have discussed in the
previous chapter, the influence of Coulomb damping depends on the relative magnitude of F/k
with respect to the displacement amplitude. If the frictional force F and the structural stiffness
k remain constant, the effect of Coulomb damping becomes less significant as the displacement
amplitude increases. Second, as a structure yields, the energy dissipation in the response motion
becomes dominated by hysteretic damping and the energy dissipated by frictional forces is com-
paratively small. Consequently, the effect of Coulomb damping is usually negligible if large

inelastic deformations occur or if a system is relatively stiff.

To obtain more realistic damping characteristics in linear elastic tésts, the energy dissi-
pated by Coulomb damping can be appropriately compensated for by numerical means. This will
be illustrated in the next chapter. As pointed out before, other experimental errors may also
exist in pseudodynamic testing. Some errors may cause energy growth instead of energy decay
in the response motions. These errors are highly disastrous to MDOF tests. However, most of
these errors can be eliminated by using high precision instruments and proper instrumentation

techniques.
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CHAPTER 6

INELASTIC SEISMIC PERFORMANCE TESTS
OF AN X-BRACED TUBULAR STEEL FRAME

6.1. Introduction

The reliability of the psendodynamic method is further examined in this chapter by com-
paring the results of pseudodynamic testing with those of shaking table tests. An x-braced
tubular sieel frame which was previously tested on a shaking table by Ghanaat and Clough 4]
was repaired and tested again by using the pseudodynamic method. The test frame was a 5/48
scale planar model of a representative tubular offshore tower designed according to the Ameri-
can Petroleum Institute {(API) wave and earthquake criteria [28). To correlate the results of the
two experiments, the table accelerations recorded from the shaking table tests were used as
input excitations in the pseudodynamic tests. Tests were performed sequentially with increasing
magnitude of earthquake excitations corresponding to API "Strength" and "Ductility” level
earthquakes as well as to a "Maximum Credibie" event. Larger scale frame models of similar
design were also tested quasi-statically by Zayas, et al. [8]. The results of these three experi-
mental programs are compared here to evaluate the reliability and practicability of the pseudo-
dynamic test method. In addition, the inelastic seismic performance of the similar test speci-
mens under the different experimental conditions are examined, and implications for design

and analysis of seismic-resistant structures are discussed.

6.2. Test Description

6.2.1. TFeatures of the Test Frame

For correlation purpose, the frame selected for psesudodynamic testing had the same
design as the one tested on a shaking table [4]. The geometric configurations and member size
specifications of the two frames were identical. The 17 ft.-9 1/8 in. high and 75 in. wide tubular

frame consisted of three braced panels (see Fig. 6.1). It represented a complete bent of a 5/48
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scale model of a Southern California platform designed according to API wave and earthquake
criteria [28]. The operation deck was simulated by a stiff beam. During the shaking table tests,
a 40.4 kip dead load, which accounted for 99% of the total frame weight, was superimposed on
the top of the frame to represent the weight of the deck appurtenance (see Fig. 6.2). The same

mass distribution was assumed in the pseudodynamic tests.

Table 6.1 Member Sizes and Material Properties

Member No. Tube Dimensions Yield | Ultimate
or Description | Nominal Diameter (D) | Stress Stress
x Wall Thickness (t) (ksi) (ksi)

(in.)

1,3 2 1/2 x 0.049 30.7 40.2
2,4 21/2 x 0.049 27.4 37.8
5,6,7,8 3 x 0.083 31.5 51.7
9,10 31/2 x 0.083 32.0 53.0
11,12,13 2 1/2 x 0.049 19.6 41.0
Jacket Legs 8 x0.188 48.0 62.0

The section sizes of the frame members are listed in Table 6.1, with member
identification numbers shown in Fig. 6.1. The upper-panel diagonal braces had a D/t (nominal
diameter/wall thickness) ratio of 51; and that of the lower-panel braces was 36. All the braces
were heat treated to obtain a yield stress similar to that of A36 steel. The average yield and ulti-
mate stresses of the annealed materials, based on coupon tests, are shown in Table 6.1 as well.
The variation of yield stresses in similar tubular sections was due to separate annealing

processes.

The frame was so designed that the failure mechanism would be dominated by the yield-
ing and buckling of the diagonal braces. For this reason, the cross-joints of the braces were
reinforced with thick-walled inserts to prevent premature joint failures and the horizontal braces

were over-designed.
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6.2.2. Pseudodynamic Formulation

Since most of the mass was concentrated at the top of the frame, one could reasonably as-
sume that the frame was a SDOF system in pseudodynamic testing (according to Sec 4.2).
Moreover, the P-A effect of the dead load had to be numerically modeled because the frame

was tested horizontally. With these considerations, the equation of motion for the test frame is
m aH_l + C V_.‘+1 + (k + kg) Q’H.l = f,'+] (61)

where m is the mass at the frame top, ¢ is the viscous damping coefficient, and & is the frame
stiffness (force per unit lateral displacement of the deck); k, is the geometric stiffness due to
the P-A effect (i.e., weight/height); a,,1, v+, and d,,, are the lateral acceleration, velocity, and
displacement of the deck at time equal to {(i+1)A¢; and f,,, is the excitation force, With the
40.4 kip dead load, the geometric stiffness &, was -0.196 kip/in. and the mass m was 0.105 kip
sec’/in. Viscous damping ratio was assumed to be 1.5%, which was an approximate value
measured from the shaking table tests. For seismic excitations, f;4| = — m @;4, where a;,; was

the discretized ground acceleration at time (i+1)Ar.

Consequently, by using the Newmark explicit integration method (see Fig. 2.2¢) and
measuring the restoring force r,.; = k-diy directly from the iest frame in each integration step,
the displacement response could be solved from Eq. {6.1) and imposed on the frame in a step-

wise manner.

6.2.3. Test Setup and Instrumentation

The pseudodynamic test setup is briefly described in Fig. 6.3. The frame base was
attached to a stiff beam on a reaction block by clevises; and free horizontal movement was
allowed at the frame top. A mini-computer was used for displacement computation, and for
data acquisition and storage. The displacement increment computed at each step was transferred

as a voltage signal to an actuator controller, which commanded a hydraulic actuator to impose
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the specified displacement on the test frame. The actuator was connected to the frame top (or
deck) by a clevis; and the displacement control loop was completed by a displacement-feedback
transducer measuring the center point displacement of the deck in line with the actuator. After
the correct displacement was imposed on the frame, the restoring force measured by a load
transducer mounted on the actuator (as well as data from other measurement instruments) was
collected and transferred to the computer by a high speed data acquisition system. The next dis-
placement increment was, then, computed using the restoring-force feedback; and the whole

process was repeated.

The yielding and buckling behavior of the diagonal braces was caniefully monitored by
linear potentiometers and load transducers. The out-of-plane displacements of the cross-joints
and the lateral displacements of the frame at the horizontal brace levels were also measured.
The movements of the base clevises were accurately monitored with LVDT’s, so that the flexi-
bility of the base support could be measured during the tests. The experimental setup and

instrumentations are shown by the photographs in Fig. 6.4.

6.2.4. Test Sequence

The earthquake excitations used in the pseudodynamic tests were horizontal table
accelerations recorded from the previous shaking table tests. They were derived from the Taft
1952 S69E earthquake record. Due to the filtering of high frequency components from the
record used for the shaking table tests and the table-structure interaction phenomenon, the
recorded accelerations differed slightly from the original Taft record. To obtain the dynamic
similitude of the prototype, the time span of the acceleration record was scaled down by a factor

of 0.48.

The test sequence is listed in Table 6.2. The magnitude of ground accelerations varied
from 0.138¢ to 1.228g. Tests 2 and 3 corresponded to the "Strength" and "Ductility" level
earthquakes, respectively, according to the API criteria for seismic zone 4, while Tests 5 and 6

were extreme events. Tests 1 and 4 were half-"Strength Level” events used to study the change
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Table 6.2 Test Sequence

Test | Earthquake Levels | Maximum Ground
No. Acceleration (g)

1 Half-Strength 0.138

2 Strength 0.276

3 Ductility 0.581

4 Half-Strengih 0.138

5 Max. Credible 1.228

6 Max. Credible 1.228

of dynamic behavior after significant structural damages., A typical Taft record is shown in Fig.

6.5,

6.3. Verification Tests

As pointed out before, pseudodynamic tests are susceptible to experimental errors. To
ensure the credibility of test results, some preliminary tests were carried out to check the accu-

racy of the experimental apparatus,

A pseudodynamic free-vibration test was performed by introducing a short duration
impulse excitation. Excessive energy decay was detected in the test because of the friction in
the clevises and in the other frame support apparatus (Figs. 6.6a and 6.6b). This friction was
numerically removed from the restoring-force measurements by a correction hysteretic loop, as
shown in Fig. 6.6¢c. The corrected free-vibration responses are shown in Fig. 6.7a, with zero
and 1.5% numerically specified viscous damping. The gradual decrease of displacement ampli-
tudes in the zero damping case was caused by hysteretic energy dissipation related to localized
vielding of the frame members due to residual stresses and stress concentrations at the joints.
However, this was insignificant with respect to the 1.5% viscous damping. The natural period of
the frame measured from the pseudodynamic free-vibrations was 0.402 sec., which indicated an
elastic frame stiffness of 25.57 kip/in. This was consistent with the stiffness measured from
static tests, but lower than the analytically computed stiffness (which is 32.4 kip/in.). This

discrepancy was attributed to the base-support flexibility (0.007 in./kip) which was measured by
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the LVDT’s during the tests.

Finally, an elastic test was performed using a small magnitude Taft record (0.069g). An
excellent correlation can be observed between the pseudodynamic and analytical results (see

Fig. 6.7b). Again, the test result had a little more damping due to local nonlinearities.

6.4. Experimental Results

6.4.1. Inelastic Seismic Response

The global responses of the frame to the six consecutive Taft events are shown by the
deck-level displacement time histories and the hysteretic loops of lateral frame load vs. deck
displacement in Figs. 6.8 to 6.11. The change of response characteristics of the frame in each
event, as observed from the figure, manifested the extent of structural damages developed. The
most significant transitions of response characteristics appeared in the "Ductility Level" and the
first "Maximum Credible" events as residual displacements and period elongations in the dis-
placement time histories, which were accompanied by significant hysteretic energy dissipations.
These corresponded to the first occurrence of severe yielding and buckling of the diagonal
braces in the upper and lower panels, respectively. The load resistance and inelastic energy-
dissipation capabilities of the frame were mainly offered by the diagonal braces. At the final
stage, the upper-panel braces ruptured; and the frame lost more than 50% of its lateral stiffness

but retained a good energy-dissipation capability.

The seismic behavior of the frame during the six events are briefly summarized in the fol-
lowings:
(i) Half"Strength Level' Event. During the half-"Strength Level" excitations, the frame experi-
enced a maximum deck-level displacement and lateral load of 0.5 in. and 12.5 Kkips, respec-
tively, at about 3.8 sec. of the 15 sec. record (Fig. 6.8a). A small nonlinearity was observed in
the lateral load vs. deck displacement curves (6.8b). This was attributed to localized yielding in

the braces. The most significant localized yielding was observed in brace 2.
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(i) "Strength Level' Event. During the "Strength Level" excitations, the maximum deck displace-
ment and lateral load experienced by the frame were 0.8 in. and 18 kips, respectively (Fig.
6.9a). Considerable energy dissipation was observed in the frame hysteretic loops (Fig. 6.9b).
All the diagonal braces showed limited local nonlinearities except braces 2 and 4, which had
pronounced tensile and compressive yielding. This was in part due to a lower yield stress of the
material for braces 2 and 4 (Table 6.1). At the end of the test, a small residual displacement

was observed; the frame stiffness was reduced to 24.6 kip/in.

(iii) " Ductility Level' Event. The frame reached a peak displacement of 1.2 in. and a maximum
load of 20 kips during the "Ductility Level" earthquake (Fig. 6.10a). The relatively small
increase of lateral frame load was due to the development of significant frame nonlinearity.
Sudden reductions of frame stiffness occurred at large displacement levels, as shown by the
frame hysteretic loops in Fig. 6.10b. These corresponded to the compressive buckling and ten-
sile yielding of braces 2 and 4. The buckling strengths of these braces deteriorated rapidly to
about 1/3 of their original values during later displacement cycles. Tensile strength was also
drastically reduced due to brace tearing in local buckling regions. Braces 1 and 3 remained
essentially elastic throughout the test, while only localized yielding occurred at the lower-panel

diagonal braces. After the test, the elastic frame stiffness measured was 23.6 kip/in.

(iv) Post-Damage Half'Strength Level' Event. The displacement response of the frame in this
test was much smaller than that in the initial half-"Strength Level" event. The peak displace-
ment was 0.18 in. (Fig. 6.8a). Period elongation was observed in the displacement history, indi-

cating a reduced frame stiffness.

(v) "Maximum Credible' Event. During the "Maximum Credible" event, the peak displacement
of the frame was 2.4 in. (Fig. 6.11a). The lateral load reached a maximum frame capacity of 21
kips. Braces 2 and 4 ruptured, passing the lateral load resistance completely to the lower-panel
diagonal braces by means of the jackets. However, the frame hysterctic loops showed stable
energy dissipation throughout the test (Fig. 6.11b). Buckling occurred in ali the four lower-

pane] diagonal braces, but braces 5 and 7 exhibited twice as much axial deformations as braces



Y-

6 and 8. After the test, the frame stiffness deteriorated to 11.74 kip/in. (i.e. 46% of the original

value).

(vi) Second "Maximum Credible' Event. During the second "Maximum Credible" event, the dis-
placement response of the frame was similar to the previous one except that some additional
period elongation was observed (6.11a). Severe tensile yielding and compressive buckling were
developed in braces 5 and 7, while braces 6 and 8 had relatively limited inelastic deformations.
The buckling strengths of braces 5 and 7 were reduced by about 50% at later displacement
cycles. The final stiffness of the frame was 10.41 kip/in. The énergy-dissipation capability of

the frame deteriorated slightly as shown by the hysteretic loops in Fig. 6.11b.

The damages suffered by the frame during these events are shown by the photographs in

Fig. 6.12.

6.4.2. Effect of Structural Damage on Seismic Response

As shown by the response spectra of a Taft event in Fig. 6.13, the peak elastic response of
a structure to the excitation record can vary within a considerable range, depending on its
natural frequency and viscous damping. For the elastic responses in Fig. 6.8a, the tower initially
had a period of about 0.4 sec. corresponding to a peak in the response spectra. Lengthening the
period due to damages in the "Strength" and "Ductility" level events moved the period into a
spectral valley thereby reducing the response considerably. This trend depends on the period

shift but also on the particular record used.

The response of a damaged structure is usually different from that of an original one
because of stiffness degradation and hysteretic energy dissipation. In Fig. 6.14, we compare the
peak elastic displacement responses of the frame based on the original and post-damage frame
stiffnesses, respectively, at each excitation level. These values were obtained from the elastic
spectrum in Fig. 6.13, assuming 1.5% damping. The significance of effective hysteretic damping
can be realized from the experimental data curve plotted in the same figure. The curve shows

that the actual peak displacement response of the frame was about 60% of the value predicted
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by the elastic spectrum during the "Maximum Credible” event due to hysteretic damping.
Therefore, inelastic structural deformation is desirable during intense seismic excitations, as

long as the structure remains stable and develops a good energy-dissipation capability.

6.4.3. Inelastic Brace Behavior

Lateral buckling of the load resisting braces concentrated mainly in one of the braces
along a full diagonal; and the out-of-plane displacements of the cross-joints remained relatively
small. The upper-panel braces, which had a smaller cross-sectional area and a larger D/t ratio
than the lower-panel ones, buckled first. Their buckling strength deteriorated rapidly with
cycling until the final rupture. The stability and the energy-dissipation capability of the frame
during the "Maximum Credible" events were mainly contributed by the stronger and stockier

lower-panel braces.

The hysteretic loops of axial force vs. axial displacement of braces 4 and 7 in different
events are shown in Figs. 6.15 and 6.16, respectively. It is apparent that the stockier brace 7
had more efficient energy-dissipation hysteretic loops than brace 4, as well as a lower rate of
strength deterioration. The rapid deterioration of tensile and compressive resistance of brace 4
that occurred during the "Ductility Level" event was caused by local buckling, which was
responsible for tearing and final rupture of the brace. Brace 7 was more resistant to local bupk-

ling due to its smaller D/t ratio.

6.4.4. Energy Dissipation

The energy dissipation in the frame responses during the three major events is illustrated
in Figs. 6.17 to 6.19, which show that most of the input energy from the ground motions was
dissipated in the form of hysteretic damping. The viscous damping effect was relatively smali
when it was compared with the hysteretic energy dissipation, especially for the higher level
events. The maximum amount of energy absorption in a single monotonic displacement

occurred at about 3.8 sec. during each eveni, coinciding with the peak acceleration of the Taft
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record (Fig. 6.5). The amount of energy absorbed during this the maximum excursion was
about 7 kip-in. in the "Strength Level" event, and about 31 kip-in. in the "Maximum Credible"
case. These energy-absorption trends satisfy the API "Ductility Level” design criterion [28],
which recommends that a structure should be capable of absorbing at least 4 times the amount
of energy required by the "Strength Level" criterion. Much of the absorbed energy was dissi-

pated by inelastic deformations.

From Figs. 6.17 10 6.19, it is also apparent that the diagonal braces were responsible for
nearly all the energy dissipation during the seismic events. Duriné the "Strength" and "Ductility"
level events, the inelastic deformations of the upper-panel braces contril:;uted to most of the
frame energy dissipation (Figs. 6.17 and 6.18). In the "Maximum Credible" event, the upper-
panel braces ruptured, and the lower-panel ones took over the energy-dissipation mechanism
(Fig. 6.19). The total amount of energy dissipated by the upper-panel braces in the three events
was smaller than that by the lower-panel braces. Nevertheless, the upper-panel braces ruptured,
while the lower-panel ones remained stable. This is in part due to the smaller D/t ratio, as well

as to the more evenly distributed inelastic deformations, of the lower-panel diagonal braces.
6.5, Correlation With Previous Experimental Results

6.5.1. Shaking Table Tests

The comparison of pseudodynamic test results with those of shaking table tests [4] verifies
the reliability of the pseudodynamic approach. Although a perfect correlation does not exist
between the two experimental results, the inelastic seismic behaviors are similar and the failure
modes of the two frames are identical. The most significant difference between the pseudo-
dynamic and shaking table test specimens was in the lateral frame stiffnesses. The initial elastic
stiffness of the shaking table test frame, computed from the period measured in a small level
test, was 31% lower than the pseudodynamic frame’s stiffness, and was considerably smaller

than that predicted by analysis. Since the test frames were Fabricated from brace members of
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identical size specifications, the stiffness discrepancy was apparently caused by the flexibility of
the base supports as well as the significant table-structure interaction {or rocking) observed dur-
ing the shaking table tests. Due to the different stiffnesses, the pseudodynamic and shaking
table frames had initial periods of 0.40 and 0.48 sec., respectively. This ted to very different
linear elastic responses in accordance with the response spectra in Fig. 6.13 and as shown in
Fig. 6.20. In addition, it was not possible to obtain an exact material match so that the yield
stress of the upper-panel braces in the pseudodynamic specimen was about 7 ksi (35%) greater
than that in the shaking table frame. Consequently, a precise correlation of pseudodynamic and

shaking table results would not be possible.

Table 6.3 Comparison of Experimental Results

Pseudodynamic Tests Shaking Table Tests
Event
Levels Stiffness | Max. Displ. | Max. Load || Stiffness | Max. Displ. | Max. Load
(kip/in.) (in.) (kip) {kip/in.) (in.) (kip)
Strength 24.6 0.8 18.0 17.4 0.6 9.5
Ductility 23.6 1.2 20.0 15.3 1.2 16.1
1 st Max. Cred. 11.4 24 21.0 11.2 2.4 28.5

In spite of these, it is useful to compare the stiffness degradation, maximum deck dis-
placements, and maximum lateral loads experienced by the frames during the two separate
experiments. These are lisied in Table 6.3 and the displacement histories in the three major

events of both experiments are compared in Figs. 6.20 to 6.22.

{i) "Strength Level' Event. Fig. 6.20 shows that the displacement histories obtained from the
"Strength Level" events of the two experiments are significantly different. However, the peak
displacement values are in agreement with the response spectra in Fig. 6.13, Due to the greater
deck displacement and the less flexible base support, the maximum lateral load experienced by
the frame in the pseudodynamic test was twice as much as that in the shaking table test. This
led to considerable vielding of the upper-panel braces in the pseudodynamic experiment, but

only localized yielding occurred in the shaking table specimen.
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(ii) "Ductility Level' Event. The displacement histories in the "Ductility Level" events show
better correlation than those in the previous case (Fig. 6.21). The peak displacements are very
close. This is attributed to the considerable amount of energy dissipation in the pseudodynamic
test, during which severe yielding and buckling of the upper-panel braces occurred. On the
other hand, only relatively moderate yielding of the upper-panel braces occurred in the shaking

table test specimen.

(iii) "Maximum Credible' Event. Due to the rapid deterioration of the pseudodynamic frame’s
stiffness during the "Maximum Credible" event, its overall stiffness approached that of the
shaking table specimen (Table 6.3). Thus, the displacement responses of the two frames are
very similar, as shown by Fig. 6.22. During this event, the upper-panel braces of the shaking
table specimen buckled severely, while those of the pseudodynamic specimen ruptured. The
final rupture of the braces in the former did not occur until the second "Maximum Credible"
event. This shows that the shaking table specimen retained a greater load resistance than the

pseudodynamic specimen. However, both frames retained good energy-dissipation capabilities.

The discrepancy between the experimental results is reasonable if the different dynamic
characteristics of the two frames are taken into account. The more severe damage on the pseu-
dodynamic frame is mainly due to its less flexible base support, which induced greater seismic
loading on the test frame. Since the exact characteristics of the table-structure interaction are
not clear, it can be difficult to obtain good correlations between analytical and shaking table test
results. On the other hand, the base conditions of a pseudodynamic test specimen can be easily

modeled from the measured support flexibility.
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6.5.2. Quasi-Static Tests

The pseudodynamic test specimen was a 5/8 scale model of a frame previously tested by
the conventional quasi-static method [8]. All the brace members of the pseudodynamic frame
were appropriately scaled, such that the diagonal brace members of the two frames had very

close D/t ratios. Therefore, the failure modes of the two frames were very similar.

In the quasi-static test, 18 cycles of predetermined displacements were imposed on the
frame with gradually increasing amplitudes. At displacement ductility levels comparable to those
in the "Strength Level”, "Ductility Level', and "Maximum Credible" events in the pseudo-
dynamic testing, the stiffness of the quasi-statically tested frame deteriorated to 7%, 79%, and
57% of its original value, respectively. At each stage, brace damages were less severe than
those in the pseudodynamic tests. This was due to the larger number of displacement cycles
experienced by the pseudodynamic test frame, and consequently, the greater deterioration of
the braces. Therefore, the inelastic displécement history experienced by a frame has a
significant influence on its seismic performance. Since the conventional quasi-static approach
neglects the dynamic characteristics of a structure, the results of these tests are insufficient for

assessing the potential seismic performance of a structure.

6.6. Analytical Correlations

Excellent analytical correlations were obtained for the pseudodynamic test results. Fig.
6.7b shows that the pseudodynamic test result is almost identical to the result of analytical
simulation in the linear elastic range (1/4 - "Strength Level" event). Good correlations were
also obtained for the "Strength Level', "Ductility Level", and "Maximum Credible" events,
respectively, as shown in Figs. 6.23 to 6.25. In these analyses, the inelastic behavior of the diag-
onal braces was modeled by a postbuckling brace element developed by Bruce Maison [29].
This analytical model can closely mimic the inelastic postbuckling behavior of brace members

under cyclic loading. The base support of the frame was modeled by elastic truss elements,
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based on the base flexibility measured during the tests. The displacement histories obtained by
analytical simulations matched very well with the pseudodynamic test results in the first two
events (Figs. 6.23 and 6.24). In the "Maximum Credible" event, a slightly more significant dis-
placement drift was observed in the analytical result (Fig. 6.25). In addition, the hysteretic
loops of the frame and diagonal braces obtained by analytical simulations correlated well with
the experimental results. A detailed discussion of the analytical procedure and results will be

presented in a future report.

6.7. Concluding Remarks

The results of the tubular frame tests indicate the feasibility of the pseudodynamic
method as an economical and reliable experimental technique to study the inelastic seismic
behavior of structural systems. Based on these results as well as those from the previous experi-

ments, the following conclusions can be obtained:

(1) The pseudodynamic method accounts for the dynamic characteristics of a test structure, so

that the realism of the test results is comparable to that of shaking table results.

(2) The pseudodynamic method provides well-controlled experimental conditions. The prob-
lem of table-structure interaction which may occur in shaking table testing does not exist in
pseudodynamic tests. In addition, the size and weight of a structure, and the magnitude of
ground motions used in pseudodynamic testing are not so severely limited as in shaking table
tests. - Consequently, pseudodynamic testing with larger scale models can provide useful data

for the verification and improvement of current analytical methods.

(3) From the difference between the pseudodynamic and shaking table test results, one can
observe that the foundation stiffness of a test structure and the value of the structural period
with respect to the frequency content of an earthquake record have a significant influence on
the seismic response and the extent of structural damages developed. ConseQuently, these are
important considerations in testing, design, and analysis of seismic-resistant structures, and

several ground motions should be considered in design and analysis.
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(4) The capability of an offshore tower to resist an "aftershock” depends on its post-damage

structural properties as well as on its energy-dissipation capacity.

(5} The lateral load resistance and the hysteretic energy dissipation of the tubular x-braced
frames were mainly contributed by the diagonal braces. The braces with smaller D/t ratios had
greater energy-dissipation efficiency and durability under cyclic loadings. A good understanding
of the post-buckling strength of the braces is important in the inelastic design and analysis of |
braced structures. The results of these experiments provide useful information to develop and

evaluate analytical brace models.

(6) Based on the test results, a properly designed and constructed offshore structure can sus-
tain intense seismic excitations and develop a significant energy-dissipation capacity. However,
great uncertainties are associated with the determination of realistic environmental loadings
(including seismic and wave actions) and structural boundary conditions (such as the soil-
structure inieraction). As mentioned above, these could have a significant influence on the
dynamic response of a structure. Hence, further experimental and analytical studies are recom-
mended to identify the exact influence of the above parameters on the inelastic performance of

offshore structures.

(7} The pseudodynamic method seems to be a promising experimental technique for future
studies. Hydrodynamic effects can be conveniently approximated in the pseudodynamic formu-
lation by modifying the inertial and damping properties of a structure using appropriate inertia
and drag coefficients, and by the determination of hydrodynamic loading from appropriate wave
theories. The effects of soil-structure interaction can also be included using analytical substruc-

tures.
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CHAPTER 7
CONCLUSIONS

The fundamental theory for the pseudodynamic test method has been examined in this
report. It has been shown that this relatively new experimental method has its basic principles
founded on well-established analytical techniques of structural dynamics. The method has,
therefore, solid theoretical justification for the techniques used for formulating and solving the
equations of motion for a test structure; but it also suffers the same inaccuracies which are usu-
ally encountered in analytical problems, such as errors introducea by discretization of structural
systems and by numerical integration. In this respect, reliability criteria established for analytical
procedures can be applied to the experimental method as well. In particular, the stability and
accuracy criteria derived for the numerical integration methods should be observed in order to
obtain reliable experimental results. In addition, the pseudodynamic method is more reliable
than most analytical studies due to the direct measurement of stiffness properties from struc-
tural specimens during tests. Inaccuracies related to idealized nonlinear mathematical models of
structures do not exist. Consequently, the pseudodynamic method provides a valuable means
for increasing our understanding of nonlinear behavior of structures subjected to seismic excita-

tions, and to assess and improve current analvtical techniques for analyzing such systems.

Propagation of experimental errors appears to be the major source of inaccuracies in pseu-
dodynamic testing. However, most of the experimental errors can be reduced to insignificant
levels by the use of reliable test equipment and appropriate instrumentation techniques.
Numerical techniques are also available to mitigate the effects of experimental errors.
Although the pseudodynamic method uses the same experimental equipment as conventional
quasi-static testing, it requires very precise control and feedback instruments due to the sensi-
tivity of the method to experimental errors. On-line computer-control software also needs to be
developed to implement the method. However, the costs of experimental facilities and test per-
formance required for the pseudodynamic method are, generally, significantly less than those

required for shaking table tests. From the analytical and experimental verification studies, the
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capabilities and limitations of the method can be summarized as follows:

e,

(2)

(3

The results of pseudodynamic tests can be as realistic and informative as those of shaking
table tests for assessing the inelastic seismic performance of structural systems. In addi-

tion, it provides as well-controlled experimental conditions as quasi-static tests.

Because of the simplified analytical assumptions used, the pseudodynamic method has its
limitations as well. The method is most suitable for a structure which has a significant
portion of its mass concentrated at a limited number of degrees of freedom. It is not ade-
quate for structures which have uniformly distributed masses. In addition, the method
would not be reliable for structures having nonlinear material properties that are highly
sensitive to loading rates. Fortunately, this is not a problem for most structures subjected
to seismic excitations. Due to the variety of damping mechanisms governing the elastic
response of a structure, only an approximate equivalent viscous damping can be assumed
for the test specimen. For this reason, linear elastic test results are generally less reliable
than the results of inelastic tests, where structural damping is dominated by hysteretic

energy dissipation which is automatically taken into account in pseudodynamic testing.

The basic and summed-form ceniral difference methods and the Newmark explicit
method have been recommended for pseudodynamic application in previous studies.
Actually these methods are mathematically identical, having the same stability and accu-
racy properties. Reliable numerical results can be obtained by these methods if At/ T is
less than or equal to 0.05. For nonlinear sysiems, the Ar selected should be sufficiently
small so that the nonlinear force-deformation relation can be adequately traced by the
discretized displacement increments. In general, algorithms with frequency-proportional
numerical damping, like the dissipative Newmark method, are more desirable in MDOF
tests, because the spurious growth of higher frequency responses can suppressed by the

numerical damping.
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(4) In spite of the limitations and possible experimental errors, reliable pseudodynamic test
results can be obtained if appropriate attention is directed to the selection of high perfor-
mance test equipment, the use of proper experimental and numerical techniques, as well
as the selection of appropriate test specimens. Most of the highly undesirable experimen-

tal errors can be checked or eliminated prior to a test.

Based on the previous observations, it appears that the pseudodynamic test method is a
reliable procedure for evaluating the performance of a structure during severe seismic excita-
tions. Use of the method is recommended for structures that sat.isfy the preceding guidelines. It
is especially useful for large, heavy, and strong structures that cannot be tested on available

shaking tables and for structures subjected to multiple components of excitations.

Future research work should be devoted to improve the performance of critical test equip-
ment, such as the electro-hydraulic actuator-controller system, and to further the development
of error resistant numerical algorithms and error correcting numerical techniques. This will

reduce the potential adverse effects of error propagation and increase confidence in the method.

Pseudodynamic tests should be performed on structures constructed from different types
of materials and on more complicated structural systems. This will clarify the applicability of the

method and identify any potential limitations.

Furthermore, the analytical formulation of the pseudodynamic method should be
extended to include substructuring and other numerical techniques such that a variety of struc-
tures or subassemblages of large structural systems can be tested under different boundary and
loading conditions. Currently, only complete structural systems can be tested. By appropriate
use of analytical substructuring concepts, structural subassemblages and components might be
tested economically using realistic loading histories and boundary conditions. Application of the
method to other problems of dynamics (hydrodynamic and areoelastic excitations) and to

related problems such as frame instability should be explored.
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