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Preface

This report is a product of the NHERI SimCenter under the auspices of the U.S. National
Science Foundation (NSF). It provides an overview and review of simulation requirements and
software tools for natural hazards engineering (NHE) of the built environment. The simulations
discussed in this report are an essential component of research to address the three grand
challenge areas and associated research questions outlined in the NHERI Science Plan (Edge
et al., 2020). These grand challenges entail: (1) identifying and quantifying the characteristics
of natural hazards that are damaging to civil infrastructure and disruptive to communities;
(2) evaluating the physical vulnerability of civil infrastructure and the social vulnerability of
populations in at-risk communities; and (3) creation of technologies and tools to design, retrofit,
and operate a resilient and sustainable infrastructure for the Nation. Accordingly, required
simulation technologies encompass a broad range of phenomena and considerations, from
characterization and simulation of natural hazards and their damaging effects on buildings
and civil infrastructure, to quantifying the resulting economic losses, disruption, and other
consequences on society. Ultimately, the goal is to enable high-fidelity and high-resolution
models in regional simulations that can support technological, economic, and policy solutions
to mitigate the threat of natural hazards.

The natural hazards addressed in this report include earthquakes, tsunami, storm and tornado
winds, and storm surge. While not an exhaustive list of all possible natural hazards, these are
the hazards addressed under NSF’s NHERI research program. The first chapter of the report
provides an introduction to the SimCenter and its goals, including an overview of the plans and
status for software tool development. The subsequent chapters of the report are organized into
five parts in a sequential fashion, including: (1) simulation methods to characterize the natural
hazards; (2) response simulation of structural and geotechnical systems and localized wind and
water flows; (3) quantifying the resulting damage and its effects on the performance of buildings,
transportation systems, and utility infrastructure systems; (4) strategies and emerging tools to
model recovery from natural disasters; and (5) the cross-cutting applications of uncertainty
quantification methods and artificial intelligence to NHE.

Owing to the broad scope of the simulation topics, this review of the state of the art is
presented with the goal of educating and informing researchers—including both simulation
tool developers and users—on key requirements and capabilities within each simulation topic.
The report is also a guide to the on-going development of simulation capabilities by the NSF
NHERI SimCenter. Each chapter of the report begins with a brief overview of the purpose of
the simulation component, including a discussion of the goals of the analysis (what is being
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calculated), the underlying physics or principles involved in the simulation, common modeling
assumptions and simplifications, and typical input and output of the simulations.

With the aim of taking stock of computational simulation capabilities, informing the NHERI
community of research advances to date, and positioning the work of the NHERI SimCenter
as it relates to computational simulation, the summaries identify and review commonly used
simulation software that is widely known and used for research in academia and industry.
Particular emphasis is placed on open-source or other software that is hosted on DesignSafe or
is otherwise easily accessible to researchers. Summary tables of the simulation software tools is
provided as an appendix to the report. In addition to summarizing the state of the art in the
various topic areas, each chapter of the report identifies major research gaps and needs, with the
intent that these could motivate research proposals to NSF or other agencies that will lead to
future advancements.

This report is an update to a State of Art Report that the SimCenter first published in February
2019. This update reflects comments and suggestions that were solicited from leading researchers
in NHE. It includes new chapters on disaster recovery modeling and applications of artificial
intelligence technologies to NHE. Readers are encouraged to contribute feedback regarding this
report and the SimCenter simulation tool development through the online SimCenter Forum at
http://simcenter-messageboard.designsafe-ci.org/smf/.

Stanford University, Gregory G. Deierlein
February, 2021 Adam Zsarnóczay
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Chapter 1
Overview of SimCenter Goals and Computational Tools

Gregory G. Deierlein, Sanjay Govindjee, and Frank McKenna, with contributions by
Adam Zsarnóczay

Computational simulation is an essential component of natural hazards engineering (NHE)
research and practice to assess and mitigate the damaging effects of earthquakes, wind storms
and associated tsunami, and storm surge effects on communities. The recently published
National Hazards Engineering Research Infrastructure Science Plan (Edge et al., 2020) outlines
three grand challenges and five research questions, all of which depend on integration of
data and models through computational simulations. Specifically, simulations are critical to
(1) characterize natural hazard phenomena, (2) evaluate their damaging effects on buildings,
civil infrastructure, and other physical assets, (3) quantify the socio-economic consequences
of this damage, and (4) evaluate the effectiveness of alternative strategies to mitigate and
recover from the damage. Each of these components entails simulations at varying scales, from
detailed analyses of localized response of individual buildings or infrastructure components
to multi-scale analyses of regionally distributed communities and infrastructure systems. The
challenges are multi-disciplinary and require development and management of large datasets
to translate data and analysis results between the simulation components. Recognizing the
challenge as broad and multi-disciplinary, and encompassing natural hazards across a wide
range of scales, the SimCenter’s approach is to leverage existing software platforms by creating
computational workflow technologies that can seamlessly integrate a broad array of simulation
software with high-performance computing (HPC) platforms and data repositories. When
necessary, the SimCenter also creates new software to implement established theories to achieve
its end goals.

1.1 SimCenter Application Framework

The SimCenter’s application framework leverages foundational advancements in performance-
based engineering (PBE) to integrate models and data from the physical sciences, engineering,
and social sciences to evaluate and design strategies to create resilient communities (Deierlein
et al., 2020). The basic framework of PBE, illustrated in Figure 1.1, was originally developed
for earthquake engineering design, but the concept is generally applicable to other natural
hazards. Moving from left to right, the process begins with the definition of a constructed
facility, based on its design features and location. The next steps are to perform (1) a hazard
analysis to characterize the hazard effects (e.g., earthquake ground shaking) that the facility
is subjected to; (2) structural analyses to assess the response of the facility to the hazard;

1



2 Deierlein et al.

(3) damage analyses to quantify damage to facility components associated with the imposed
calculated deformations and forces; and (4) consequence analyses to evaluate the resulting risks
to life safety, economic losses, and downtime. Input and output variables from each stage of the
assessment are clearly defined as part of an underlying probabilistic formulation to characterize
and propagate statistical data through the analyses.

Fig. 1.1 Performance-based engineering framework for organizing data transfer betweenmodeling components
(after Porter, 2003).

As shown in Figure 1.2, computational workflows to implement the performance-based
framework can be envisioned as a set of puzzle pieces, each of which encapsulates one or more
software components with pre- and post-processing operations to facilitate transfer of data
between the components. The framework allows users to (1) select from different applications
for each jigsaw piece; (2) build a computational workflow with the selected components; and
(3) then launch and monitor the running workflow. Workflow systems are configured to launch
the individual applications and pass the needed input and output data between the applications.
The application framework is designed to be modular and extensible, such that researchers can
introduce their preferred application for any step in the process. Workflows can be configured
for end-to-end simulations, from characterization of the natural hazard effects through to
damage and impacts on individual facilities or large inventories of facilities, or alternatively
for sub-portions of the system. As illustrated by the top grey bar in Figure 1.2, an important
emphasis of the workflows is the ability to incorporate and propagate inherent variabilities
and modeling uncertainties through the computational simulations. Another integrating aspect,
illustrated by the lower grey bar in Figure 1.2, is to integrate the computational tools with
supporting datasets that support various components of the workflow.

Figure 1.3 illustrates how the conceptual workflow puzzle is abstracted into software
components, along with supporting datasets. The items listed across the bottom of the figure
represent key components to the PBE workflow, and the bins up the right side refer to supporting
databases. The boxes shown higher in the figure are workflow applications that integrate various
components of the framework (McKenna, 2020). Details of these components, databases, and
applications are described later. Figure 1.4 illustrates how the SimCenter’s workflow components
and applications are integrated into the NHERI cyber-infrastructure system, DesignSafe (Rathje
et al., 2017), and other supporting online resources. As shown in Figure 1.4 and described by
Rathje et al. (2017), DesignSafe provides computing hardware and software infrastructure for
online databases and HPC.
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Fig. 1.2 Modular framework of the SimCenter computational workflow for end-to-end simulations of natural
hazard effects on damage and recovery of the built environment and communities.

Fig. 1.3 Schematic diagram of simulation framework components, databases, and application tools.

1.2 SimCenter Framework Components

The following is a description of the modeling components and databases of the SimCenter
framework shown in Figure 1.3:

BE—Built Environment Inventory
The BE consists of meta-data and data files that define the inventory of physical assets for a
regional simulation. This includes buildings, transportation components and systems, utility
infrastructure components and systems, etc. By providing a framework to organize and store
databases on Design Safe, the SimCenter aims to promote best practices for the collection and
sharing of inventory data. To help facilitate development of inventories, the SimCenter has
developed artificial intelligence (AI) tools for building inventory data collection (BRAILS [10] –
Building Recognition using AI at Large Scale) and for data enhancement (SURF [9] – Spatial
Uncertainty Research Framework), along with web data query/collection techniques.
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Fig. 1.4 Integration of the SimCenter workflow tools into the NHERI Computational Environment.

EVENT––Hazard Event
The EVENT consists of meta-data and data files that define the hazard data (e.g., earthquake
ground motions, wind fields, storm surge inundation, and tsunami inundation). For earthquake
hazard studies, the SimCenter workflow tools include software applications for (1) generating
earthquake target spectra from the USGS OpenSHA web service; (2) selecting and scaling
recorded ground motions from the PEER NGA database; (3) generating simulated stochastic
ground motions; and (4) ingesting simulated ground motions from databases of simulated and
recorded ground motions. For wind and storm surge studies, the workflow can support (1)
generating wind field time histories stochastically or using OpenFOAM [5]; (2) incorporating
experimental wind tunnel datasets utilizing online resources such as Vortex Winds (Kareem and
Kwon, 2017) and the TPU Aerodynamic Database (TPU, 2020), or a user’s own local dataset;
and (3) interfaces for querying and ingesting wind speeds and storm surge inundation heights
from external applications.

SAM-—Structural Analysis Model
The SAM is the workflow component that includes rule-based, AI and other types of applications
to translate descriptive information from the BE into information to create finite-element or
other types of models to simulate the structural response to the hazard effects.

FEM—Finite-Element Modeling
The FEM module consists primarily of wrappers for input/output to existing finite-element
software to simulate the response of structures and geotechnical materials to earthquake ground
shaking, wind, storm surge wave loading, and tsunami wave loading. Such analyses could also
encompass computational fluid dynamics and structure-fluid interaction. OpenSees OpenSees
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[6] and OpenFOAM OpenFOAM [5] are the main open-source applications that are called by
the current FEM wrappers.

EDP—Engineering Demand Parameters
The EDP represents the workflow component that defines and manages the output of hazard-
induced deformation or other demands from a finite-element or other type of analysis model for
input into the damage and loss assessment.

DL—Damage and Losses
DL is the workflow component where damage and losses are calculated for the assets in the BE.
Since these calculations are essential to all performance assessments and not readily available
in existing software, the SimCenter developed an application framework called PELICUN,
Probabilistic Estimation of Losses, Injuries, and Community Resilience Under Natural Disasters,
(Zsarnóczay and Deierlein, 2020, PELICUN [12]) to generalize the FEMA P-58 methodology
to evaluate damage and losses in buildings and other facilities under earthquakes, hurricanes,
and other hazards.

UQ—Uncertainty Quantification
The UQ component provides an interface to software and routines for methods of uncertainty
quantification, which can be interfaced with other components. One of the registered applications
supported by UQ is DAKOTA (Adams et al., 2009), which offers a range of methods for
uncertainty quantification. Additional UQ algorithms are provided by custom SimCenter
software.

Cloud
Cloud is the workflow component that manages communication with remote computing and
data service providers and sending/receiving data over the web.

DL Data
DL Data is the component consisting of databases of fragility curves for damage and loss
calculations for various types of facilities (e.g., buildings, bridges, and infrastructure) subjected
to demands from various hazards (e.g., earthquake, wind, and storm surge).

Exp/Sim Data
Exp/Sim Data is the component consisting of databases of experimental and/or computational
research data that is utilized for machine-learning SAM applications and validation of FEM
simulation tools.

1.3 SimCenter Desktop Applications and Backend Tools

Figure 1.3 shows the key desktop applications (quoFEM, EE-UQ, WE-UQ, HydroUQ, PBE,
and R2D) with linkages to the underlying components used by each application. The workflow
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components are implemented into backend software modules and can be combined in multiple
ways. The table in Figure 1.5 lists the SimCenter’s current desktop applications and backend
software modules, along with a set of educational applications. The columns of the table indicate
how the various applications and software modules are related to the various hazards and stages
of the PBE framework. Included below are brief descriptions of the desktop applications. For
further detail on these applications, backend modules, and educational applications, the reader
is referred to the SimCenter website: https://simcenter.designsafe-ci.org/.

quoFEM
The Quantified Uncertainty with Optimization for the Finite-Element Method (quoFEM [7])
tool connects state-of-the-art UQ engines (e.g., Dakota) with simulation tools to supports model
calibration, optimization, uncertainty propagation, reliability analysis, surrogate modeling,
and sensitivity analyses of numerical materials, components, and systems. The graphical
user interface currently supports finite-element software (OpenSees and FEAP) and can also
interface with custom analysis packages, including, but not limited to those based on the discrete
element and finite difference method and other commercial software that cannot be bundled
with the open-source SimCenter applications (e.g., LS-DYNA, ABAQUS). The GUI can also be
configured by users to employ custom UQ engines that are not currently provided with the tool.
Therefore, quoFEM provides users instant uncertainty analysis and optimization capabilities
for numerical models. Furthermore, quoFEM provides an opportunity for researchers working
with experimental facilities to use advanced UQ methods and tools to design experiments and
calibrate numerical models. Some of the planned future capabilities of quoFEM include support
for multi-fidelity models, sequential Bayesian updating, surrogate enhanced optimization and
calibration, and optimization under uncertainty.

EE-UQ
The Earthquake Engineering with Uncertainty Quantification (EE-UQ [2]) application has
features to determine the response of a structural and soil–structure systems to earthquake
excitations. The current (V2.2.0) release focuses on quantifying the uncertainties in structural
response, given that the properties of buildings (or other structures) and the earthquake events
are not known precisely, and that many simplifying assumptions are present in the numerical
models (epistemic uncertainties). By embedding features of the quoFEM tool, EE-UQ enables
the user to specify statistical distributions of the model input parameters, then Monte Carlo
and other sampling methods are used to characterize the output. The tool has features to select
and input ground motions to match specified earthquake hazard targets. Work is underway to
extend EE-UQ to include soil–structure interaction models where bedrock ground motions are
propagated through nonlinear soil models into the structural system.

WE-UQ
This is a Wind Engineering with Uncertainty Quantification (WE-UQ [11]) application to
assess the response of buildings to wind loading, taking into account that the properties of
the building and the wind loads are not known exactly, and given that the simulation software
and the user make simplifying assumptions in the numerical modeling of the structure. It is
similar in composition to EE-UQ but with a wind EVENT component. The current (V2.0.0)
version allows users to select from a variety of options for specifying wind forces on structures

https://simcenter.designsafe-ci.org/
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Fig. 1.5 Overview of the current scope of SimCenter computational simulation tools.

from stochastic loading models and online wind engineering databases through to performing
Computational Fluid Dynamics (CFD) analyses utilizing OpenFOAM [5]. The tool is intended
to make detailed CFD modeling more accessible to NEHRI researchers in conjunction with
wind tunnel testing (e.g., to validate computational models and extrapolate beyond the scale
and parameter space that can be tested in the NHERI wind facilities), to allow researchers to
consider more realistic conditions from field studies, and assist in the creation of surrogate
models for regional simulations. Two-way fully coupled fluid–structure interaction (FSI) is
currently under development.

Hydro-UQ
This is the SimCenter’s Hydrodynamic loading with Uncertainty Quantification (HydroUQ [4])
application to assess the response of structures to fluid flows from storm surge, tsunami, or other
hazards. The current version (V0.9.0-alpha) allows two-dimensional shallow water solutions
obtained from far-from-coast calculations with GeoClaw GEOCLAW [3] to be used as input
to a three-dimensional CFD solver (OpenFOAM [5]). This facilitates a multi-scale coupling
by resolving areas of interest by coupling shallow-water solvers with CFD solvers through an
interchangeable workflow. As a part of the inputs, the tool allows the researchers to consider:
(a) bathymetry and topography of the ocean floor and (b) initiation conditions due to tsunami
and storm surge events. Upcoming features will include the ability to use ADCIRC [1] runs for
studying hydrodynamic loads during hurricanes.
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PBE
The Performance-Based Engineering (PBE [13]) application is an extensible workflow ap-
plication to evaluate the performance of buildings or other assets to natural hazards. The
current (V2.0.0) release provides researchers with a tool to assess the performance of a building
subjected to earthquake ground motions. The application focuses on quantifying nonlinear
building response and damage through decision variables. PBE builds upon the EE-UQ tool
using the estimates of structural response to assess the damage to building components and
the consequences of such damage. The user defines the simulation model, the damage and loss
models of the structure, and the seismic hazard model in the PBE tool. The tool incorporates an
underlying workflow application PELICUN, which is modeled after the FEMA P-58 framework
for earthquake loss assessment but with a broader vision to address alternate hazards (wind,
water inundation, etc.) and facilities beyond buildings. Upcoming features will extend PBE
to handle storm wind hazards to buildings as well as the performance assessment of other
infrastructure elements such as buried pipelines.

R2D
The Regional Resilience Determination Tool (R2DTool [8]) is a research application that focuses
on running regional simulations and interpreting their results. The tool integrates the workflow
components from other research tools developed for individual building assessment (e.g.,
EE-UQ, PBE) and extends them to consider multiple assets and a regional characterization of
hazard scenarios. The first release of the R2DTool provides features for seismic risk assessment.
Additional features planned for 2021 will enable hurricane risk studies including the simulation
of both wind and storm surge effects. The calculations are performed by an extensible command
lineworkflow application (rWHALE) that integrates the entire framework of backend applications
developed by the SimCenter. Besides several small examples provided to help users get started,
the SimCenter is developing a small number of detailed regional studies to illustrate the potential
in regional simulations and provide researchers several templates of workflows with various
levels of complexity.

1.4 Concluding Remarks

In addition to developing and releasing the computational workflow tools and training modules,
the SimCenter is engaging with researchers to extend the simulation capabilities through
collaboration with NHERI researchers. Collaboration opportunities include: (1) development
and implementation of new computational simulation models, metadata standards, and software;
(2) application studies to apply and enhance the simulation tools across a spectrum of scales,
from individual components through to regional studies of the impact of natural hazards
on the built-environment; and (3) development of educational resources, including curricula
materials that utilize advanced simulation tools, along with webinars, papers, and other means
of documentation.

This report is an important component of the SimCenter’s workplan to identify and incorporate
state-of-the-art simulation methods and software into the computational workflow applications.
It also identifies areas where further research and development is needed. Thus, this report
serves not only as a report on the state of the art for the NHERI community but also as a guiding
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document for the SimCenter. As seen in Figure 1.5, for example, there is currently a major gap
in computational models for simulating disaster recovery, which represents a major challenge to
the NHERI community.

Beyond incorporating existing and emerging simulation tools into the computational work-
flows, an important component of the SimCenter’s mission is to overcome computational
challenges associated with scaling up the simulations to allow higher fidelity and higher resolu-
tion models. These computational aspects of the software development involve collaboration
and coordination with NHERI cyber-infrastructure available through DesignSafe and other
organizations.





Part I
Hazard Characterization

Characterization of natural hazards for engineering applications aims to quantify the severity
of a natural hazard at a particular location or over a pre-defined region of interest. The time
histories that provide a detailed description of natural-hazard effects—such as severe ground
shaking or high-speed winds—are often summarized by so-called intensity measures (IMs) that
represent their most important characteristics. Peak ground acceleration, permanent ground
deformation, average one-minute wind speed, and peak inundation depth are a few examples
of such IMs for various natural hazards. Using IMs facilitates the development of a stochastic
hazard model that defines the hazard severity at the site(s) of interest using one more more
random variables or random fields. The uncertainty in the hazard that is captured by these
random entities shall be propagated through engineering simulation.

High-fidelity approaches simulate the time-history of structural response using dynamic
analyses (see Part II for details). These simulations require a time-dependent load function that
represents the hazard characterized by IMs. An acceleration time history of a ground motion
is an example of such a load function, which is often used for seismic response estimation.
These load functions are either selected from historical data (e.g., ground-motion records) or
generated using a stochastic process (e.g., local wind inflow conditions for a CFD simulation).
The procedures and best practices available for this task will be discussed for each natural
hazard below.

Three types of natural hazards are examined in the following sections: earthquake, hurricane,
and tsunami. They present several fundamentally different threats to the built environment,
such as ground shaking and liquefaction under earthquakes, or wind and storm surge under
hurricanes. Each chapter in this part discusses one of those threats.





Chapter 2
Earthquake—Ground Shaking

Adam Zsarnóczay with contributions by Wael Elhaddad,
along with review comments and suggestions by Jack W. Baker and David McCallen

The simulation methods and the software tools presented in this section characterize the
ground-shaking intensity due to earthquakes at a specific site or over a group of sites that cover
a region. Although the amount of historical earthquake data at any particular site is small, the
improvements in the field since the publication of the seminal paper on earthquake hazard by
Cornell (1968) allows engineers to combine the available information from several sites and
create a seismic hazard model that can quantify the expected ground-shaking hazard and the
corresponding uncertainty.

Probabilistic Seismic Hazard Assessment (PSHA) and disaggregation of the calculated hazard
are the most popular methods to characterize ground shaking at a site of interest (Bazzurro and
Cornell, 1999). The earthquake engineering community is fortunate to have access to a large
number of free—and often open-source—tools available for this task. Besides PSHA tools, this
chapter also covers tools that perform scenario-based, deterministic analysis. Most probabilistic
and deterministic analyses use empirical ground-motion models (GMMs) that describe the
attenuation of shaking intensity with increasing distance from the hypocenter to characterize
the ground shaking at a site from fault rupture. [The empirical GMM denomination is preferred
over the conventional GMPE (ground-motion prediction equation) in several recent publications
to emphasize that modern attenuation relationships are substantially more complex than a single
equation.] Other approaches, such as physics-based GMMs and the corresponding simulations,
are also becoming sufficiently robust to be widely applicable for risk assessment, and they are
likely to be used more widely in the near future.

This chapter reviews the above methods, the data they use, and the tools that have implemented
them. The recent book by Baker et al. (2021) provides more details about the characterization
of ground shaking and the methods available for probabilistic seismic hazard assessment.

2.1 Input and Output Data

2.1.1 Input Data

Ground-motion hazard assessment requires information about the site and the seismic source(s)
in its vicinity. These data can be classified as follows:

13
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Site location(s)
These are latitude and longitude pairs for each site of interest. For regional analyses, ground
shaking is either characterized directly at the location of each asset or a carefully designed
intermediate grid is used, and the site-specific results are determined by interpolation between
the grid nodes. The direct approach is used when the number of assets is relatively small (e.g.,
Padgett et al., 2010), while the intermediate grid is used in studies with millions of assets (e.g.,
Deierlein et al., 2020).

Site data
Local soil conditions have significant influence on the ground motion at the surface at a
particular site. Two neighboring sites with practically identical bedrock hazard might experience
fundamentally different surface ground motions if their soil characteristics are different. If the
soil profile above bedrock is available, the propagation of ground shaking from bedrock to
surface can be modeled using the methods described in Chapter 10 of this report. However,
the bedrock is often at a large depth and the absence of site-specific measurements makes it
difficult to characterize the complete soil profile. This is especially the case for large, regional
simulations with thousands or millions of sites. The lack of data translates into significant
uncertainty in the amplification of ground motion from bedrock to surface and the resulting
surface ground-motion estimate.

A pragmatic solution in the earthquake engineering community uses the average shear-wave
velocity in the top 30 meters of the soil (+(,30) as a proxy for soil conditions to estimate the site
amplification at a site. Information about +(,30 or at least about a broad soil class (e.g., rock,
stiff soil, or soft clay) is either available or can be estimated for most sites. The USGS provides
estimates of +(,30 from topographic slope that can be used as an approximate solution when no
other data is available (USGS, 2020).

Seismic sources
Ground motions are generated by seismic sources. Depending on the available historical
information about the earthquakes in the region, sources might be described as faults, points, or
areas with homogeneous seismicity. The abundant information about earthquakes in California
allows researchers to develop a detailed map of faults for the state (Field et al., 2014), while the
Central and Eastern United States (CEUS) is covered by area sources (Mueller et al., 2015).

Scenario-based analysis typically requires a hypocenter location, earthquake magnitude,
and information about the rupture surface and style of faulting. Probabilistic assessments
consider all sources that might affect the region along with a stochastic description of those
sources using magnitude occurrence rates, hypocenter depth distributions, etc. These stochastic
models are usually based on historical ground-motion data. The Uniform California Earthquake
Rupture Forecast version 3.0 (UCERF3, Field et al., 2014) is an example of such a stochastic
seismic-source model. It is published jointly by the United States Geological Survey (USGS), the
California Geological Survey (CGS), and the Southern California Earthquake Center (SCEC).
Seismic-source models for other non-U.S. regions have been prepared and made publicly
available by the Global Earthquake Model (GEM) initiative (https://www.globalquakemodel.
org/). These include Europe (Giardini et al., 2014), the Middle East (Danciu et al., 2017), and
South America (Garcia et al., 2018).

https://www.globalquakemodel.org/
https://www.globalquakemodel.org/
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Ground-motion model (GMM)
The ground-motion model describes the propagation of ground shaking from the earthquake
rupture surface to the sites of interest. The widely used approaches are empirical, physics-based,
and stochastic GMMs:

• Empirical GMMs estimate the severity of ground shaking in the form of intensity measures
(IMs). These estimates are typically based on regression to historical IM data from recorded
earthquake ground motions. Depending on the data and the functional form used for the
regression, one might arrive at various models. There are hundreds of empirical GMMs
available (Douglas, 2021), and it is important to select the one that is based on data and
assumptions matching the seismicity in the region of interest.

• Physics-based GMMs describe the propagation of seismic waves from the location of the
rupture to the surface at the investigated sites. They require a three-dimensional model
of the local geology (i.e., the upper layers of the Earth’s crust) and simulate the behavior
of the seismic sources in the area within this environment. Even though these models are
challenging to build and computationally expensive to run, they are becoming more and more
popular, and are used in a variety of applications (Bradley et al., 2017).

• Stochastic ground motions are artificially generated accelerograms either from white noise
that is modified to match target IMs (e.g., Rezaeian and Kiureghian, 2012) or by modifying
historical ground-motion recordings (e.g., Atkinson and Goda, 2010; Seifried and Baker,
2016).

Logic tree
Logic trees have become popular means to consider the epistemic uncertainty in the ground-
shaking hazard. Branches of the trees are populated with various modeling assumptions (e.g.,
GMMs, seismic-source models, maximum magnitudes, site data, etc.), and a set of weights are
defined so that the branches and weights represent a probability distribution on the uncertain
issue. Notwithstanding the problems inherent in such a strategy for UQ (Bommer and Scherbaum,
2008), recent research has shown several examples where the logic-tree approach provides
additional insight that would otherwise not be available (e.g., Goulet et al., 2017).

2.1.2 Output Data

One or more of the following outputs are produced to describe the ground-shaking hazard:

Seismogram
A plot of ground motion versus time, which would be recorded by a seismometer or other
instrument in a real event. Seismograms are also known as ground-motion records (GMRs)
and are typically expressed in terms of ground acceleration, which are integrated to obtain
ground-motion velocity or displacement.
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Intensity measure (IM)
Ameasure of the intensity of shaking associated with a particular seismogram. The peak ground
acceleration (PGA) and spectral acceleration at a given vibration period [Sa(T)] are the most
commonly used IMs.

Response spectra
A response spectrum is often used to describe the intensity of a ground motion and to provide
a proxy for the complete acceleration time history. It is a collection of IMs that describe the
response of single-degree-of-freedom oscillators to the ground-motion record of interest; for
example, acceleration response spectra are defined through a set of Sa(T) values. The larger
the number of vibration periods considered, the more detailed the resulting spectrum becomes.
In empirical GMM-based simulations, the resolution of the response spectrum is typically
limited by the vibration-period discretization used in the attenuation model. In physics-based
simulations, the response spectrum is determined from the simulated GMR.

Hazard curve
Rather than focusing on ground motions from a single event, probabilistic assessments
characterize the hazard through the annual exceedance rate of various IMs at the site of interest.
This information is represented by a hazard curve. Each IM has its corresponding hazard curve.
Studies typically focus on obtaining hazard curves for a set of Sa(T) IMs.

Hazard spectrum
Given a set of hazard curves corresponding to (0()8) for )8 in a sufficiently wide range of
vibration periods, it is possible to collect the (0()8) that correspond to a pre-defined annual
exceedance rate. These (0()8) values describe the so-called uniform hazard spectrum (UHS),
which is the collection of spectral accelerations that have identical (uniform) probability of
exceedance. A popular alternative to the UHS is the so-called Conditional Spectrum (CS),
where the spectra are conditioned on the probability of exceedance of response at a pre-defined
(conditioning) period ) (Baker and Lee, 2018; Lin et al., 2013). The UHS and CS are often
used to describe the hazard in a probabilistic framework.

Hazard map
Given a particular annual exceedance rate (or return period or exceedance probability over a
pre-defined time period) and corresponding hazard curves at various sites in a region, one can
create maps of IM levels that describe the intensity of expected ground shaking. The engineering
community uses a small set of pre-defined return periods (such as 475 years, which is equivalent
to 10% probability of exceedance over 50 years) to describe the hazard for structural design
and performance assessment purposes. Using the same return periods within the community
facilitates the comparison of hazard maps among different regions and within different parts of
the same region.
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Disaggregation of the hazard
Probabilistic seismic hazard analysis aggregates the contributions of several sources to produce
a hazard curve for a site. Disaggregation provides a break-down of the contribution of various
seismic sources to the total seismic hazard. This allows researchers to estimate the characteristic
features of the earthquake scenarios (typically magnitude and source-to-site distance) that
are the main contributors to the seismic hazard at the site. Information about such features
complements the estimated IMs and provides a more detailed understanding of the seismic
hazard at the site.

2.2 Modeling Approaches

The two main approaches used in the research community for ground-shaking hazard character-
ization are as follows:

Estimate IMs using an empirical GMM
This type of methodology describes the hazard using IMs estimated based on historical
earthquake data. The advantage of using empirical GMMs is the computational efficiency
of the calculation; these models typically describe IMs as random variables. This approach
allows engineers to estimate the probability of exceeding a pre-defined IM level given the
characteristics of the earthquake scenario, the location of the site, and other parameters (soil
conditions, damping, etc.). By aggregating these exceedance probabilities and the occurrence
rates of corresponding earthquake scenarios over a region, engineers can arrive at the total
probability of exceedance of a pre-defined IM level at the site of interest. Performing such a
calculation for multiple IM levels produces the hazard curve for the site. The ground-shaking
hazard is commonly described using a set of hazard curves that correspond to the spectral
acceleration at various vibration periods. These hazard curves can serve as the basis of a UHS
or CS for structural response estimation.

The choice of IM has been a subject of a large number of studies in recent decades (e.g.,
Luco and Cornell, 2019; Shome et al., 1998). There are three widely-used criteria when IMs
are discussed: (1) practicality refers to the complexity of the calculation and if tools are already
available to perform it; (2) efficiency describes the predicting power of the IM for the important
characteristics of structural response; and (3) sufficiency corresponds to the uniqueness of
the hazard description provided by the IM (i.e., a unique description means that GMRs with
identical IM values yield identical structural responses). Besides the popular PGA and (0()1),
the average spectral acceleration (00E6 and significant duration are also used and assessed in
several studies (e.g., Bijelić et al., 2018). There are more complex IMs that have been shown to
perform better in terms of efficiency and sufficiency, and can become superior to conventional
choices once widely applicable GMMs become available for them (e.g., Dávalos and Miranda,
2019).

In studies that use empirical ground-motion data, the selection of historical GMRs for
dynamic analyses can be challenging. One can either use a generic suite of GMRs produced and
vetted by experts (e.g., Baker et al., 2011) or perform the selection of GMRs from a database
(e.g., Ancheta et al., 2014) based on a site-specific description of the hazard. As the number of
records in ground-motion databases increases, the set of selected GMRs can often provide a
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good representation of the probabilistic hazard at the site, but rare events and unconventional
hazard characteristics can still prove difficult to represent with empirical GMRs. If matching
historical ground motions are not available, stochastic ground-motion generation is also an
option to consider.

Estimate ground-motion records using a physics-based GMM
This type of methodology relies on a physical model of the crust and propagation of seismic
waves in that model. It requires a significant amount of information about local geology to arrive
at reliable results. Furthermore, the calculations are computationally expensive and usually
require a high performance computing (HPC) environment. To the extent that the physics-based
models are validated and based on reliable model parameters (geologic data), they can represent
local geologic effects (such as deep geologic basins) that are not captured as well by empirical
GMMs. The earthquake simulations provide GMRs directly as opposed to the IM proxies used
in empirical approaches. These records can be applied directly in response estimation, which
removes part of the uncertainty and ambiguity associated with GMR selection to match IM
targets in empirical studies.

There are computational and modeling challenges before this approach becomes common-
place, but early adopters in the research community (such as SCEC https://www.scec.org/
and Lawrence Livermore National Laboratory, https://www.llnl.gov) are already providing
physics-based simulations that are being applied for performance and risk assessment (e.g.,
Frankel et al., 2018; Rodgers et al., 2019b). The SCEC Broadband Platform (Maechling et al.,
2015) provides open-source access to such models and simulation tools; similar initiatives are
available in Italy (D’Amico et al., 2017) and in New Zealand (Bradley et al., 2017). A recent
special issue of Earthquake Engineering and Structural Dynamics also provides a selection
of relevant research (e.g. Kato and Wang, 2021; Kusakabe et al., 2021; Paolucci et al., 2021;
Seylabi et al., 2021; Zhang et al., 2021).

Concerns about the reliability of simulated ground motions have been addressed by recent
studies that have shown similar demands and responses from real and simulated ground motion
records (e.g., Figure 2.1, Galasso et al., 2013; Rodgers et al., 2019a). SCEC has a group of
researchers focusing on testing and rating methodologies to build confidence in the use of these
simulated acceleration time histories. As the gap between empirical and simulated ground
motions is closing, the community will be able to take advantage of synthetic seismograms that
can represent rare hazards and special site conditions.

2.3 Research Gaps and Opportunities

Conventional, empirical GMMs are expected to be replaced by non-ergodic models that can
consider local site and path information when available (e.g., Abrahamson et al., 2019). In areas
with abundant information, such models are expected to reduce the variability in the ground
motion and provide a more realistic description of the seismic hazard. Because such detailed
information is not available in every location, the models need to account for site-specific
aleatory and epistemic uncertainty, thus acknowledging that the uncertainty in the estimated
hazard is not uniform in space. This enhanced treatment of uncertainty will also require an
expansion of existing logic trees to represent the center, body, and range of the input parameters
(Gerstenberger et al., 2020).

https://www.scec.org/
https://www.llnl.gov
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Fig. 2.1 Illustrative example of the comparison between empirical and physics-based GMMs from (Rodgers
et al., 2019a): Left: RotD50 acceleration response spectra for a site in Oakland, California, predicted by
four empirical GMMs (squares in color) and by a three-dimensional ground-motion simulation for the San
Francisco Bay Area (circles in black). Right: Distribution of residuals between the simulated and empirical IMs
over the entire simulation region. The thick black line indicates the median, the boxes show the interquartile
range (IQR) (i.e., central 50% around the median), and the whiskers extend until 1.5 IQR. Outliers are shown
as circles. Dashed and dotted lines show between-event uncertainties corresponding to the empirical GMM.

The rigorous combination of multiple empirical GMMs (e.g., Goulet et al., 2017) is also a
promising direction that would allow the consideration of model uncertainty in the estimated
hazard. Other sources of uncertainty that affect the seismic source model—or the physical
model of the crust that is used to estimate soil amplification—are also important to quantify
and propagate through the analyses.

The research community recognizes that there is long-term variability in the rate of earth-
quakes, and some nations have already adopted time-dependent, non-Poissonian models to have
a more realistic estimate of the seismic hazard. More work is needed in this area to improve the
corresponding models and to expand their use to other areas, including the hazard maps of the
U.S.

When it comes to physics-based models, the continual increase in computational resources
makes simulations that resolve the ground-motion time-histories up to 10 Hz and include
softer soil layers in the analyses a feasible goal for the near future. As our ability to compute
ground motions to ever higher frequencies increases, we are outstripping our knowledge of the
subsurface geology at a fine scale. Addressing these geologic model uncertainties is one of the
challenges for the community.

The next step for physics-based models would be to expand to probabilistic simulations that
produce multiple plausible realizations of the ground shaking considering various sources of
uncertainty in the generation and propagation of the waves. Such calculations require orders
of magnitude greater computation ability than what is currently available. The challenge is to
improve the physical models and frameworks to make such probabilistic analyses more feasible.

2.4 Software and Systems

The following is a list of software that is commonly used for characterizing earthquake ground
shaking.
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AWP-ODC
AWP-ODC [14] is an elastic wave propagation program (AWP-ODC, Cui et al., 2010) that
performs a parallel finite-difference wave-propagation simulation. The software can simulate
the dynamic rupture and wave propagation that occurs during an earthquake. It was originally
written in Fortran and supports parallel computation using the message passing interface (MPI).
A version of the software written in C and CUDA is also available to run on graphics processing
units (GPUs).

BBP
The The Broadband Platform [29] Platform (Maechling et al., 2015) is a software system
developed by SCEC that can be used to generate synthetic ground motions using wave-
propagation models. The BBP is distributed with data products (velocity models and Green’s
functions packages) that allows for the generation of seismograms for simulating historical
or hypothetical earthquake scenarios in California, the northeast of the U.S., and Japan. The
software runs on Linux systems and provides different seismogram generation models.

CyberShake
CyberShake [15] is a computational simulation project on physics-based PSHA, developed and
hosted by SCEC. CyberShake simulations have been created from studies that define the inputs,
computational software, and the outputs. Outputs from studies done using CyberShake are
stored in publicly accessible databases that includes studies performed for southern and central
California. Data products of CyberShake include seismograms, hazard curves, disaggregation,
duration results, and hazard maps.

HAZ
HAZ [18] is a probabilistic seismic hazard analysis tool written and maintained by Norman
Abrahamson. It is written in FORTRAN and it is not heavily documented, but it still is a popular
tool for several bridge, dam, and nuclear projects.

HAZUS 4.2
The Federal Emergency Management Agency (FEMA) has been supporting the development of
Hazus 4.2 [17] for more than two decades. It is publicly available and provides a convenient
way to perform regional risk assessment following the HAZUS Multi-hazard Loss Estimation
Methodology 2.1 (FEMA, 2011a,b,c, 2017). The methodology covers earthquake, hurricane,
tsunami, and flood hazards. Researchers and agencies in the U.S. can download input data with
the tool that provides information about the hazard, the exposure (i.e., building locations and
characteristics), and the vulnerability (i.e., building fragility and consequence functions) of the
region. These inputs are prepared in the standard format required by the software and provide
exposure data (building inventories, etc.) at a census-tract-level resolution. The software runs
on Microsoft’s Windows operating system and has a GUI.
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Hercules
Hercules (Tu et al., 2006) is a parallel finite-element wave-propagation software that can be used
to simulate earthquake ruptures. It was originally developed by the Quake group at Carnegie
Mellon University in collaboration with SCEC. The software is designed to be memory-efficient
and highly scalable to run large-scale simulations in an HPC environment (Taborda et al., 2010).

NSHMP-Haz
NSHMP-Haz [20] is a Java-based library for PSHA that has been developed as part of the
National Seismic Hazard Mapping Project (NSHMP) within the USGS Earthquake Hazards
Program (EHP). The library is the engine driving different USGS web services and applications,
which enables high-performance seismic hazard calculations required for generating hazard
maps over large regions using different ground-motion models. A legacy Fortran version of this
library is also available, although it is deprecated at the time of writing this report.

OpenSHA
OpenSHA [22] (Field et al., 2003) is an open-source platform for seismic hazard analysis (SHA)
that was developed by the SCEC in collaboration with USGS. The platform is comprised of Java
libraries and a suite of applications that are suitable for different SHA applications. For instance,
OpenSHA provides graphical applications for calculating hazard spectra, hazard curves, hazard
maps, hazard disaggregation, and querying site data. In addition, all the features provided by
the graphical applications are available programmatically through the OpenSHA Java libraries.

OpenQuake Engine
OpenQuake [21] (Pagani et al., 2014) is an open-source library for seismic hazard and seismic
risk computations. The library was developed using Python and is cross platform. The library
uses data, methods, and guidelines outlined by GEM.

PEER Ground-Motion Database
The PEER ground-motion database (NGA-West2, Ancheta et al., 2014) is a comprehensive set
of ground-motion records from shallow crustal earthquakes in active seismic regions around
the world. The database includes 21,336 records from 599 earthquake events. In addition
to the ground-motion records, the database stores detailed metadata that includes different
source-site distance measures, site, and rupture characterization. A web service that can perform
ground-motion record selection and scaling using the records in database is also provided.

R-CRISIS
R-CRISIS [25] is the latest version of the CRISIS software that has been developed by Ordaz
et al., 2013 and supported by the National Autonomous University of Mexico and the Italian
Department of Civil Protection. The latest version of the software is free and publicly available.
It is designed to work with a GUI in a Windows environment. The software is designed to
perform PSHA calculations with a large number of GMPEs built in and seismic-source models
available in the literature.
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SW4
Seismic waves, 4th order (SW4 [23], Petersson and Sjogreen, 2017) is a software originally de-
veloped at the Lawrence Livermore National Lab (LLNL) and currently jointly developed by the
LLNL and the Lawrence Berkeley National Lab under the U.S. DOE Exascale Computing Pro-
gram EQSIM application framework. It can solve three-dimensional seismic wave-propagation
problems. The software was developed using Fortran and C++ and makes use of a distributed
memory-programming model using MPI. The software is suitable for running on HPC and is
capable of producing synthetic seismograms in different formats.

UCVM
The Unified Community Velocity Model (UCVM, Small et al., 2017) is a software framework
developed by SCEC that provides a common interface to query different three-dimensional
seismic velocity models for the State of California. The software allows the use of alternative
models to query and visualize seismic-wave velocities. The software provides query scripts to
obtain the seismic-wave velocities and density visualized on a horizontal slice, cross section,
and depth profile, and can also provide basin depth and +B,30 maps. The properties provided
by the velocity models included with UCVM are crucial for many wave-propagation software
presented in this section.

UGMS MCER
UGMS-MCER (Crouse et al., 2018) is a web-based tool developed by the SCEC Committee
for Utilization of Ground Motion Simulations (UGMS) to provide a site-specific maximum
considered earthquake (MCE) response spectra for the Los Angeles region according to the
site-specific seismic hazard analysis procedure outlined in ASCE 7-16. The tool is user-friendly
and is oriented towards practitioners, and only requires the location (latitude and longitude) and
site-soil classification (site class or +B30).

2.4.1 Relevant SimCenter Tools

The SimCenter supports empirical ground motion modeling with a ground motion utility (GMU)
that is integrated in research tools such as EE-UQ [2], PBE [13], and R2DTool [8]. These
research tools also provide a standardized ground motion input feature that enables importing
intensity measures and IM fields as well as ground motion acceleration time histories that were
prepared in external tools. Such external tools include physics-based ground motion simulations.
There are simulation examples provided that use data from SW4 [23] to encourage researchers
to take advantage of such data sources.

GMU
The Ground Motion Utility (GMU) is currently a backend application that interfaces with
OpenSHA [22] to characterize the seismic hazard. Given the hazard, the GMU has several
spatial correlation models (e.g., Jayaram and Baker, 2009; Markhvida et al., 2018) implemented
to simulate spatially correlated ground motion intensity measure fields for a regional analysis.
Finally, to support high-fidelity structural response estimation, the GMU can connect to the
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PEER NGA-West2 ground motion record database (Ancheta et al., 2014) and select ground
motion records from there that match the intensity measures (i.e., target spectrum) at each
location of interest. These features are available for the analysis of individual buildings in
EE-UQ [2], and PBE [13], and for regional analyses in R2DTool [8].

QS3HARK
The Site-Specific Seismic Hazard Analysis and Research Kit with Uncertainty Quantification
(QS3HARK) simulates wave propagation through soil layers. The simulations use the finite
element method as implemented in OpenSees [6] to perform the calculations. Uncertainties
in both the soil properties and the bedrock ground motion inputs can be characterized and
propagated throughout the simulations to arrive at a probabilistic description of the ground
shaking. QS3HARK is integrated in EE-UQ [2], and PBE [13] to enable the automatic
propagation of ground shaking from bedrock to surface and application of the simulated surface
shaking in a structural analysis. This workflow will be integrated into R2D to enable such
high-fidelity analyses at a regional scale.

smelt
The Stochastic, Modular, and Extensible Library for Time histories (Smelt [27]) is a C++ library
for stochastically generating time histories, including acceleration time histories to represent
ground shaking.

Educational Tools
The effect of ground shaking is illustrated in several educational tools developed by the
SimCenter. The Multiple Degrees of Freedom Application (MDOF [19]) allows students to
explore the effects of different building parameters on the time-varying response of a building
under transient loads, including ground shaking effects. The building is represented by a shear
column.

The Earthquake versus Wind Application (EvW [16]) focuses on comparing the response of
buildings subjected to earthquake and wind loading, using the same shear model that is applied
in MDOF.

The Site-Specific SeismicHazardAnalysis and ResearchKit (S3HARK [26]) is the educational
version of QS3HARK that provides the same features and versatile set of material models but
without uncertainty quantification. Removing UQ supports educational needs by streamlining
the user interface and facilitating the setup of simulations.

The Pile Group Tool (PGT [24]) supports studies on the behavior of a pile or a pile-group in
layered soil under ground shaking. Its user interface allows students to interactively observe the
response of the system to changes in the soil characteristics, the pile configuration, and the pile
design.

The Transfer Function Tool (TFT [28]) focuses on calculating the transfer function that maps
a given bedrock motion to a surface motion. The tool allows students to define the characteristics
of layered soil profiles and examine how the input motion is affected by the soil deposit.





Chapter 3
Earthquake—Surface Fault Rupture

Michael Gardner with contributions by Jonathan D. Bray,
along with review comments and suggestions by Pedro Arduino, Chaofeng Wang

Surface fault rupture is a manifestation of subsurface fault displacement through the overlying
earth—including soil deposits—resulting in permanent ground surface deformation that can
damage engineered systems. The characteristics of the surface deformation depend on the type
of fault movement, the inclination of the fault plane, the amount of displacement on the fault,
the depth and geometry of the materials overlying the bedrock fault, the nature of the overlying
earth materials and definition of the fault, and the structure and its foundation (Bray, 2001). The
subsurface movement of the fault may be expressed as a distinct rupture plane or as distributed
distortion of the ground surface. Additionally, extensional movement of the fault can cause
tensile strains and cracking at the ground surface.

3.1 Input and Output Data

3.1.1 Input Data

Input data for analyses assessing surface fault rupture describe the characteristics of the fault,
the overlying materials, and in some cases the structures overlying the fault. These inputs can be
classified as follows:

Depth of overlying soil
The depth of the overlying soil affects how subsurface fault deformations manifest as surface
fault rupture. In closed-form solutions, the depth of soil is an input into the analytical equation.
In pseudo-static analyses, the depth of overlying soil is defined by the boundary conditions in
the numerical model.

Angle of dilation
Some closed-form solutions take the angle of dilation as input, while soil constitutive models
used in pseudo-static analyses account for soil dilatancy in their formulation. The angle of
dilation will depend on the type and characteristics of the soil overlying the fault. “Dense” sand
will tend to increase in volume during shearing, which is described by a larger angle of dilation.
Conversely, “loose” sand may contract during shearing such that the dilation angle is often near
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zero or negative. Normally consolidated to slightly over-consolidated clay is characterized by
low dilatancy, while heavily over-consolidated clay will respond dilatively.

Fault characteristics
The type of fault, slip-type, and fault geometry influence the likelihood and amount of surface
fault rupture that may occur during an earthquake. Closed-form solutions are only applicable
for the fault type for which they were developed, so care must be taken when applying these
methods. Pseudo-static analyses explicitly model the fault type and geometry by specifying
boundary conditions and boundary displacements in the numerical model. Some probabilistic
models, such as the model developed by Moss and Ross (2011), are specific to a particular
type of fault and slip-type, while other methods, such as the Hecker et al. (2013) model, can be
applied more generally.

Moment magnitude
Moment magnitude is a quantitative measure of the earthquake size or magnitude. It is the only
magnitude scale that is not subject to saturation as it is based on seismic moment as opposed to
the ground-shaking level. Probabilistic fault displacement hazard assessments take magnitude
as an input and condition the probability of surface fault rupture occurring and the probability
of rupture past the site on the input magnitude.

Numerical method and soil constitutive model
In pseudo-static analyses, soil is modeled using both continuum and granular methods. Both
finite-difference and finite-element methods have been applied when modeling the soil as a
continuous medium. Constitutive models employed in these methods have ranged from the
elastoplastic Mohr-Coulomb model to more advanced models, such as UBCSAND (Byrne et al.,
2004), that can capture nonlinear stress–strain response, contractive and dilative volumetric
response, and dependence on confining pressure. The discrete element method (DEM) has been
used to explicitly model the granular nature of soil. In this approach, the particles are modeled
as rigid bodies, and all nonlinear behavior is captured in the model by describing contacts
between particles. Contact models range from as simple as linear elastic contacts to nonlinear
Hertz-Mindlin type contact models.

3.1.2 Output Data

Depending on the type of analytical procedure used, one or more of the following outputs can
be produced:

Shape and location of failure surfaces
Closed-form solutions can provide estimates of the shape and location of the failure surface,
and possible failure modes associated with shallow foundations. Pseudo-static analyses can
provide a more complete description of the anticipated location, shape, width, and extent of the
failure surface and its dependence on soil conditions at the site.
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Foundation-rupture interaction
Pseudo-static analyses can be employed to investigate how different foundation systems and soil
improvement can influence how subsurface fault displacement propagates through the overlying
soil deposits and manifests at the surface. This requires more knowledge about the conditions at
the site being analyzed such that constitutive models can be calibrated to provide meaningful
results.

Probability of surface rupture
Probabilistic fault displacement hazard assessments can provide estimates of the probability
of surface rupture occurring at a site and the probability that the rupture will fall within an
estimated range of displacements.

3.2 Procedures for Evaluating Surface Ruptures

In the event that surface fault rupture is anticipated to occur at a site, the following procedures
can be applied:

Closed-form solutions
Closed-form solutions for evaluating surface fault rupture and its interaction with structures
are not typically used in research or practice because they are oversimplified and not well
validated by field case histories. For free-field analyses, the method presented by Cole and Lade
(1984) provides estimates of the shape and location of failure surfaces in soil. The required
inputs for this procedure are the depth of the overlying soil, the angle of dilation of the soil,
and the dip angle of the fault; however, this method is restricted to dry, cohesionless soils
above dip–slip faults. Note: this procedure was developed based on small-scale experiments and
has not been validated by field case histories. Another approach, presented by Berrill (1983),
provides analytical solutions for assessing various failure modes for shallow foundations across
strike–slip faults. Similarly, this procedure is not widely used in practice.

Probabilistic assessment of fault-displacement hazard
Probabilistic fault displacement hazard assessments provide a means to evaluate the probability
of some amount of fault displacement occurring at a site. Generally, these methods provide an
estimate of the probability of some level of fault displacement being exceeded. This is analogous
to the approach used in PSHA for ground shaking based on a given set of input parameters
that characterize the type of event and location of the site relative to that event. Examples of
such methodologies are Hecker et al. (2013), Moss and Ross (2011), Petersen et al. (2011), and
Youngs et al. (2003).

Pseudo-static analysis
Pseudo-static numerical analyses can provide estimates of not only the amount of surface fault
displacement that may occur at a site, but also the characteristics of the deformation at the site
and how structures might interact with the deforming soil. Continuum-based methods (such as
finite-element and finite-difference methods) and discontinuous methods (such as the DEM)
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have been implemented to model surface fault rupture. These methods can capture how fault
and soil material properties affect surface manifestations of subsurface fault displacement,
providing insight into potential hazards at a site. These methods require more knowledge of
site conditions and soil properties such that constitutive model parameters can be calibrated to
provide meaningful results for a particular site. For pseudo-static analyses, the dynamics of
fault rupture are ignored. Instead, the fault displacement is specified while the displacement
rate is kept slow enough to avoid dynamic effects. Some researchers have investigated dynamic
surface fault rupture (Oettle et al., 2015) and have demonstrated that ignoring dynamic effects
results in insignificant differences in the results; therefore, most analyses are implemented in a
pseudo-static manner (Anastasopoulos and Gazetas, 2007; Anastasopoulos et al., 2008; Bransby
et al., 2008a; Bransby et al., 2008b; Garcia and Bray, 2018a,b; Oettle and Bray, 2017; Oettle
and Bray, 2013).

3.3 Research Gaps and Opportunities

Recent advances in probabilistic fault rupture assessment methods allow for hazard-based
evaluation of surface fault rupture and are amenable to being applied at a regional scale;
however, they do not currently incorporate soil conditions in evaluating surface fault rupture.
Comparatively, pseudo-static simulations of surface fault rupture have been used to assess how
local soil conditions and the characteristics of foundations overlying the fault affect the rupture
path and how it manifests at the surface. Unfortunately, the computational demand associated
with these analyses is prohibitive at the regional scale. The challenge of assessing surface fault
rupture can be attributed to the nature of the phenomenon, i.e., displacements occur across a
narrow shear band along significantly longer lengths of rupture, posing unique challenges to the
research community.

When considering numerical simulations of surface fault rupture, a major difficulty is ensuring
sufficient numerical resolution while also minimizing computational cost. Given that the area of
interest is highly localized—even in “loose” soil deposits where deformation is more distributed,
the shear band is relatively narrow compared to the rest of the simulation domain—adaptive
meshing and refinement techniques could help alleviate some of the computational burden
while maintaining sufficient resolution where it is needed. Additionally, currently simulations
do not consider the layered and heterogeneous nature of natural soils, which potentially could
have a significant influence on the propagation of subsurface rupture to the ground surface. To
implement and validate numerical models capable of performing these simulations in HPC
environments, open-source software is needed. In addition, there is a gap in the amount of
high-quality experimental data that is available to validate numerical capabilities. Available
experimental datasets focus primarily on homogeneous, cohesionless soils, so it is not possible
to calibrate and validate numerical models that potentially could capture the influence of
heterogeneity in overlying soil deposits.

On a regional scale, probabilistic assessment of fault displacement hazard has great potential
for broad application. Current methods consider the probability that surface fault rupture will
occur at a site conditioned on the earthquake magnitude being large enough to cause rupture
and that sufficient subsurface rupture occurs to manifest as surface rupture. Developing models
that are capable of incorporating additional data that describes soil conditions and explicitly
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consider different fault and slip-types would provide insight into how more localized conditions
could affect regional response.

3.4 Software and Systems

The following list is a compilation of software commonly used in assessing earthquake surface
fault rupture. Currently, there are no software packages available for the closed-form procedures.
Although probabilistic fault displacement hazard assessment software has been developed by
consultants that perform this type of analysis (Wells and Kulkarni, 2014), it is not available
publicly.

OpenSees
The Open System for Earthquake Engineering Simulation (OpenSees [6]) is an open-source
software framework capable of performing pseudo-static and dynamic analyses with the finite-
element method. OpenSees is maintained by the Pacific Earthquake Engineering Research
(PEER) Center and actively developed by researchers at UC Berkeley and various research
institutions. Several commonly used soil constitutive models have been implemented in
OpenSees, and additional models can be added based on user needs. The framework is capable
of running on HPC systems and supports MacOS, Linux, and Windows operating systems.

YADE
YADE [38] is an extensible open-source framework focused on the DEM (Šmilauer, 2015) that
can be used to perform pseudo-static and dynamic analyses. Yade is capable of performing
three-dimensional simulations with various particle shapes and contact models. Since it is
open-source, it is possible to add different particle shapes and contact models as needed.
Currently Yade supports Linux operating systems. In terms of parallel-computing capability,
shared memory parallelism using OpenMP implemented though distributed memory capability
using MPI is under development. More information, including the source code, can be found on
the Yade homepage.

LIGGGHTS
LIGGGHTS-PUBLIC [33], an open-source (at least partially) DEM package, is capable of
performing both pseudo-static and dynamic analyses. LIGGGHTS originated as an expansion of
the granular package in LAMMPS [32], an open-source molecular dynamics framework devel-
oped and maintained by Sandia National Laboratories. Some functionality within LIGGGHTS
is not available in the public version. The source code for the public version is available at
https://github.com/CFDEMproject/LIGGGHTS-PUBLIC.

LMGC90
LMGC90 [34] is an open-source framework developed and maintained by the Mechanical and
Civil Engineering Laboratory (LMGC), a research laboratory of the University of Montpellier
and of the French National Center for Scientific Research (CNRS). The software implements

https://yade-dem.org/doc/
https://github.com/CFDEMproject/LIGGGHTS-PUBLIC
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the DEM with non-smooth contact dynamics. More information is available on the LMGC90
homepage.

FLAC
Fast Lagrangian Analysis of Continua (FLAC [31]), developed by the Itasca Consulting Group,
has been used to perform pseudo-static and dynamic surface fault rupture analyses. FLAC
implements the finite-difference method and models the soil as a continuum. In addition to the
pre-programmed soil constitutive models available in FLAC, users can provide customized soil
constitutive models either as pre-compiled dynamic libraries or by using the scripting language
FISH. This software is proprietary, closed-source, and does not support HPC deployment.
Currently, FLAC supports only Windows-based operating systems.

PFC
Particle Flow Code (PFC [36]) is a general-purpose DEM framework. The PFC can model the
granular nature of soil and has been used for pseudo-static analyses of surface fault rupture in
sand; it is capable of performing either two-dimensional or three-dimensional analyses using
various contact models. User-defined contact models can be input using either FISH scripts
or pre-compiled dynamic libraries. Currently, PFC supports only Windows-based operating
systems and is not HPC capable. The software is proprietary and closed-source.

PLAXIS
PLAXIS [37], now part of Bentley Systems, is a finite-element method software package that
can be used to perform pseudo-static and dynamic analyses. Custom soil constitutive models
can be implemented within this platform. PLAXIS is proprietary and closed-source. Currently,
it is not HPC capable and supports only Windows-based operating systems.

General FEM solvers
LS-DYNA [35] andABAQUS [30], both proprietary, closed-source general finite-elementmethods
solvers, have been used successfully for large-scale pseudo-static and dynamic analyses. Custom
material models, such as UBCSAND, can be implemented in these frameworks. Depending
on the license purchased, LS-Dyna and ABAQUS are capable of running on HPC systems.
LS-Dyna supports Unix, Linux, andWindows-based operating systems and is currently available
on DesignSafe. ABAQUS currently supports Linux and Windows-based operating systems.

3.4.1 Relevant SimCenter Tools

The SimCenter supports the application of advanced uncertainty quantification techniques in
the field of numerical simulation of fault rupture.

quoFEM
The Quantified Uncertainty with Optimization for the Finite-Element Method (quoFEM [7])
tool facilitates model calibration, optimization, uncertainty propagation, reliability analysis,

http://mimetics-engineering.fr/index.php/en/lmgc90-2/
http://mimetics-engineering.fr/index.php/en/lmgc90-2/
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surrogate modeling, and sensitivity analyses of numerical materials, components, and systems
by combining existing simulation environments with state-of-the-art uncertainty quantification
applications. The graphical user interface currently supports finite-element software (OpenSees
and FEAP) and can also interface with custom analysis packages, including, but not limited to
those based on the discrete element and finite difference method and other commercial software
that cannot be bundled with the open-source SimCenter application (e.g., LS-DYNA, ABAQUS).
These features provide users instant uncertainty analysis and optimization capabilities for
numerical models. Furthermore, quoFEM provides an opportunity for researchers working
with experimental facilities to use advanced UQ methods and tools to design experiments and
calibrate numerical models.





Chapter 4
Earthquake—Soil Liquefaction

Chaofeng Wang with contributions by Jonathan D. Bray,
along with review comments and suggestions by Pedro Arduino, Brady Cox, and Michael
Gardner

Soil liquefaction has caused much damage in recent earthquakes (e.g, Bray et al., 2017;
Cubrinovski et al., 2011; Cubrinovski et al., 2017). In fluid-saturated, geologically unconsolidated
soil, liquefaction is a phenomenon caused by a sudden change in stress due to a rapid earthquake
loading, during which the pore-water pressure increases and the effective stress reduces so that
the soil loses much of its stiffness and strength and behaves like a liquid. The liquefied soil may
lose its ability to support overlying structures or buried utilities.

As summarized in the Kavazanjian et al. (2016) report, the consequences of liquefaction may
include vertically or laterally displaced ground, landslides, slumped embankments, foundation
failures, and mixtures of soil and water erupting at the ground surface. In turn, these effects
may lead to settlement, distortion, and the collapse of buildings; the disruption of roadways; the
failure of earth-retaining structures; the cracking, sliding, and over-topping of dams, highway
embankments, and other earth structures; the rupture or severing of sewer, water, fuel, and other
lifeline infrastructure; the lateral displacement and shear failure of piles supporting bridges and
waterfront structures; and the uplift of underground structures.

4.1 Input and Output Data

Input data for assessing the liquefaction hazard describe the earthquake intensity measures
(IMs), the characteristics of geologic and technical site conditions, and the topography of the
site.

4.1.1 Input Data

Ground motion and intensity measures
Mechanics-based numerical simulation of liquefaction requires ground motions as input data.
Simplified empirical methods take earthquake moment magnitude and IMs as input data that
include peak ground acceleration (PGA), spectral acceleration ((0())), Arias intensity (�� ),
etc. Which IM to use depends on the selected analytical models.
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Site characteristics
Site characteristics include geologic and geotechnical site conditions, water table, slope, and
topography.

Geologic characteristics

Regional liquefaction assessment depends on geologic information. Youd and Perkins (1987)
proposed amethod for classifying the liquefaction susceptibility of numerous geologic units. This
requires the mapping of geologic units, which are generally characterized by their depositional
environment, physical characteristics, and age. The depth to the groundwater table is also
required.

Geotechnical characteristics

Geotechnical characterization of the site consists primarily of identifying soil properties, such
as soil type, shear strength, density, fines content, water saturation, etc. These parameters can
be estimated by in situ tests, such as the cone penetration test (CPT), standard penetration test
(SPT), and shear-wave velocity (+B) measurement, or laboratory testing of soil specimens.

Topography

Ground topographic parameters (e.g., ground slope, free face height, and the distance to a free
face) define the boundary conditions of a site and are input data required for a liquefaction
assessment.

4.1.2 Output Data

Depending on the modeling approach used, one or more of the following outputs can be
produced:

Liquefaction indices at a site
Based on input data collected at a site, various liquefaction indices can be calculated, including
liquefaction potential index (LPI), liquefaction severity number (LSN), etc.

Induced ground displacement at a site
Liquefaction in the soil can lead to the deformation of the ground surface, such as vertical
settlement and lateral spreading.

Liquefaction maps
Maps of liquefaction susceptibility or liquefaction-induced ground damage can be the outputs
of a regional liquefaction assessment.
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4.2 Modeling Approaches

Analysis of liquefaction and its consequences is an active area of research and development in
geotechnical engineering. Methods for estimating liquefaction triggering and its consequences
vary. They fall into two categories: simplified methods and mechanics-based numerical methods.

Simplified methods
In 1998, a consensus was reached within the geotechnical community on the use of an empirical
stress-based approach for liquefaction triggering assessment called the “simplified method,”
first developed by Seed and Idriss (1971). This method is still commonly used in practice today
(Kavazanjian et al., 2016; Youd and Idriss, 2001).

In a simplified method, a factor of safety (FS) against liquefaction triggering, defined as
the ratio between the seismic loading required to trigger liquefaction (i.e., the liquefaction
resistance) and the seismic loading expected from the earthquake (i.e., the seismic demand),
is computed. Both the seismic demand and the liquefaction resistance are characterized as
cyclic stress ratios, defined as the ratio of the equivalent cyclic shear stress to the initial vertical
effective stress. The seismic demand is the earthquake-induced cyclic stress ratio (CSR), and
the liquefaction resistance is the cyclic resistance ratio (CRR): that is, the cyclic stress ratio
required to trigger liquefaction.

Seed and Idriss (1971) proposed a simplified equation, based on Newton’s second law, to
compute a representative CSR for a given earthquake magnitude. This model was later revised
by Boulanger and Idriss (2014), Cetin and Seed (2004), Idriss (1999), and Idriss and Boulanger
(2008).

The most common approaches used in practice to compute CRR are based on geotechnical
field data, e.g., CPT, SPT, and +B. The most commonly used relationships to estimate CRR
from a CPT profile are those developed by Idriss and Boulanger (2008), Moss et al. (2006),
Robertson and Wride (1998), and Robertson (2009). The most commonly used relationships to
estimate CRR from SPT blow count are those proposed by Boulanger and Idriss (2014), Cetin
et al. (2018), and Youd and Idriss (2001). The most commonly used relationships to estimate
CRR from a +B profile were developed by Andrus and Stokoe II (2000) and Kayen et al. (2013).

Mechanics-based numerical simulation
The development and validation of numerical analysis tools and procedures for estimating
the effects of liquefaction on the built environment is identified as an overarching research
need (Bray et al., 2017). Numerical analysis is critical for several reasons, including obtaining
insights on field mechanisms that cannot be discerned empirically, providing a rational basis
for developing or constraining practice-oriented engineering models, and providing a tool for
evaluating complex structures with unique characteristics that are outside the range of empirical
observations.

Finite-element and finite-difference procedures are the most common procedures used
in engineering practice. As pointed out in Bray et al. (2017), there are major challenges
in developing robust validated numerical analysis procedures for evaluating the effects of
liquefaction on civil infrastructure systems due to the variety of multi-scale, multi-physics
coupled nonlinear interactions that come to the forefront in different scenarios where analytical
capabilities for liquefaction effects have not been validated. Currently, research or commercial
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software platforms have not incorporated the best available solution techniques/options for
these challenging problems, such as the coupled, large-deformation analysis of strain-softening,
localizations, cracking, and interfaces in two or three dimensions with complex constitutive
models.

4.3 Research Gaps and Opportunities

Liquefaction risk analyses has focused on assessing the likelihood of triggering of liquefaction,
resulting in maps of susceptibility. The consequences of liquefaction, i.e., the induced damage
to the ground, is not sufficiently studied. Well established and universally applicable methods
for quantifying liquefaction-related damages to the ground are still to be developed. HAZUS
provides a method derived from engineering experiences for evaluating liquefaction-induced
permanent ground deformation (PGD) given PGA and site-specific liquefaction susceptibility;
however, the HAZUS method was developed based on observations of relatively old events.

In recent years, with more liquefaction cases observed (Bray et al., 2017; Cubrinovski
et al., 2017) and the creation of large liquefaction databases (Brandenberg et al., 2020), new
regression-based ground damage models are being developed (Khoshnevisan et al., 2015;
Stewart et al., 2016) and tested for different regions (Chen et al., 2016). New insights into the
consequent damage to overlaying structures and their fragility are also being developed (Bray
and Macedo, 2017; Fotopoulou et al., 2018). In regional simulations, large-scale assessment
of liquefaction is needed. Traditionally, regional liquefaction can be coarsely assessed based
on geological data (Holzer et al., 2006). In recent years, techniques such as random fields are
proposed for regional-scale modeling of liquefaction hazard, which can account for spatial
uncertainties while considering both geotechnical and geological information (Wang and Chen,
2018; Wang et al., 2017; Zhu et al., 2017a).

4.4 Software and Systems

Systems for liquefaction evaluation are divided into two categories according to the method
used: simplified empirical methods and mechanics-based numerical methods.

Simplified methods
Simplified methods have been developed for rapid engineering evaluations of site-specific
liquefaction. To date, no open-source software is available. LiqIT [40], Cliq [39], NovoLIQ [42],
and Liquefy-Pro [41] are all Windows based. These tools provide a user interface that can let
the user input the soil profiles and earthquake loading, and then visualize the liquefaction index
for each soil layer.

Numerical methods
For mechanics-based numerical methods, creating a constitutive model that captures the soil’s
behavior under cyclic loads is crucial. Commercial software such as PLAXIS [37] and FLAC [31]
are widely used by the geotechnical community. Both of them are Windows based. OpenSees
is the only open-source software identified for dealing with liquefaction. Several well-known
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liquefaction-capable constitutive models are: PM4Sand, PM4Silt, PDMY02, UBCSAND, and
DAFALIAS-MANZARI. Except for UBCSAND, they are all available in OpenSees.

4.4.1 Relevant SimCenter Tools

The SimCenter develops both research and educational tools to facilitate performing site-
specific analysis of soil response to earthquakes. The tools currently available focus on the
one-dimensional propagation of ground shaking from the bedrock to the free surface.

QS3HARK
The Site-Specific Seismic Hazard Analysis and Research Kit with Uncertainty Quantification
(QS3HARK) performs site-specific analysis of ground shaking and liquefaction by simulat-
ing wave propagation through soil layers. The simulations use the finite element method as
implemented in OpenSees [6] to perform the calculations. Several advanced material models
are available in QS3HARK (e.g., PM4Sand, PM4Silt, PDMY, PDMY02, PDMY03, Man-
zariDafalias, Borja-Amies) to support advanced site-response analysis. Uncertainties in both
the soil properties and the bedrock ground motion inputs can be characterized and propagated
throughout the simulations to arrive at a probabilistic description of the ground shaking, ground
deformation, and the liquefied soil layers.

S3HARK
The Site-Specific Seismic Hazard Analysis and Research Kit (S3HARK) is the educational
version of QS3HARK that provides the same features and versatile set of material models but
without uncertainty quantification. Removing UQ supports educational needs by streamlining
the user interface and facilitating the setup of simulations.





Chapter 5
Earthquake—Slope Stability and Landslides

Michael Gardner with contributions by Jonathan D. Bray,
along with review comments and suggestions by Pedro Arduino, and Chaofeng Wang

Earth structures and natural slopes may experience deformation when subjected to seismic
loading. When considering the response of these systems, it is important to first identify whether
the materials considered may lose significant strength as a result of cyclic loading. If so, the
system may be at risk of a flow slide, typically associated with liquefaction, which may lead to
large deformations that can severely compromise an engineered system. Except for a dynamic
nonlinear effective stress analysis, the methods presented in this section assume that liquefaction
does not occur, and slopes will instead undergo some amount of deformation because of
incremental displacements during seismic shaking due to inertial loading.

In the simplest case, a pseudo-static seismic slope stability analysis provides a factor of safety
(FS) for a given system based on a specified seismic event or hazard, while more advanced
methods provide an estimate of the range of seismic permanent displacement anticipated.
Regardless of the analytical procedure employed, important aspects to capture in the analysis
are the earthquake ground motion, the material properties of the system being considered and
its foundation, its geometry, and the initial state of stress and pore-water pressure in the system
and its foundation. Much depends on the intensity, frequency content, and duration of the
earthquake ground motion, the dynamic resistance of the earth slope, which is defined by its
yield coefficient, and the dynamic response characteristics of the earth or waste system being
shaken.

5.1 Input and Output Data

5.1.1 Input Data

Whether employing a simplified method or performing a dynamic nonlinear effective stress
analysis, the required inputs define (1) the characteristics of the seismic loading; and (2) the
characteristics of the earth or waste system that have the greatest impact on the overall response.
The input data can be classified as follows:

Moment magnitude
Moment magnitude is a quantitative measure of the earthquake size or magnitude. It is the only
magnitude scale that is not subject to saturation, as it is based on seismic moment as opposed to
the ground-shaking level.
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Spectral acceleration at the degraded period of the sliding mass
Due to material nonlinearity, it has been shown that using the spectral acceleration at the
degraded period instead of at the initial period of the sliding mass is an optimal IM across a
range of fundamental periods for the sliding mass (Bray and Travasarou, 2007).

Arias intensity
The Arias intensity (�� ) is a ground-motion parameter that includes the effects of both amplitude
and frequency content while also providing a good measure of the energy associated with a
particular ground motion. The computation of AI is over the entire duration of the ground
motion; as such, is not sensitive to how duration of strong motion is defined.

Peak ground acceleration
Peak ground acceleration (PGA), a measure of the ground-motion amplitude, is one of the
most commonly used ground-motion parameters. The PGA of a motion is taken as the largest
absolute value of the vector sum of orthogonal acceleration components.

Peak ground velocity
Similarly to PGA, the peak ground velocity (PGV) is a good measure of the ground-motion
amplitude. Since PGV is less sensitive to higher-frequency components of a ground motion, it
is likely a better measure of ground-motion amplitude at intermediate frequencies (Kramer,
1996).

Initial and degraded period of the sliding mass
In some idealized sliding mass models, the dynamic stiffness of the sliding mass is represented
by the initial fundamental period, while the average reduction in the earth or waste slope being
analyzed is captured by the degraded period.

Seismic yield coefficient
The seismic yield coefficient, :H , is used to represent the slope’s dynamic strength when using
simplified sliding block procedures. Estimating the value of :H requires careful consideration
of the materials being analyzed as it is governed by the critical strata in the slope. Simplified
procedures for estimating :H can be found in Bray et al. (1998).

Soil constitutive model
For dynamic nonlinear effective stress analyses, a soil constitutive model is used to describe
the evolution of stress and strain within the soil. These models can also capture the interaction
between the soil and pore water by considering changes in pore-water pressure that depend on
the soil type and boundary conditions in the numerical model. Examples of constitutive models
employed in dynamic analyses can be found in Boulanger and Ziotopoulou (2017, 2018), Byrne
et al. (2004), and Yang et al. (2003).
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5.1.2 Output Data

Depending on the type of analytical procedure used, one or more of the following outputs can
be produced:

Factor of safety
Pseudo-static stability analyses generally provide results in terms of an FS similar to what would
be attained from a static limit equilibrium analysis. With an appropriately calibrated analysis,
the FS gives an indication of magnitude of potential displacement.

Seismic displacement
Sliding block-type analyses generally provide output in terms of an estimated range of seismic
displacement. Additionally, some methods provide probabilistic seismic displacement results as
either the probability of a range of displacement occurring or the probability of exceeding a
specified displacement threshold.

Full Description of displacement, stress, and pore-water pressure fields
When performing dynamic nonlinear effective stress analyses, simulations can provide the
full time histories of the displacement, stress, and pore-water pressure fields estimated by the
numerical model. These results provide insight into the site-specific response and can highlight
localized phenomena that might not be captured by simplified methods.

5.2 Procedures for Evaluating Seismic Slope Displacement

There are three primary approaches employed currently in estimating seismic slope displace-
ments, which are listed in order of increasing complexity:

Pseudo-Static stability analyses
This class of seismic slope stability analysis is analogous to a static limit equilibrium analysis
where the earthquake loading is represented as an additional constant horizontal load applied to
the slope. This horizontal seismic coefficient is a function of the characteristics of earthquake
shaking and the dynamic response characteristics of the slope. The seismic coefficient is
estimated as a percentage of the maximum value of the summation of the differential masses
of the sliding blocks, each multiplied by the acceleration acting on them over time divided by
the total weight of the sliding mass, which produces the maximum seismic coefficient. The
percentage of the maximum coefficient used in the pseudo-static slope stability analysis is a
function of the allowable seismically induced permanent displacement (Bray and Travasarou,
2009). For this type of analysis, the required inputs are soil-strength parameters, slope geometry,
water pressures, and the pseudo-static seismic coefficient. Results are provided in terms of an
FS that, when appropriately calibrated, gives an indication of the level of potential displacement.
Prevalent pseudo-static methods can be found in Bray and Travasarou (2009), Bray and Macedo
(2019), Hynes-Griffin and Franklin (1984), Macedo et al. (2018), and Seed (1979).
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Sliding block analyses
Newmark-type sliding block analyses provide a range of anticipated seismically induced
permanent displacements that serve as an index of seismic performance of a system. These
procedures consider the dynamic response of the sliding mass if assumed to be non-rigid
and calculates the sliding displacement. Methods that consider the dynamic response of the
sliding mass consider this response as either decoupled or fully coupled. Typical inputs for
these procedures provide information about the characteristics of the earthquake shaking being
considered—moment magnitude, spectral acceleration at the degraded period of the sliding
mass, �� , PGA, and PGV—as well as dynamic properties of the sliding mass—the initial and
degraded fundamental period of the sliding mass, and the seismic coefficient at which the
sliding mass will yield, which is called the yield coefficient. From these inputs, the analysis
provides estimates of the seismic slope displacement and the probability of some displacement
occurring, or, in some cases, the probability of exceeding an allowable displacement. These
methods are semi-empirical and are applicable primarily to events exhibiting similar features to
those contained in the dataset used to develop a procedure. Commonly used procedures can be
found in Bray and Travasarou (2007), Bray and Macedo (2019), Jibson (2007), Makdisi and
Seed (1978), Rathje et al. (2014), and Saygili and Rathje (2008) for shallow crustal earthquakes
and Bray et al. (2018) for subduction zone earthquakes.

Dynamic nonlinear effective stress analyses
Continuum-based methods, such as finite-element or finite-difference methods, are employed
with soil constitutive models to analyze the dynamic response of the system to earthquake
loading. This type of analysis requires greater effort computationally as the partial differential
equations describing the mechanical response of the soil are numerically integrated over the
full time history of earthquake shaking. Additionally, extensive information about the soil
conditions at the site is required such that constitutive models can be sufficiently calibrated
to attain meaningful results. Unlike the pseudo-static and simplified methods, this type of
analysis is still applicable in the event that liquefaction is anticipated to occur at the site. It is
the state-of-practice to employ dynamic nonlinear effective stress analyses in the evaluation
of critical earth systems, such as dams, tailing dams, ports, and large earth-retention systems.
Examples of constitutive models employed for dynamic analyses can be found in Boulanger and
Ziotopoulou (2017, 2018), Byrne et al. (2004), and Yang et al. (2003).

5.3 Research Gaps and Opportunities

The vast majority of seismic slope displacement methods focus on analyzing a single slope; the
resolution at which this slope is analyzed varies greatly between different methods. Simplified
methods, while not capable of fully capturing the site-specific response of individual slopes,
provide reasonable estimates of seismic slope displacement at negligible computational cost.
Comparatively, dynamic nonlinear numerical analyses can be meticulously calibrated to provide
insight into localized response, but require detailed knowledge of the site being analyzed,
additional computational resources, and necessitate a greater level of skill from the end-user.
The limitations of these methods will be dependent on the application and scale at which they
are to be applied. Many engineering applications do not require a fully nonlinear analysis, while
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it also is not possible to perform high-fidelity, full-physics numerical simulations at a regional
scale. The varied application of seismic slope stability methods provides many opportunities to
advance the field (e.g., Bray et al., 2017).

For site-specific, high-resolution simulations, continued research is required to better resolve
grain-level dynamics and fluid-solid interaction. Much progress has been made in continuum
simulations of soils, and several models are available that are capable of describing the nonlinear,
plastic behavior of soil during seismic loading, while also considering the impact of excess
pore-water pressure generation during earthquake shaking. At the grain-level, however, there
remains opportunity for exploring the interaction between water and soil particles, and how
material type and fabric interplay with transient pore-water pressure within the soil matrix.
Beyond the constitutive and numerical models describing soil response, there is a need to
implement, validate, and calibrate these models in open-source software that is capable of
leveraging high-performance computing (HPC) resources. This ultimately will broaden their
impact and accessibility to the natural hazards community.

In terms of regional scale seismic slope stability, the opposing demands of detailed response
models and capturing large regions pose unique challenges and provide opportunities for
further development. Most regional-scale co-seismic landslide hazard models are based on
an infinite slope analysis that largely ignores local geology and the associated failure modes.
Research by Grant et al. (2016) presents a multi-modal landslide hazard assessment tool that
accounts for local geological as well as topographical conditions that may contribute to the
expected failure mode and corresponding hazard. There is opportunity to build upon this work
by leveraging co-seismic landslide databases for developing tools that run more sophisticated
models in regions where more data is available, with the goal of providing insight into how these
results could be extrapolated to regions where data is sparse. Additionally, advances in remote
sensing provide exciting opportunities to dynamically inform hazard models such that updated
predictions could be made from real-time observations to help guide emergency response.

5.4 Software and Systems

The following list of software is commonly used in assessing the potential for seismic slope
displacement:

SLAMMER
SLAMMER [43] (Jibson et al., 2013) is capable of performing Newmark-type sliding block
analyses. It allows users to choose from various simplified methods as well as running rigid
block, decoupled sliding block, and fully coupled displacement calculations on time histories
selected from an included catalog. Since SLAMMER is Java based, it is capable of running on
any operating system through the Java Virtual Machine (JVM). The source code is available at
on GitHub.

OpenSees
The Open System for Earthquake Engineering Simulation (OpenSees [6]) is an open-source
software framework capable of performing fully nonlinear dynamic effective stress analyses.
OpenSees is maintained by the Pacific Earthquake Engineering Research Center (PEER) and

https://github.com/mjibson/slammer
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actively developed by researchers at UC Berkeley and various research institutions. Several
commonly used soil constitutive models have been implemented in OpenSees, and additional
models can be added based on user needs. The framework is capable of running on HPC systems
and supports MacOS, Linux, and Windows operating systems.

Spreadsheet solutions
Spreadsheet solutions are routinely used for Newmark-type sliding block analyses, with some
authors releasing pre-programmed spreadsheets that implement their methods. To a lesser extent,
spreadsheets are also used for pseudo-static stability analyses. Spreadsheet solutions can be
implemented readily on any operating system using either Microsoft Excel or LibreOffice Calc.
Note: pre-programmed spreadsheet solutions tend to be available in Microsoft Excel, which
cannot be guaranteed to operate correctly in LibreOffice Calc.

UTEXAS4
UTEXAS4, available from ENSOFT, is a two-dimensional limit equilibrium analysis program
capable of performing pseudo-static stability analysis. This software is proprietary and only
supports Windows-based operating systems.

Slide2 and Slide3
Slide2 and Slide3 are two- and three-dimensional limit equilibrium analyses programs developed
by RocScience that are routinely used for pseudo-static analyses. These tools are proprietary
and only support Windows-based operating systems.

Slope/W
Slope/W is a proprietary program developed by GEOSLOPE. Similar to Slide2, it is a two-
dimensional limit equilibrium solver that is capable of performing pseudo-static analysis.
Currently, only Windows-based operating systems are supported.

FLAC
Fast Lagrangian Analysis of Continua (FLAC [31]), developed by the Itasca Consulting Group, is
a proprietary finite-difference based software package capable of performing dynamic nonlinear
effective stress analyses. FLAC allows users to import custom soil constitutive models either as
pre-compiled dynamic libraries or by using the scripting language FISH. FLAC does not run
on HPC systems and is closed source. Currently, only Windows-based operating systems are
supported.

PLAXIS
PLAXIS [37], now part of Bentley Systems, is a finite-element software package that can be
used to perform dynamic nonlinear effective stress analyses. Custom soil constitutive models
can be implemented within the platform. PLAXIS is proprietary and closed source. Currently,
it is not HPC capable and supports only Windows-based operating systems.
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General FEM solvers
LS-DYNA [35] and ABAQUS [30], both proprietary general finite-element method solvers, are
capable of fully nonlinear dynamic effective stress analyses. Custom material models, such as
those required for modeling dynamic soil response, can be implemented in these frameworks.
Depending on the license purchased, LS-Dyna and ABAQUS are capable of running on HPC
systems. LS-Dyna supports Unix, Linux, and Windows-based operating systems and is currently
available on DesignSafe. ABAQUS currently supports Linux and Windows-based operating
systems.

5.4.1 Relevant SimCenter Tools

The SimCenter supports the application of advanced uncertainty quantification techniques in
the field of numerical simulation of landslides and similar problems in rock mechanics (e.g.,
rock avalanches, sediment transport).

quoFEM
The Quantified Uncertainty with Optimization for the Finite-Element Method (quoFEM [7])
tool facilitates model calibration, optimization, uncertainty propagation, reliability analysis,
surrogate modeling, and sensitivity analyses of numerical materials, components, and systems
by combining existing simulation environments with state-of-the-art uncertainty quantification
applications. The graphical user interface currently supports finite-element software (OpenSees
and FEAP) and can also interface with custom analysis packages, including, but not limited to
those based on the discrete element and finite difference method and other commercial software
that cannot be bundled with the open-source SimCenter application (e.g., LS-DYNA, ABAQUS).
These features provide users instant uncertainty analysis and optimization capabilities for
numerical models. Furthermore, quoFEM provides an opportunity for researchers working
with experimental facilities to use advanced UQ methods and tools to design experiments and
calibrate numerical models.





Chapter 6
Tropical Cyclone—Wind

Ahsan Kareem with contributions by Liang Hu,
along with review comments and suggestions by Arindam Chowdhury, Seung Jae Lee, Rick
Luettich, Lance Manuel, Forrest Masters, and Chen Xinzhong

Extreme wind induced by tropical cyclones (TC–hurricane/typhoon/tropical storm) dominates
the wind loading on structures in the U.S. coastal areas. To assess the damage, loss, and
performance of buildings probabilistically under wind hazard as well as its secondary hazards
(flood, rain, debris, storm surge, etc.), this section describes computational models and inputs
available for estimating statistical characteristics of TC-induced wind speeds.

Typically, field measurements of TCs are limited and insufficient for estimating the probabilis-
tic description of wind speeds; thus they are usually generated by Monte Carlo-based procedures.
Such a simulation procedure starts from sampling input physical properties of a hurricane
(e.g., intensity, track, and Holland B parameter) in terms of their probabilistic characteristics
to simulate the wind field, by which the wind speeds at a specific site may be recorded and
estimated (Russell, 1971). The simulation is carried out by employing phenomenological models
of the hurricane wind field with random parameters. Other models based on meteorological
aspects [e.g., MM5 (Liu et al., 1997) and WRF (Davis et al., 2008)] are beyond the scope of
this section. Three types of TC wind-field models are currently available. The first two models
aim to solve the governing equation of motion of the TC atmospheric system directly using the
central difference method: (I) height-resolved models, which can resolve the vertical structure
of a tropical cyclone; and (II) slab models, which include an average or integration over the
height of the governing equations. In contrast, Type III physics-based models solve the intensity
and radial profile equations instead. The input variables are dependent upon the type of model
selected.

6.1 Input and Output Data

Measurements
Through the past two centuries, data from recorded TCs have been used by the wind engineering
community to create and calibrate probabilistic models. The National Oceanic & Atmospheric
Administration (NOAA) provides an extended and comprehensive TC database for the Atlantic
and Northeast Pacific, which encompasses data from reconnaissance, microwave and dropsonde
radar, as well as anemometer measurements (NOAA, 2018). Additional field measurements
supplement this database (e.g., Li et al., 2015b; Wang et al., 2016). Many other measurement
databases exist and may be publicly available, such as the extreme hurricane wind speed database
by NIST (Batts et al., 1980).
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Occurrence rate
This parameter describes the number of hurricanes that occur at a specific site. It is usually
described by a Poisson or binomial distribution, whose parameters are obtained by statistics
over the hurricane database (Li et al., 2016; Vickery et al., 2009c).

Track model: Initial location, Translation speed, and Heading
The track model describes the genesis point, heading direction, and translational speed of
the center of a TC for simulation purposes. For a specific hurricane in the NOAA database,
its best empirical track of the hurricane has already been synthesized by data fitting over
various measurements. The database also describes how other TC parameters change along
the track. For a specific site, the sub-region track model can be used, which only concerns the
segment of TC tracks within a circle (often the radius is 500 km) centered at the site. This
model is characterized by the perpendicular distance to the center and direction angle of the
straight-line track (Georgiou, 1986; Xiao et al., 2011). Note: the full-track model is more popular
in describing the genesis to the dissipation of a TC because it enables the simulation of extreme
TC winds simultaneously for a large region rather than a specific site. The genesis location can
be randomly selected from the historical record or generated based on its distribution function
(Vickery et al., 2009c). Starting from the genesis location, the track is generated by Markov-type
models, represented by auto-regressive functions in terms of TC parameters (latitude, translation
speed, sea surface temperature, etc.) as well as a random error term (Vickery et al., 2000b) or
by the Markovian transition probability function (Emanuel et al., 2006). The parameters of
track models must be estimated from the hurricane database as well as other measurements
(e.g., HadISST) (Li et al., 2016; Liu, 2014; Vickery et al., 2000b). Recent investigations usually
apply the kernel method for modeling those parameters (Chen and Duan, 2018; Mudd and
Vickery, 2015). Moreover, a dynamic track model (Beta-advection) has been developed based
on isobaric wind speed measurements (Emanuel et al., 2006).

Intensity: Central pressure difference or Maximum wind speed
Type I and II hurricane models use the central pressure difference as a proxy for the TC intensity.
Here, an auto-regressive model for the TC relative intensity (a function in terms of the pressure
difference) has been established along with the track models. The Type III model employs the
maximum mean wind speed as the intensity measure (IM), which may be predicted by a simple
coupled ocean-atmosphere physical model CHIPS (Coupled Hurricane Intensity Prediction
System) with its fast simulation algorithm (Emanuel, 2011, 2017; Emanuel et al., 2004) or by
the historical record-free generator (Emanuel et al., 2008).

Size: Radius to maximum winds (RMW)
The Radius to Maximum Winds (RMW) denotes the size of a TC and is the only TC size
parameter considered in Type I and II models. Type III models need additional parameters,
e.g., the radius at the wind speed of 15.5 m/sec (Chavas and Lin, 2016). The probabilistic
distribution of these size parameters can be estimated from the TC database. Note: an empirical
model of RMW has been developed in terms of the location and intensity parameters as well as
a random error term (Vickery and Wadhera, 2008; Vickery et al., 2009b).
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Shape of radial pressure profile: Holland B parameter
Introduced by Holland (1980), the B parameter revises the radial pressure profile in Type I and
II models to improve the goodness-of-fit of the maximum wind speed. From the TC database,
this parameter can be estimated concerning the reconnaissance data, which evolves with time.
Similar to RMW, statistical models are available for B as a function of RMW and latitude
(Powell et al., 2005) or as a dimensionless function that also involves SST (Vickery andWadhera,
2008). A physics-based pressure radial profile model has also been proposed by Holland (2008)
and Holland et al. (2010).

Local terrain
The local topography at a specified site accounts for the boundary layer wind speed profile
as well as the gust factor. A typical parameter of local terrain is the roughness length (or the
equivalent shear velocity), which reflects the effects of upstream terrain within 3 km on the
near-ground winds. Calculating this parameter is challenging, especially in consideration of
the rapid change of wind azimuth during a TC (Vickery et al., 2009a). It can be adopted from
existing design codes/specifications and augmented by additional computations by taking an
average over various terrains along each wind direction. As long as field measurements of gust
wind speeds are available at the specified site, the roughness length may also be estimated
from the record (Masters et al., 2010). Furthermore, CFD-based methods are also available to
estimate the local wind characteristics with detailed modeling of surrounding terrains. These
are expected to yield more accurate results and are often the only reliable method for complex
terrain but they are computationally expensive (Huang and Xu, 2013; Ishihara et al., 2005).

Landfall model parameters
After a hurricane makes landfall, the filling model starts to describe the weakening of the
TC intensity, or, in other words, the decrease in the central pressure difference. This model
is typically an exponential decay function, (Kaplan and DeMaria, 1995, 2001), whose decay
constant is the filling rate as a statistical function in terms of the intensity, translational speed,
and RMW (Vickery and Twisdale, 1995; Vickery, 2005; Vickery et al., 2009b). Moreover, both
the mean wind speed vertical profile and radial profile are subject to notable changes after
landfall, which may be captured by recently developed empirical models (Fang et al., 2018b;
Snaiki and Wu, 2018; Zhao et al., 2013). A recent study points at slower decay of landfalling
hurricanes when it strikes land, which is based on historical records potentially fueled by sea
level rise, additional moisture, and climate change (Li and Chakraborty, 2020).

Output: Wind field
The main output of a TC simulation from an engineering perspective is the probabilistic model
[i.e., Cumulative Distribution Function (CDF)] of mean wind speed in any specified target
location/region. A single hurricane scenario results in a mean wind speed and direction time
history, usually at the six-hour time interval. Additional effects of atmospheric turbulence may
be reflected by gust factors as well as spectra. These results serve as the intensity measure (IM)
for the ensuing performance-based wind engineering analysis (Barbato et al., 2013; Chuang and
Spence, 2019; Liu, 2014; Spence and Kareem, 2014; Unnikrishnan and Barbato, 2016; Xiao
et al., 2011; Yau et al., 2011).
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6.2 Modeling Approaches

Provided the inputs stated above, all TC wind field models aim at solving the steady mean
wind speed from the three-dimensional governing equation system describing atmospheric
motion in a TC. Type I models solve the three-dimensional motion equation system without
any dimensional reduction; Type II and III models are, per se, two-dimensional methods. Type
II considers the equation system reduced from the original one, whereas the Type III model
solves angular momentum equations derived by the physics-based mechanism of the TC rather
than the original motion equation. Here, Type I models can solve wind speeds throughout the
TC boundary layer height, whereas the other two models solve wind speeds at the gradient
height, which are then converted to near-ground heights by the boundary layer wind speed
profile. All the solved TC wind speeds need to be combined with the surface background wind
speed, implying the use of the TC translational speed for Type I and II models. Eventually, the
gust factor is applied to the mean wind speed to account for turbulence. Nonstationary effects
associated with TC winds may also be considered.

Type I model
The basic atmospheric motion governing equation of TC is nonlinear and three dimensional,
which can be solved numerically by the two-time-level time-split-based finite-difference scheme
(Kepert and Wang, 2001; Kepert, 2011). It accounts for the salient height-related effects of
both potential temperature and eddy viscosity (turbulent diffusivity represented by the vertical
turbulent exchange coefficient  for momentum and heat) (Kepert and Wang, 2001; Kepert,
2010b). Linearization of the nonlinear equation has been carried out considering the gradient
balance wind speed to yield the surface horizontal momentum equations (Kepert, 2001). The
linearized equations are then solved by utilizing the perturbation method (Meng et al., 1995) or
the Fourier series expansion (Kepert, 2001). Depending on the form of eddy viscosity (constant,
height-dependent, or piece-wise linear or nonlinear) and the terms being neglected, various
semi-analytical solutions are obtained (Fang et al., 2018a; Huang and Xu, 2013; Kepert, 2006;
Meng et al., 1995, 1997; Snaiki and Wu, 2017). In comparison with the nonlinear solution, these
linear solutions sacrifice accuracy to reduce computational costs (Kepert and Nolan, 2014).

Type II model
By integrating the three-dimensional equation over the vertical coordinate, a slab (or depth-
averaged) model is derived (Kepert, 2010a). This model still involves the vertical turbulent
diffusivity and is capable of calculating the vertical wind speed (Langousis, 2008; Smith, 1968;
Smith and Vogl, 2008). Further simplification is achieved by removing both the advective and/or
diffusive fluxes at the upper boundary, leading to the common category of TC models popular
in the structural engineering community (Powell et al., 2005; Shapiro, 1983; Vickery et al.,
2000a; Vickery et al., 2009b)). Chow (1971) was the first to develop a finite-difference scheme
to solve the model. Since then, other issues in this model have been addressed to enhance
its applicability, e.g., the boundary layer, drag coefficient, track model, and approximate fast
algorithm. So far, the parameters of this model have been well-recognized probabilistically
based on the TC database (Vickery and Wadhera, 2008). A review paper guiding application of
this model is also available (Vickery et al., 2009a). Note: the TC intensity and track inside this
model are being updated (Mudd et al., 2015; Vickery et al., 2010).



6 Tropical Cyclone—Wind 51

Type III model
The foundation of this approach is a physics-based intensity model derived by regarding the TC
as a Carnot heat engine (Emanuel, 2004; Emanuel, 1988). Themaximumwind speed-represented
intensity can be calculated along the track (Emanuel, 2011). Although a simple formula was
used as the radial profile at the gradient height (Emanuel et al., 2006; Lin and Chavas, 2012), a
more reliable model has been proposed by dividing the profile into its inner and outer regions.
Physics-based expressions for the two regions have been derived and then joined by a differential
equation system to establish the whole profile (Emanuel, 2004; Emanuel and Rotunno, 2011).
Given the input, only the equation system of the profile needs to be solved iteratively (Chavas
and Lin, 2016; Chavas et al., 2015). The empirical models for converting the resulting gradient
wind speeds to surface winds are different from the counterparts in the other two types of
models.

Validation
All three models have been validated by comparing indicators (characteristics) obtained from the
simulation results with those estimated from TCs in the database. The validation of the models
consisted of taking input adopted from one or multiple TCs and determining if the indicators
estimated over the output of a model match their target values (at least in the probabilistic sense).
The appropriate indicator of validation may vary as it is dependent on the major characteristics
of the specific type of models. Results of Type II models have been validated by almost all
recent available TCs in the database in terms of the maximum wind speed as well as the time
histories of both wind speed and direction (Li and Hong, 2016; Vickery et al., 2000a; Vickery
et al., 2009b). The validation results suggest the Type II model by Vickery qualifies as a design
tool in the ASCE specification (Vickery et al., 2009c). The indicators of Type I model include
the pressure snapshot, vertical profile of mean wind speeds, and the radial profile, suggesting
satisfactory validation. The radial profile using the Type III model also matched the target
profiles well (Chavas et al., 2015; Emanuel, 2004; Emanuel et al., 2006). Finally, it is suggested
that the CDF of wind speeds generated by all the models should be validated for the Type II and
III models (e.g., citeemanuel2006statistical, li2016typhoon)

Comparison
An investigation benchmarked by the MM5 (Liu et al., 1997) suggests that, in general, the
three-dimensional models may outperform the two-dimensional models, underscoring that the
nonlinear solution is always superior (Kepert, 2010a,b; Kepert and Nolan, 2014). In addition,
the investigation demonstrates that the Type II model is unable to replicate accurately the TC in
the database due to the model neglecting many critical factors that are key for accurate results
(Kepert, 2010a). Comparisons have also been carried out between specific models that belong
to Type II and Type III class (Smith et al., 2008), or between models that belong to the same
type class (Snaiki and Wu, 2017; Wills et al., 2000). Currently, a comprehensive comparison
covering all three model types is not available.

Boundary layer wind speed profile
While a TC is still over the ocean, the marine wind speed profile in the boundary layer varies
with model type. Type I models and height-resolved Type II models can generate the profile of
the simulated wind field. Whether the generated profile can approximate well the ones estimated
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by dropsonde measurements in the TC database is still open for debate (Kepert and Wang,
2001; Kepert, 2011, 2013; Montgomery et al., 2014; Smith, 1968). For the remaining Type
II models, an empirical profile formula has been proposed based on extensive statistics over
the TC database and applied to the linearized three-dimensional model of Type I (Vickery
et al., 2009b). Although such measurements may occasionally suggest the applicability of the
power-law (Song et al., 2016), this formula is a deeply revised version of the logarithmic law.
This profile, developed for the Type II model, may apply to the Type III model, but, so far, the
latter model simply adopts a constant value of 0.85 to convert wind speeds from the gradient
height to 10 m over the ground (Chavas et al., 2015). In contrast to the over-ocean case, the
profile of a TC after landfall may be altered as described by the semi-empirical model by Snaiki
and Wu (2018). Note: the vertical wind speed profile of a TC may resemble a nose-shape
due to the formation of a low-level jet due to roll vortices, which is a contrast with non-TC
winds (Li et al., 2019a, 2015b). Also the boundary layer may be perturbed by the presence of
the mesoscale vortices and modify transient features in the wind field. Finally, for a specific
land-based site, the wind speed profile of concern is heavily influenced by its surrounding
terrain (Huang and Xu, 2013).

Drag coefficient
The surface drag coefficient is a common parameter shared by all three model types, which
can influence significantly the final simulation results, especially the predicted maximum wind
speed (Li and Hong, 2015; Powell et al., 2003). Currently, the velocity-dependent and constant
models are extensively used for the over-ocean and over-land cases, respectively, but their
appropriateness is still arguable (Smith et al., 2014).

Turbulence
Recent empirical data shows no significant difference between gust factors in TC and non-TC
winds (Vickery et al., 2009a), although some exceptions do exist and are worthy of further
investigation (Yu et al., 2008; Yu and Chowdhury, 2009). This implies that local terrain
dominates turbulence effects even in winds generated by a TC, thus allowing for the use of
gust factor models based on regular wind data (e.g., ESDU, 2008). In contrast, a recent study
presented a different spectral model for the turbulence in TC winds, whereby the spectral content
of TC winds at the high reduced frequency range is larger than the one of non-TC winds (Hu
et al., 2017; Li et al., 2015a).

Nonstationarity
Typically, TC winds involve both short-term and long-term nonstationary properties of concern
in performance-based wind engineering. These may arise from rolls in the boundary layer
inducing jet type flows and mesoscale vortices that introduce periodic type perturbations in the
wind field (Fernandez-Caban et al., 2019; Li et al., 2015a, 2019a; Wurman and Koshiba, 2017).
The mean wind speed, direction, and spectral contents of a TC are all time-dependent, evolving
within the lifetime of TC. Considering the short-term nonstationarity of winds, the nonstationary
wind loading is induced on a target structure, whose effects on the structural response as well as
performance have been investigated (Kareem et al., 2019; Kwon and Kareem, 2009; Yau et al.,
2011). Long-term nonstationarity effects relate to the life-cycle of the target structure. Over the
long term, the input of TC models, e.g., the occurrence rate and the intensity, may evolve with
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time because of climate change (Emanuel, 2005). These long-term nonstationary effects have
been assessed by integrating the TC models with the current climate change models (Emanuel
et al., 2008; Lauren et al., 2014; Lin, 2015; Liu, 2014).

6.3 Software and Systems

Currently, there is no exclusive software publicly available for generating the wind hazard IM
for TC simulations; however, a module designed for such a task is included in both the HAZUS
(Vickery et al., 2006a) and FCHLPM (Florida Commission on Hurricane Loss Projection
Methodology (Hamid et al., 2010; Powell et al., 2005) software. Both programs are based on
Type II TC models, although the technical details populating the programs are slightly different.
The programs are Windows-based, publicly available, and controlled by a GUI. Such in-house
software exists in research laboratories around the world.

6.3.1 Relevant SimCenter Tools

The SimCenter developed a C++ application that implements the linear height-resolving wind
field model of Snaiki and Wu (2017). This application is planned to be released and documented
to provide a standalone solution that can generate wind fields for the research community.
The next update to the R2DTool in 2021 will enable regional hurricane risk assessment and
provide convenient controls for the aforementioned wind field model in the user interface. It
will also allow researchers to retrieve design wind speeds for various return periods from the
ATC Hazards by Location website (ATC, 2020).

smelt
The Stochastic, Modular, and Extensible Library for Time histories (Smelt [27]) is a C++ library
for stochastically generating time histories, including velocity time histories for wind loading.

Educational Tools
Wind effects are illustrated in two educational tools developed by the SimCenter. The Multiple
Degrees of Freedom Application (MDOF [19]) allows students to explore the effects of different
building parameters on the time-varying response of a building under transient loads, including
wind. The building is represented by a shear column.

The Earthquake versus Wind Application (EvW [16]) focuses on comparing the response of
buildings subjected to earthquake and wind loading, using the same shear model that is applied
in MDOF.





Chapter 7
Tropical Cyclone—Storm Surge

Andrew Kennedy with contributions by Tracy Kijewski-Correa,
along with review comments and suggestions by George Deodatis, Ajay B. Harish, Rick
Luettich, and Lance Manuel

Simulations of coastal storm surge are used for planning, forecasting, nowcasting, hindcasting,
climatological studies, and risk evaluation; the need for surge studies has been continual over
recent years, and there is an ongoing need for trained professionals. The largest surges occur
from tropical cyclones, but strong winter storms may also generate high water levels.

Surge studies are in many ways broadly similar: a wind and pressure field forces a hydro-
dynamic model, potentially inundating areas of interest (NJcoast, 2018). Details of modeling
differ, with numerics, resolution, bottom friction, and theoretical assumptions as noticeable
differences. Some systems include additional components such as wave setup and runup, while
these are neglected by others. Atmospheric forcing can either be raster-based, where large-scale
wind and pressure fields force the modeling system, or may arise from a tropical or extra-tropical
storm scenario described by a storm track and set of parameters describing strength and size.
These simulations yield geospatially distributed estimates of storm surge (storm-induced rise in
seawater levels, primarily caused by wind) for the purposes of direct and indirect loss assessment
for coastal communities (Jacob et al., 2011). Estimates of storm-induced inundation due to
combined effects of storm surge and waves driving water over land are important outputs from
any simulation environment. These outputs help quantify damage to structures as well as above
and below ground civil infrastructure.

Because surge models can be expensive to run, in general there is a need to manage the
trade-off between model fidelity and computational efficiency. One method that has seen
increasing adoption in recent years uses surrogate models. Given a database of high-fidelity
model runs to be used as a training set, surrogate models can reduce CPU times of model runs
from hundreds and even thousands of hours to minutes and enable computationally efficient
means to characterize uncertainty in the hazard (e.g., the hurricane track) for the purposes of
risk assessment (Kijewski-Correa et al., 2014). Note: these surrogate models require large-scale
training sets that may not be straightforward to generate.

7.1 Common Modeling Approaches

This section examines the three classes of models commonly coupled to capture storm surge
and accompanying wave effects nearshore and overland, as well as surrogate models that can be
tailored to these coupled models for a computationally efficient simulation alternative. Note:
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this is not an exhaustive presentation of the simulation tools available for coastal hazards but
focuses only on those viewed as the industry standard.

7.1.1 Storm Surge Heights and Inundation

Numerical models for storm-surge simulations are typically based on single-layer (or sometimes
multi-layer) depth-averaged shallow water equations describing fluid motion driven by storm
winds and pressure. These simplifications are necessary as a full Navier-Stokes based approach
is computationally unfeasible. The available numerical models differ in their computational
solution strategies, with implications for the spatial and temporal resolution of the simulations,
the required computational resources and runtimes, and the required input data and model
parameters. Generally, these models capture the amplitude of long-period, long-gravity waves
and do not simulate short-period wave effects, which are addressed in subsequent sections.
Models described herein are as follows:

SLOSH
The National Weather Service (NWS) utilizes a storm-surge model called Sea, Lake and
Overland Surges from Hurricanes (SLOSH [48]), which solves the shallow water equations using
structured curvilinear grids (Jelesnianski et al., 1992). Because it was developed to provide
real-time estimates of storm surge on a single computational core, the grid resolution and the
resulting spatial resolution of the results are fairly coarse. As reported by Mandli and Dawson
(2014), a primary limitation of SLOSH is “the limited domain size and extents allowed due to
the grid mapping used and formulation of the equations.” Nevertheless, SLOSH has continued
to be updated since its initial development and it is used for real-time forecasts of surge for
public advisories and to inform emergency responders. SLOSH is very computationally efficient,
which allows it to perform probabilistic simulations of storm surge prior to a hurricane landfall
using several thousand runs to obtain some measures of the potential surge if storm tracks and
intensities change. Because SLOSH has been used for many years and does not contain some
modern features included in other models, it may at some point be replaced by a different model,
the most likely candidate being the Coastal and Estuarine Storm Tide model (CEST) (Zhang
et al., 2017a).

ADCIRC
The ADvanced CIRCulation (ADCIRC [1]) methodology is commonly regarded as the state of
the art in high-resolution coastal storm-surge simulation (Luettich et al., 1992), which is capable
of providing significantly more accurate simulations than methods based on SLOSH (Resio and
Westerink, 2008) in near-shore coastal regions. As such, ADCIRC is the preferred methodology
for coastal storm-surge investigations by the U.S. Army Corps of Engineers (USACE) and
is one of the two models certified for the generation of FEMA Digital Flood Insurance Rate
Maps (DFIRMSs). ADCIRC solves the depth-averaged shallow-water equations describing
on a rotating earth, formulated using the traditional hydrostatic pressure and Boussinesq
approximations, and discretized in space using the finite-element method and in time using
the finite-difference method. ADCIRC can be run either as a two-dimensional depth integrated
(2DDI) model or as a three-dimensional model, with elevation resulting from the solution of the
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depth-integrated continuity equation in generalized wave-continuity equation (GWCE) form.
Furthermore, velocity is obtained from the solution of either the 2DDI or three-dimensional
momentum equations, retaining all nonlinear terms. ADCIRC simulations have been validated
for major hurricanes such as Katrina, Ike, Gustav, and Iniki (Kennedy et al., 2011, 2012).
ADCIRC has been parallelized efficiently, with linear speedups to hundreds or thousands of
cores for large domains.

Delft3D
Delft3D [46]-Flow is the second model certified for FEMA DFIRM generation. It is based
on shallow-water equations in either depth-averaged or multi-layer formulation, and is used
widely among engineering consultants and researchers (Hu et al., 2015; Vousdoukas et al.,
2016). Delft3D may be run in either serial or parallel modes, with typical parallel runs using
tens of cores. The Delft3D-Flow surge model is a part of a larger suite of interrelated models
that include spectral wave and coastal runup/morphological evolution.

FVCOM
FVCOM [47] is s finite volume-based model that has been used by numerous academic
researchers to study storm surge (Kerr et al., 2013; Rego and Li, 2010). It is based on
unstructured meshes and shows comparable results with other models when run on a similar grid.
The use of FVCOM for storm-surge studies is in some ways a simplification of the full model,
which includes momentum, continuity, temperature, salinity, and density. It was originally
developed for coastal and estuarine circulation by the oceanographic community and is fully
open source (Chen et al., 2003).

GEOCLAW
GEOCLAW [3] lies between SLOSH and ADCIRC in terms of modeling resolution and
computational cost. Originally developed to simulate tsunami inundation, GEOCLAW has
recently been adapted to simulate storm surge (Berger et al., 2011; Mandli et al., 2016). Based
on the CLAWPACK software libraries (LeVeque, 2002), GEOCLAW is an open-source, finite-
volume, wave-propagation numerical model used to estimate hurricane-induced storm surge
along a coastline. For overland flooding, the model uses Manning’s = to parameterize roughness
due to objects such as trees and small-scale structures that cannot be resolved computationally.
Adaptive mesh refinement allows GEOCLAW to place computational resources where and
when they are needed during a simulation. Thus, the overall cost of the simulation is reduced,
while retaining the same or similar accuracy characteristics to ADCIRC. Figure 7.1 compares
results calculated using GEOCLAW versus ADCIRC.

7.1.2 Spectral Wave Models

The platforms described above simulate slowly-varying surge heights but do not capture local
wave effects. To capture such effects requires a separate wave model, either run as a fully-coupled
system where both models pass information to each other or as a one-way loosely coupled
system. In two-way coupling, wave models pass radiation stresses to the surge model, while the
surge model passes water levels and currents to the wave model. In one-way coupling, which is
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Fig. 7.1 (a) A snapshot of a GEOCLAW storm surge simulation of Hurricane Ike at landfall; and (b) tide
gauge data computed from GEOCLAW and ADCIRC along with observed data at the same location (Mandli
et al., 2016).

less accurate, the wave model is run at some given water level and radiation stresses are passed
to the surge model.

The most common model used is Simulating WAves Nearshore (SWAN), which solves
equations for wave spectral density in both frequency and direction (Zijlema, 2010). ADCIRC
has been coupled previously with SWAN (Dietrich et al., 2011; Kennedy et al., 2012). The
most recent North Atlantic Coastal Comprehensive Study (NACCS) (USACE, 2015) employs
STWAVE, which is a steady-state, finite-difference spectral model for nearshore wind–wave
growth and propagation based on the wave action balance equation (Smith et al., 2001). STWAVE
simulates depth-induced wave refraction and shoaling, current-induced refraction and shoaling,
depth- and steepness-induced wave breaking, diffraction, and wave growth because of wind
input, and wave–wave interaction and white capping that redistributes and dissipates energy
in a growing wave field. Figure 7.2 validates the coupled hydrodynamic models used in the
NACCS by comparing the results to measurements across historical storms or tide predictions
(Nadal-Caraballo et al., 2015). Additional wave models in use include WaveWatch III (Smith
et al., 2018), which is NOAA’s operational forecast model.

7.1.3 Wave Runup Overland

Even when coupled with an appropriate nearshore wave model, surge models simulate only
the storm-surge elevation and not the additional impact of wave runup, which is particularly
important for predicting losses to buildings and infrastructure in a storm event. Supplementary
wave runup simulations are required to capture the interaction of the waves with the shoreline
and any coastal protective features along coastal transects. Two types of models are common:

1. Wave-Group Envelope models, where the effects of unsteady wave groups on long-wave surge
and runup drive time-varying water levels in the nearshore and at the moving shoreline. These
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Fig. 7.2 Validation of surge simulation in Atlantic City using coupled ADCIRC-STWAVE for historical storm
Hurricane Gloria, courtesy of USACE (Nadal-Caraballo et al., 2015).

models do not model individual wave runup, which can be important in certain instances. By
far the most common model of this type is XBeach (Roelvink et al., 2009), which is also
commonly used to estimate morphological evolution over short time periods. Models of this
type require O(10m) resolution to resolve important processes, requiring more computational
resources than both spectral wave and surge models for a similar domain. Thus, they are
generally limited to km-to-tens of km-scales for simulations.

2. Wave-resolving models define individual points on the water surface to model the evolution
of the detailed wave shape over arbitrary bathymetry. The most common models of this type
use different versions of Boussinesq models (Kennedy et al., 2000; Lynett et al., 2002; Nwogu
and Demirbilek, 2010), which are derived from Taylor series expansions about the long wave
limit. Wave-resolving models can simulate both wave group runup and runup from individual
waves, but may require resolution of O(5m) or finer in the nearshore. Although these models
may be used to simulate nearshore behavior of entire storms, they are computationally
very expensive (far more so than wave-group envelope models), and often one-dimensional
transects are chosen for representative simulations. Transect locations are generally selected
by segmenting the defined coastline in the areas of interest and then selecting the transect
density proportional to computational demand. Each transect is then discretized to capture
the site-specific bathymetry (offshore) and topography (onshore) along its length. Moreover,
transects must accurately capture the current condition of coastal protective features, e.g.,
dunes, in order to effectively predict the total runup inland. To estimate the wave runup
overland, inputs from the surge and spectral wave models are fed into a one-dimensional
Boussinesq model executed at the pre-selected transects (Demirbilek et al., 2009).

7.1.4 Surrogate Modeling Approach

Given the high degree of sophistication and large amount of computational resources required to
execute just one high-fidelity simulation (e.g., an ADCIRC+STWAVE/SWAN run), alternative
simulation tools have been developed recently to enable a wider range of users to employ
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these models for hazard characterization, risk assessment, and design of coastal protective
strategies. Most notably, surrogate modeling approaches can efficiently evaluate hurricane wave
and surge responses by leveraging databases of existing high-fidelity simulations normally
driven by a collection of historical and synthetic hurricane tracks (USACE, 2015). This is made
possible by formulating a simplified description of a storm scenario by a small number of
model parameters corresponding to its characteristics at landfall. The scenarios in the database
are then parameterized with respect to this model parameter vector and ultimately provide an
input–output dataset. Because the geospatial representation often covers a regional coastline
(typically represented by a large number of nodes) and resolves the coastal hazards at different
times during the hurricane’s history, the dataset is often high dimensional. After correcting
for any dry nodes at inland locations, the surrogate model is then built to approximate this
input–output relationship.

Although the initial implementations of the surrogate modeling approach relied upon a
moving least-squares-response surface methodology, more recent implementations for natural
hazard risk assessment now employ a Kriging metamodel for this purpose (Jia and Taflanidis,
2013). To further reduce the computational burden pertaining to both speed of execution—and
more importantly memory requirements—this approach is coupled with principal component
analysis (PCA) as a dimensional reduction technique. The metamodel is then developed in
this low-dimensional latent space (in this case below 100), with the predictions transformed
back to the original space for visualization purposes. This PCA implementation results in
very large computational savings, which is necessary to enable the evaluation of a large
ensemble of scenarios as required for a probabilistic evaluation while circumventing the need
for HPC resources (Jia and Taflanidis, 2013). Validation of these surrogate models using
leave-one-out cross validation (Taflanidis et al., 2017) suggested high accuracy, with coefficient
of determination close to 0.96 and a correlation coefficient close to 98%. By permitting rapid
evaluation of alternate storm scenarios, surrogate models offer an effective way to communicate
simulation results to urban planners and emergency managers. One such implementation is a
software system developed to assess storm surge risks on the coast of New Jersey (NJcoast,
2018).

7.2 Required Inputs and Resulting Outputs

High-fidelity computational simulations of coastal hazards require: (1) storm track information,
including the relevant description of the hurricane wind and pressure fields to drive the model;
(2) the topography and bathymetry along the coastline; and (3) the land use/land cover data for
the simulation of wave runup on shore. The simulations are inherently sensitive to assumptions
made regarding tides at the time of landfall. The coupling of a storm surge + nearshore wave +
wave runup model will yield geospatially distributed, time-dependent responses, i.e., the mean
water elevation, maximum water elevation, maximum water depth, and significant wave height
(or limit of moderate wave action). Such responses can be generated either by the coupling of
the aforementioned high-fidelity models or a surrogate model tuned to a database of results
from these models. A brief summary of specific inputs required for storm surge models, the
wave runup models, and the related surrogate models are as follows:
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Storm surge models
All storm-surge models require variations of the same inputs, potentially in much different
forms. All models require:

• Spatial and temporal information about wind fields and pressure. This may be in the form of
gridded data or in the form of parameterized wind and pressure fields;

• Bathymetry and topography over the entire domain;

• Frictional information, whether in the form of direct frictional coefficients or roughness, or
land use/land cover information that is converted to frictional resistance; and

• Boundary conditions at the domain limits.

Many models will also require:

• Information on tidal forcing when real dates are being simulated; and

• Computational settings, particularly for parallel systems.

Wave runup models
In addition to the topography and bathymetry data at each identified transect, and potentially
frictional information, the wave runup model must receive wave and water level inputs from the
coupled wave-storm surge model.

Surrogate models
Inputs to the surrogate model are twofold: the primary input required to develop the surrogate
model itself is the aforementioned database of high-fidelity simulations for a family of storm
tracks that may include tropical and extra-tropical storms. Once developed, users of the surrogate
model input only a collection of parameters necessary to describe the storm scenario based on
its characteristics at landfall:

1. Reference location (latitude, longitude);

2. Track heading (angle);

3. Central pressure (or pressure difference);

4. Forward speed; and

5. Radius of maximum winds.

More recently, this implementation was further simplified to enable simulation based on
only reference location and storm strength (Category 1-5) (NJcoast, 2018). Note: once the
surrogate model is tuned to high-fidelity simulation data for a specific geographic location, it
can efficiently provide predictions for storm scenarios of varying characteristics, even if that
scenario does not match any of those within the original database of high-fidelity simulations.

7.3 Primary Software Environments

The execution environments are briefly summarized below, but only for models included in the
NHERI DesignSafe suite.
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ADCIRC and coupled models
ADCIRC [1] has been optimized by unrolling loops for enhanced performance on multiple
computer architectures and can be executed on any operating system with a working FORTRAN
compiler. These include large commercial Unix systems (IBM Power & Blue Gene, Cray, SGI,
and Sun), Linux- and FreeBSD-based clusters, and personal workstations running Windows or
Mac OSX. ADCIRC includesMPI library calls to allow it to operate at high efficiency on parallel
computer architectures, which is often preferable for simulations over large domains where a
single hurricane realization can require thousands of CPU hours. Coupled ADCIRC+SWAN
models are available on all of the aforementioned platforms (with the exception of Windows),
while the coupled ADCIRC+STWAVE model is available on all the platforms including
Windows PCs as part of the Coastal Storm Modeling System (CSTORM-MS). ADCIRC and its
parallel implementation, PADCIRC, along with the coupled ADCIRC+SWAN software, are
available on DesignSafe.

CLAWPACK/GEOCLAW
Clawpack [45] (“Conservation Laws Package”) is a collection of finite-volume methods for
linear and nonlinear hyperbolic systems of conservation laws. Clawpack employs high-resolution
Godunov-type methods with limiters in a general framework applicable to many kinds of waves.
GEOCLAW [3] is an open-source, finite-volume, wave-propagation software implemented
in CLAWPACK that is capable of estimating hurricane-induced storm surge with adaptive
mesh refinement. The CLAWPACK 5.4.0 suite and the GEOCLAW tools are available through
DesignSafe.

SLOSH
SLOSH [48] (Sea, Lake and Overland Surges from Hurricanes) is a computerized numerical
model developed by the National Weather Service (NWS) to estimate storm-surge heights
determined from historical, hypothetical, or predicted hurricanes by taking into account the
atmospheric pressure, size, forward speed, and track data. These parameters are used to
create a model of the wind field that drives the storm surge. The SLOSH model consists
of a set of physics equations that are applied to a specific locale’s shoreline to incorporate
the unique bay and river configurations, water depths, bridges, roads, levees, and other
physical features. Storm-surge forecasts developed using SLOSH are available at https:
//www.nhc.noaa.gov/surge/slosh.php.

7.3.1 Relevant SimCenter Tools

The SimCenter develops both research and education tools to facilitate the entry for new
researchers into the field of storm surge simulation.

Hydro-UQ
The Hydrodynamic loading with Uncertainty Quantification Tool HydroUQ [4] manages
three-dimensional CFD simulations using OpenFOAM [5] and uses a universal interpreter to
interface with two-dimensional, far-from-coast simulations performed by shallow water solvers

https://www.nhc.noaa.gov/surge/slosh.php
https://www.nhc.noaa.gov/surge/slosh.php
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(e.g., GEOCLAW [3], ADCIRC [1]). The shallow water simulation results are used as inputs for
simulations in OpenFOAM. The bathymetry and topography of the ocean floor, the meshing
of the model, and other simulation parameters can be conveniently adjusted through the user
interface. Simulations can run remotely on the High-Performance Computing clusters linked to
DesignSafe.

Educational Tools
The CFD Notebooks [44] (CFDN) prepare students for CFD-based research work by providing a
basic working knowledge of OpenFOAM [5], including mesh preparation and the generation of
boundary conditions. CFDN is a series of Jupyter notebooks hosted on DesignSafe. It leverages
DesignSafe’s High-Performance Computing platform to provide an interactive interface for
students or instructors that can demonstrate running OpenFOAM simulations without any
software installation overhead.

7.4 Major Research Gaps

Although many research topics regarding storm-surge models remain to be solved, the major
issue is that the fast models are less accurate, while accurate models require enormous amounts
of computation time. Thus, it remains impossible to run the most accurate models for the
hundreds or thousands of simulations required to obtain surge probabilities prior to a landfalling
hurricane or to simulate very long climatological records. Three methodologies hold the
potential to improve the accuracy/speed trade-off:

• Surrogate or reduced models that make use of previous high-fidelity model runs to develop
simpler and faster models for new cases. This was discussed earlier; AI also falls into this
broad category;

• Improved computational schemes that improve parallel performance for slower models, or
improve accuracy for faster models; and

• Improved theoretical schemes to increase the accuracy on coarse grids. The subgrid model
corrections fall into this category and have been shown to increase accuracy greatly (Kennedy
et al., 2019).

The next major research gap is difficult to address but it is extremely important as a future
research goal: large-scale surge models that account for morphological evolution during storms.
Dune or beach erosion and levee failure are two examples of morphological feedbacks that may
have a significant effect on surge inundation; estimates of post-storm erosion are also greatly
desired. This has been a long-term goal with little progress.

In conclusion, whether employing these high-fidelity models or a companion surrogate
model, the resulting time-evolving water depth and velocity must translate into loads on
buildings and infrastructure. In this regard, these models face similar limitations as wind-field
models given the complexity of interactions with their surroundings. Accurately capturing
the physics of the flow overland and the effect of its interaction with the built environment
on the load description remains a challenging problem, even without further accounting for
the effects of debris transported in the flow. Identifying means to reasonably determine the
impact of these interactions on the load description—without having to support an intensive
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CFD investigation—will enable a wider range of researchers to evaluate the impacts of coastal
hazards.



Chapter 8
Tsunami—Inundation

Michael Motley with contributions by Andrew Winter,
along with review comments and suggestions by Ajay B. Harish, Andrew Kennedy, and Rick
Luettich

The simulation tools used to model tsunami inundation can generally be categorized as either
two-dimensional or three-dimensional models. Three-dimensional models solve Reynolds
average Navier-Stokes (RANS) or Large Eddy Simulation (LES) equations numerically using
the CFD techniques introduced in Chapter 11. Two-dimensional models often solve a different
category of governing equations derived from the three-dimensional Navier-Stokes (NS)
equation by integrating in the vertical dimension, e.g., shallow water equations and Boussinesq
wave equations where the two dimensions can be characterized as latitude and longitude,
with additional techniques available in some applications to consider variations in the vertical
direction. Because such equations are computationally much easier to solve than the RANS
and LES equations, they are broadly used in large-scale modeling of geophysical flows, e.g.
tsunami, storm surge, and flooding. Two-dimensional models are used in those cases where
computational efficiency is a factor. Examples include building an early warning system, which
requires tsunami modeling to be done as quickly as possible after an earthquake, versus a
probabilistic assessment that often requires thousands of computational simulations.

8.1 Input and Output Data

Both two-dimensional and three-dimensional models need boundaries for the simulation and
boundary conditions as input. In two-dimensional models, buildings and bridges cannot be
described directly. Buildings, because they come into direct contact with the ground, are often
incorporated as part of the ground topography and represented as an elevation field that varies
in horizontal space, or by simply removing a volume of the water column in the shape of the
building footprint from the computational domain. Bridges, on the other hand, are much more
difficult to represent because of the three-dimensional complexities of the bridge geometry and
the surrounding area. To define the computational domain, a finite region in the horizontal
plane must be specified, inside of which the flows are modeled. The boundary conditions on the
boundary of this finite region must be specified, e.g., flows are allowed to flow out of the region
freely on one side, and/or are reflected on the other. The topography (or bathymetry) data that
describe the shape of the ground (or sea floor) must also be specified as input, although these are
not interpreted as boundaries since the vertical dimension vanishes in a two-dimensional model,
and the topography data are treated as field variables that directly affect other field variables
(like velocities) in the solver.
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Generally for three-dimensional models, flows must also be bounded in the vertical direction
where the top boundary often represents the atmosphere and the bottom boundary represents
the ground. Additionally, the simulation incorporates buildings and bridges into the simulation
by subtracting volumes that describe the geometry of those structures from the domain. The
surface of these volumes thus becomes boundaries of the simulation domain as well, and their
boundary conditions must be specified. Thus, the geometry of the structures must be provided
as input if one wants to model them as well.

Both types of models also need input of initial conditions: namely, the state of the fluids
before the simulation starts. For instance, the initial conditions for some nearshore regions
might have the fluid at rest at sea level, while somewhere far from shore, a large volume of
water is placed above sea level to represent a tsunami wave. Some two-dimensional models
will also incorporate seismically-induced sea floor displacement profiles or other submarine
tsunamigenic phenomena to be used as initial conditions at the ocean surface above where they
occur. Different initial conditions will result in different states later in time.

The output quantities from both two-dimensional and three-dimensional models include
water surface and flow velocity; however, three-dimensional models are able to output quantities
that vary in the vertical direction. The two-dimensional models generally do not depend on
the vertical direction; therefore, its output quantities are generally not a function of positions
in the vertical direction. Furthermore, the three-dimensional models can usually output more
quantities of interest, e.g., water pressure, which can be integrated to obtain fluid loading on
structures.

8.2 Models and Software Systems

In general, tsunami simulation requires modeling at a wide range of spatial scales, including
(from large- to small-scale) offshore propagation, beach run-up, inland inundation, and impact
on individual structures.

For modeling that focuses on the large-scale phases, two-dimensional models are still the
most prevalent choices for their simplicity and computational efficiency. Two major variants
in this category are based on the shallow-water equations and Boussinesq wave equations,
respectively. Models that are based on shallow-water equations have been applied broadly to
ocean-scale tsunami modeling and local flooding as well (Berger et al., 2011; George, 2008;
George, 2004; Hu et al., 2000; Hubbard and Dodd, 2002; Popinet, 2012; Qin et al., 2018; Wei
et al., 2013). Mathematically, the shallow-water equations do not model the dispersion in water
waves directly, while the Boussinesq wave equations include an explicit dispersive term. Thus,
many models based on Boussinesq wave equations have also been used (Kim et al., 2009; Kim
et al., 2017; Lynett et al., 2010; Madsen and Sørensen, 1992; Madsen et al., 2003; Shi et al.,
2012).

As computational power has grown, three-dimensional models based on RANS and LES
equations have been applied for modeling of near-shore waves and floods, and, in particular,
for fluid impact on coastal structures like bridges and buildings, which are relatively smaller
in scales (Biscarini, 2010; Choi et al., 2007; Larsen et al., 2017; Mayer and Madsen, 2000;
Montagna et al., 2011; Williams and Fuhrman, 2016). In addition, three-dimensional models
output the pressure field directly, which can be integrated to obtain fluid forces on structures. In
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contrast, two-dimensional models rely on a simplified approach to convert their output to fluid
forces on structures (Motley et al., 2016; Qin et al., 2018, 2016; Sarfaraz and Pak, 2017).

Many of these models are built into mostly open-source software packages that are broadly
used by the NHE community and maintained by researchers at research institutes. Examples
include GEOCLAW [3] (Berger et al., 2011), MOST (Titov and Gonzalez, 1997), and Tsunami-
HySEA [49] (Macías et al., 2016).

8.2.1 Relevant SimCenter Tools

The SimCenter develops both research and education tools to facilitate the entry for new
researchers into the field of tsunami simulation.

Hydro-UQ
The Hydrodynamic loading with Uncertainty Quantification Tool HydroUQ [4] manages
three-dimensional CFD simulations using OpenFOAM [5] and uses a universal interpreter to
interface with two-dimensional, far-from-coast simulations performed by shallow water solvers
(e.g., GEOCLAW [3], ADCIRC [1]). The shallow water simulation results are used as inputs for
simulations in OpenFOAM. The bathymetry and topography of the ocean floor, the meshing
of the model, and other simulation parameters can be conveniently adjusted through the user
interface. The tool can also be used to run virtual experiments that help with the design of
laboratory tests and validate CFD models against existing measurements in wave tanks such as
those in the O.H. Hinsdale Wave Research Laboratory in Oregon State University. Simulations
can run remotely on the High-Performance Computing clusters linked to DesignSafe.

Educational Tools
The CFD Notebooks [44] (CFDN) prepare students for CFD-based research work by providing a
basic working knowledge of OpenFOAM [5], including mesh preparation and the generation of
boundary conditions. CFDN is a series of Jupyter notebooks hosted on DesignSafe. It leverages
DesignSafe’s High-Performance Computing platform to provide an interactive interface for
students or instructors that can demonstrate running OpenFOAM simulations without any
software installation overhead.

8.3 Major Research Gaps and Needs

One challenge in tsunami modeling is to develop models of different fidelity to satisfy different
needs. For instance, site-specific inundation modeling and analysis often need to be performed
in the design of vertical evacuation structures (Ash, 2015; González et al., 2013). In this case,
a more accurate but time-consuming three-dimensional model is desired. On the other hand,
compiling tsunami hazard maps—where typically thousands of runs are needed—might require
using a faster but less accurate two-dimensional model. Because ASCE 7 requires site specific
analysis to predict local flow characteristics for critical structures, a more formal methodology
for proper probabilistic tsunami hazard analysis over large areas is a critical research gap.
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Another demand in the area is to update or even re-design the relevant software to capitalize on
the rapidly growing computational power. These computational resources often require running
code on clusters or newer machines with graphics processing units (GPUs); thus, there is a need
to adapt these software packages to take advantage of these high-performance computing (HPC)
machines. Increased use of three-dimensional models is directly associated with increased
computational power; unfortunately, three-dimensional analysis is still not computationally
practical at larger scales. This requires the development of complex coupling mechanisms
between the two-dimensional and three-dimensional solvers. Similar coupling mechanisms
between the inundation models and the built environment, thus enabling both load prediction
and structural response and potential debris flows, are also a necessary step in streamlining the
analysis process across the various scales.



Part II
Response Estimation

Response estimation entails computational finite-element and other analysis methods to
simulate the physical response of solids and fluids related to natural hazards engineering (NHE).
The section on structural systems describes simulation technologies to analyze the response of
constructed facilities (buildings, bridges, and other facilities) to the loading effects of gravity,
earthquakes, storms (wind and storm-surge flows), and tsunami inundation. The section on
geotechnical systems describes methods to explicitly simulate the detailed response of soil
and soil–structure interaction under input ground motions. The simulation results are used to
determine ground deformations, liquefaction, soil–structure interaction, and ground instabilities
due to other phenomena (e.g., changes in ground water levels, scour, etc.). The sections on
computational fluid dynamics address methods to simulate wind and water flows due to water
inundation and tsunami.





Chapter 9
Structural Systems

Gregory G. Deierlein with contributions by Joel P. Conte and Ertugrul Taciroglu,
along with review comments and suggestions by David McCallen and Vesna Terzic

Response simulation of structural systems is an essential component of natural hazards
engineering (NHE) to quantify the effects of gravity loads, earthquake ground motions,
wind and water flows, and other loads on buildings, bridges, piers, pipelines, and other
constructed facilities. Founded on the principles of structural mechanics, structural response
simulation methods encompass a broad range of computational approaches, ranging from
simplified phenomenological models to detailed continuum finite-element methods. The
required simulations encompass a broad range of structural materials, systems, and scales.
Construction materials include wood, masonry, concrete, steel, and other materials configured in
multiple ways. The scale of simulations ranges from detailed finite-element models of structural
components and connections up through complex three-dimensional structural systems and, in
the case of regional simulations, large inventories or networks of structures.

The field of structural and finite-element analysis is well established and documented in
academic research papers and textbooks, and it is complimented by a multitude of research
and commercial software of varied capabilities. This review is limited in scope to the subset of
structural simulation methods and software technologies that are most directly relevant to NHE,
particularly those that are well suited to the research objectives and questions in the NHERI
Science Plan.

9.1 Input and Output Data

In the context of NHE, structural response simulations entail the development and analysis of
idealized structural models to assess the structural responses necessary to evaluate damage
and resulting consequences (life-safety risks, economic loss, downtime, etc.) to constructed
facilities and systems. In developing structural response models, it is important to clearly define
the objectives and scope of the model, specifically with regard to how the hazard loading
effects will be incorporated and how the results of the analyses will be used. At one extreme,
structural response analyses may involve high-resolution models to interrogate local (pointwise)
response of structural materials and components. At the other extreme, highly idealized models
of building systems may be used to evaluate economic losses and downtimes for regional
assessments of large building inventories. Obviously, the goals of the simulation will dictate the
type and resolution of the model employed, including how the input hazard is characterized and
how the simulation output will inform downstream calculations.
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In earthquake engineering applications, the loading input for structural simulations is usually
earthquake ground shaking, which is described in terms of one or more intensity measures (IMs)
(e.g., spectral acceleration, spectral displacement, duration, etc.) or ground-motion seismograms.
In some cases, the earthquake input may be characterized by input ground deformations, such
as for buried pipelines and tunnels or structural foundations. In wind engineering, the loading
input is typically equivalent static wind pressures or response histories of wind pressures, the
latter being more important for flexible structures that interact dynamically with the wind. For
assessment of storm surge and tsunami inundation, the loading input is usually equivalent static
water pressures or debris flow forces.

Traditionally, structural response simulation has focused on structural framing components and
systems; more holistic risk assessments require modeling of so-called nonstructural components
that can affect the structural response and final damage state. For wind and water inundation
flows, the interaction between the wind/water flows and the architectural cladding, partition
walls, and other surfaces is particularly important. For earthquake engineering, architectural
cladding and partition walls are important to model for certain types of light-frame construction
because these components can provide significant strength and stiffness (e.g., wood-frame
residential houses).

9.2 Modeling Approaches

As illustrated in Figure 9.1, models for nonlinear analysis of structures can range from uniaxial
spring or hinge models, to more fundamental fiber section and continuum finite-element models.
In general, all models are phenomenological in that they rely on empirical calibration to observed
behavior at some level of idealization. The concentrated models (see Figure 9.1a-b) are highly
phenomenological in that the underlying functions that describe the structural behavior are
based on semi-empirical calibration to overall component behavior (e.g., Do and Filippou, 2018;
Folz and Filiatrault, 2001; Ibarra et al., 2005; Lowes and Altoontash, 2003). While Figure 9.1
illustrates these as moment-rotation hinge models, the concentrated springs can apply to any
univariate response quantity, e.g., axial or shear springs. At the other extreme, the continuum
finite-element models (see Figure 9.1e) are calibrated at the material level (e.g., Dettmer and
Reese, 2004; Lee and Fenves, 1998; Lemaitre and Chaboche, 1990; Maekawa et al., 2003),
where the kinematics and equilibrium of the components are represented more directly by the
model formulation. As such, the continuum models are more adaptable to different geometries
and loading regimes; however, to the extent possible, the models should be validated against
test data that represents the governing phenomena in the structural components being modeled.

In between the concentrated hinge and continuum models are fiber section or fiber hinge
models (see Figure 9.1c-d), where kinematic assumptions (such as plane sections remain plane)
are used to relate uniaxial material response to generalized strains and stress resultants (e.g.,
moment-curvature) at member cross sections. The uniaxial material models that comprise fiber
models can be calibrated based on the uniaxial material stress-strain behavior (e.g., Carreño
et al., 2020; Dodd and Restrepo-Posada, 1995; Mander et al., 1988; Menegotto and Pinto,
1973) or alternatively on quasi stress–strain, where the properties are adjusted to account for
phenomena such as steel reinforcing bar buckling (e.g., Dhakal and Maekawa, 2002; Kunnath
et al., 2009).In between fiber section beam–column elements and continuum finite-element
models are beam–truss models, which are capable of capturing local member softening and
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system softening in a robust and computationally efficient way (Álvarez et al., 2020; Lu and
Panagiotou, 2014). Computationally efficient beam–truss models have been shown to capture
the softening behavior induced by flexure–shear interaction, which is a very challenging task
for computationally intensive continuum finite-element models. As an illustration, Figure 9.2
shows a beam–truss model (developed in OpenSees) of the Alto Rio building, which collapsed
in the 2010 Mw 8.8 Maule earthquake in Chile (Zhang et al., 2017b).

Fig. 9.1 Range of structural model types (Deierlein et al., 2010).

Fig. 9.2 OpenSees Beam-truss model of Alto Rio Building subjected to three components of 2010 Mw 8.8
Maule Chile earthquake recorded at the CONC station (Zhang et al., 2017b).

The choice of model type for a given application involves a balance between reliability,
practicality, and computational efficiency, subject to the capabilities of available software
and computational resources. The optimal model type depends on many factors, including
the structural system and materials, governing modes of behavior, the expected amount of



74 Deierlein

nonlinearity, and the level of detail available for the input and output data. The reliability of the
model comes from its ability to capture the critical types of deformation that are of interest to
the modeler and control the response.

In recent years, applications to performance-based earthquake engineering have led to major
advancements in the development and calibration of nonlinear structural analysis models to
simulate the response of buildings, bridges, and other structures from the onset of damage up
through collapse. Several recent NEHRP publications have reviewed structural models and
modeling parameters for nonlinear analysis to support seismic evaluation, retrofit, and design
of buildings (N.I.S.T., 2017a,b,c). These NIST documents summarize models and parameters,
along with references to many of the underlying research publications, for concrete and steel
moment frames, steel concentrically braced frames, concrete shear walls, reinforced masonry
walls, and light-frame wood shear walls. A NIST technical brief (Deierlein et al., 2010) provides
a broader review of nonlinear analysis methods with a summary of proposed research and
development needs for performance-based seismic engineering of buildings. Other resources on
nonlinear modeling and analysis include: PEER/ATC report on tall buildings (Malley et al.,
2010), Spacone and El-Tawil (2004) on composite steel-concrete structures, and Nurbaiah et al.
(0017) on masonry infilled RC frames.

A detailed performance-based modeling and analysis guidelines for bridges is described in a
PEER report by Aviram et al. (2008), which targets reinforced concrete (single- or multi-span)
bridges common in California (NBI, 2016). An example of the components involved in modeling
of a typical bridge is shown in Figure 9.3. Research cited in the Aviram report and publications
since then address structural modeling details for bridges related to: (1) straight and skew
angled abutment backfill models (Shamsabadi et al., 2010): (2) abutment kinematic interaction
models (Zhang and Makris, 2002): (3) shear key models (e.g., Silva et al., 2009); (4) pile-soil
interaction models for conventional (Hutchinson et al., 2001; Taciroglu et al., 2006), group
(Lemnitzer et al., 2010) and large-diameter (Khalili-Tehrani et al., 2014) piles; (5) in-span hinge
models (Hube and Mosalam, 2008); and (6) column models (Terzic et al., 2015; Xu and Zhang,
2011). The aforementioned models have been used in studies that have furthered the state of
the art, which include work by Kaviani et al. (2014), who targeted skew bridges, Omrani et al.
(2015), who comprehensively examined and improved upon the bridge PBSA guidelines by
Aviram et al. (2008), and Omrani et al. (2017), who examined fragility sensitivities to abutment
modeling uncertainties. In all these studies, the analysis tool of choice has been OpenSees
(McKenna, 2011) wherein most, if not all, of the aforementioned models are publicly available.

Most natural hazards research on nonlinear response simulation of structures is related to
earthquake engineering where addressing inelastic response has long been recognized as a
necessity under design ground motions. In contrast, inelastic structural effects tend to be less
pronounced for evaluation of gravity, wind, and other loading effects. In the case of storm-driven
wind and wave loading or tsunami inundation, the largest nonlinear behavior involves the
loading due to the dynamic fluid (air or water) flows and their interaction with the structure.
Examples of recent research to study the response of structures to fluid flows include Ataei and
Padgett, 2015; Attary et al., 2016; Madurapperuma and Wijeyewickrema, 2013; Minjie et al.,
2018; Minjie and Scott, 2014; Petrone et al., 2017.

Repeated nonlinear response history analyses for constructing seismic fragility curves or
for performing simulations of regionally distributed systems typically require large-scale
computational resources. Due to the granular nature of each structural analysis, the required
computations are embarrassingly parallel (i.e., perfectly scalable in a parallel computing sense).
Apart from the computational requirements, analyses of buildings, bridges, or other distributed
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Fig. 9.3 Schematic view of a generic bridge numerical model in OpenSees (Kaviani et al., 2012).

infrastructure requires consideration of correlations in the hazard demands (e.g., earthquake
ground motions) across the region along with correlations of the structural system response.
Such regional-scale analyses are uncommon and not standard, but various attempts have been
made (e.g., Miller et al., 2015).

9.3 Software and Sytems

While there are a large number of available software systems with various capabilities, this
summary focuses on software programs that are well-suited and widely used in research related
to NHE. Emphasis is on open-source software currently available and supported on the NHERI
DesignSafe computing platform along with a few widely used commercial codes.

OpenSees
The Open System for Earthquake Engineering Simulation (OpenSees [6]) is an open-source,
object-oriented software framework for simulating the seismic response of structural and
geotechnical systems. OpenSees was developed and is maintained by the Pacific Earthquake
Engineering Research (PEER) Center for research in performance-based earthquake engineering
and is widely used and contributed to by researchers from around the world. OpenSees has
advanced capabilities for modeling and analyzing the nonlinear response of structural systems
using a wide range of material models, beam–column elements and continuum elements, and
solution algorithms. The software is designed for parallel computing to allow scalable simulations
on high-end computers or for parameter studies. The software is available on DesignSafe and
can be downloaded to run on Linux, Windows, or Mac OS (http://opensees.berkeley.edu/)

http://opensees.berkeley.edu/
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LS-DYNA
LS-DYNA [35] is a general-purpose finite-element program capable of simulating complex
real-world problems with primary users from the automobile, aerospace, construction, military,
manufacturing, and bioengineering industries. It has nonlinear frame and continuum finite
elements, with material models for steel, concrete, and soils along with fluids. LS-DYNA’s
origins lie in highly nonlinear, transient dynamic finite-element analysis using explicit time
integration, and it is optimized for shared and distributed memory Unix, Linux, and Windows-
based platforms. The software is maintained and marketed by Livermore Software Technology
Corporation, with licensing available to both the commercial and academicmarkets. It is available
on DesignSafe for users with an academic license. (http://www.lstc.com/products/ls-dyna)

FEAP
The Finite Element Analysis Program (FEAP [51] and FEAPpv [52]) is a general-purpose
finite-element program for solving nonlinear, static, and transient partial differential equations.
Its primary applications are directed to the solution of problems in solid mechanics; however,
the system may be extended to solve problems in other subject areas by adding user developed
modules to address problems in fluid dynamics, flow through porous media, thermo-electric
fields, and others. The software is available to run onUNIX/Linux/Mac orWindows environments
(see http://feap.berkeley.edu/)

Other Commercial Software
The following is a list of other commercial software, with simulation capabilities for NHE
commonly used in both industrial and academic research. For details regarding the capabilities
of the software, readers are referred to the websites of the software providers.

• SAP 2000, ETABS, PERFORM3D (https://www.csiamerica.com );

• ABAQUS Unified FEA (see https://www.3ds.com/products-services/simulia/products/
abaqus/);

• LARSA (https://www.larsa4d.com/);

• Marc (http://www.mscsoftware.com/product/marc); and

• DIANA (https://dianafea.com)

9.3.1 Relevant SimCenter Tools

The SimCenter develops both research and educational tools to facilitate the calibration of
numerical models and the simulation of structural response under earthquake and wind loading.

quoFEM
The Quantified Uncertainty with Optimization for the Finite-Element Method (quoFEM [7])
tool facilitates model calibration, optimization, uncertainty propagation, reliability analysis,
surrogate modeling, and sensitivity analyses of numerical materials, components, and systems
by combining existing simulation environments with state-of-the-art uncertainty quantification

http://www.lstc.com/products/ls-dyna
http://feap.berkeley.edu/
https://www.csiamerica.com
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.larsa4d.com/
http://www.mscsoftware.com/product/marc
https://dianafea.com
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applications. The graphical user interface currently supports finite-element software (OpenSees
and FEAP) and can also interface with custom analysis packages, including, but not limited to
those based on the discrete element and finite difference method and other commercial software
that cannot be bundled with the open-source SimCenter application (e.g., LS-DYNA, ABAQUS).
These features provide users instant uncertainty analysis and optimization capabilities for
numerical models. Furthermore, quoFEM provides an opportunity for researchers working
with experimental facilities to use advanced UQ methods and tools to design experiments and
calibrate numerical models.

EE-UQ
The Earthquake Engineering with Uncertainty Quantification (EE-UQ [2]) tool facilitates the
assessment of structural response to earthquake events. Uncertainties in the properties of the
ground motions and the structural system can be characterized and propagated through the
simulations. Ground motions can be imported from external sources, or automatically selected
from the PEER NGA-West2 database (Ancheta et al., 2014) to match a target seismic hazard
description. The structural response simulations are run in the OpenSees [6] finite element code.

WE-UQ
The Wind Engineering with Uncertainty Quantification Tool (WE-UQ [11]) is designed to
assess the response of buildings subjected to wind loading. Uncertainty Quantification refers to
considering the uncertainty in the properties of the building and the wind loads and propagating
such uncertainty through the simulations. It provides access to advanced CFD-based loading as
well as other methods for specifying wind loads, such as online wind engineering databases
(e.g., TPU, 2020) and the stochastic wind load generation available in Smelt [27]. The CFD
simulations are run using OpenFOAM [5] and the calculated wind loads are applied on finite
element models in OpenSees [6]. Two-way fully coupled fluid–structure interaction is currently
under development.

R2DTool
The Regional Resilience Determination Tool (R2DTool [8]) is a research application that focuses
on running regional simulations and interpreting their results. The tool integrates the workflow
components from other research tools developed for individual building assessment (e.g.,
EE-UQ, PBE) and extends them to consider multiple assets and a regional characterization of
hazard scenarios. The first release of the R2DTool provides features for seismic risk assessment.
Additional features planned for 2021 will enable hurricane risk studies including the simulation
of both wind and storm surge effects. The response of buildings in the regional simulation is
modeled using the finite element method and the OpenSees [6] software. Models are either built
with user-defined Tcl or Python scripts, or basic building information (e.g., number of stories,
type of structural system) is used to automatically define an idealized building model.

Educational Tools
The response of structures to ground shaking and wind effects is illustrated in several educational
tools developed by the SimCenter. The Multiple Degrees of Freedom Application (MDOF
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[19]) allows students to explore the effects of different building parameters on the time-varying
response of a building under transient loads. The building is represented by a shear column.

The Earthquake versus Wind Application (EvW [16]) focuses on comparing the response of
buildings subjected to earthquake and wind loading, using the same shear model that is applied
in MDOF.

The Braced Frame Modeling BFM [50] application focuses on the details of modeling braced
frames by showing how various modeling assumptions affect the simulated response of a brace
and its agreement with actual experimental data.

The Shear Wall Intelligent Modeling SWIM [53] application helps students explore the
numerical modeling of shear walls. The application allows users to test various modeling
assumptions and see how the simulated response compares to experimental data. Machine
learning algorithms are used in the background to help students choose reasonable parameters
for the model.

9.4 Research Gaps and Needs

While computational tools for simulation of structural materials and systems are fairly mature,
there are still significant limitations in the modeling capabilities along with the continuing
need for improved calibration and validation of existing models. The limitations and needs
depend on the scale and resolution of the models, i.e., whether one is interested in detailed
models of structural material and components to examine localized behavior or less detailed
models that can reliably simulate the behavior of complete structural systems (buildings, bridges,
etc.) or large inventories of systems (e.g., building inventories or geographically distributed
infrastructure systems).

At the detailed level, there are continuing needs to develop, implement, and validate continuum
finite-element models that can simulate nonlinear behavior and damage to structural materials
and components under random cyclic loading, including interfaces and interaction between
materials. Models for steel and other ductile materials are fairly well established for simulating
large plastic strains and deformations (e.g., to simulate local and overall buckling (see N.I.S.T.-
A.T.C., 2018), whereas methods to reliably capture fracture under cyclic inelastic loading
are still evolving. For other structural materials, including reinforced concrete, wood-based
materials, and masonry, many challenges remain to reliably simulate inelastic damage and
degradation as seen in physical tests. In addition to the models themselves, further research and
development are needed to implement and validate models in open-source software to run on
high-performance computing (HPC) resources to broaden their impact in NHE.

At the large-scale system or distributed inventory/system level, there is a need for systematic
approaches that develop, calibrate, and manage models computationally efficient enough to
be deployed at scale, which also capture accurately the dominant behavioral effects. For
such applications, many of the challenges are more related to supporting modeling and data
management tools as much as the models themselves. Dimension reduction methods (DRM)
may offer opportunities for coupling of physics-based hazard models (e.g., geophysics ground
shaking or computational fluid dynamic wind or fluid flows) with models of structural systems.
A related need is to develop inventory data with reliable descriptions of the systems that includes
information on the uncertainties and correlations in those uncertainties.
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Geotechnical Systems
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Problems in geotechnical earthquake engineering often involve complex geometry and boundary
conditions. Materials comprising geotechnical media behave almost always in a nonlinear
fashion. Moreover, soil is made of three phases, and interactions between these phases play
an important role in the global response, making theories even more complicated. Interaction
of structural foundations (e.g., bridges, abutments, or buildings) with the surrounding soil
is also a major aspect to consider in geotechnical earthquake analysis and design. Natural
material inhomogeneity caused by soil deposition, as well as human influence, contributes to
the complexity of the problem. In addition, the dynamic nature of earthquakes and their effects
can rarely be considered in simplified models while preserving all their important aspects.

To address these problems, numerical analysis have become the most viable method for
design and research purposes. In describing the state of the art in numerical modeling in
geotechnical earthquake engineering, it is necessary to discuss each one of the aforementioned
aspects; i.e., numerical methods, coupled formulations, constitutive models, interface elements,
boundary and initial conditions, and corresponding verification and validation efforts. A list of
common geotechnical codes used in geotechnical earthquake engineering is provided below.
Although incomplete, this list identifies tools that address several common aspects. A few notes
on research gaps and needs is included at the end to complete this section.

10.1 Numerical Methods

Among many other methods of analysis, the finite-element method (FEM), finite-difference
method (FDM), the material-point method (MPM), smooth particle hydrodynamics (SPH), and
discrete-element method (DEM) are used in geotechnical earthquake engineering. Of these, the
FEM and FDM are most common in geotechnical practice and research. Commercial codes
such as PLAXIS [37], FLAC [31], LS-DYNA [35], and ABAQUS [30] and open-source codes
such as OpenSees [6], FEAP [51], and Real-ESSI [59] are examples of numerical frameworks
that offer dedicated geotechnical capabilities for earthquake applications. For one-dimensional
wave propagation analysis, equivalent linear methods continue to be a common choice, with
“shake-like” tools, such as ProShake [58], Strata [60], and DeepSoil [57] (EL), being popular
in practice. Most FEM tools offer one-dimensional, two-dimensional, and three-dimensional
capabilities. Finite-element formulations that reduce computational demand via mesh accuracy,
effective assimilation of nonlinear constitutive models, or general efficiency (McGann et al.,
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2015, 2012) are ideal in this context. Today, extensive research is devoted in establishing finite-
element formulations for solid mechanics that are equally applicable to any arbitrarily-posed
problem.

When considering problems dominated by large deformations, such as the case of debris flows
or tailing-dam runouts, meshless techniques, such as MPM and SPH, provide the necessary
functionality to account for these conditions (Mast et al., 2015). MPM codes commonly used in
research and practice include CB-Geo-MPM [55], Claymore [56], Uintah [61], and Anura3D
[54].

In recent years the discrete-element method (DEM) and discontinuous deformation analysis
method (DDA) have gained applicability in geotechnical earthquake engineering, in particular
for understanding phenomena at micro- and meso-scales and homogenization to the macro-scale
(Kawamoto et al., 2018). Popular DEM and DDA tools include PFC, LIGGGHTS, and LS-DEM.

10.2 Coupled Fluid–Solid Formulations

Geotechnical earthquake engineering requires the evaluation of total and effective stresses. Total
stress analysis is based on conventional single-phase formulations. Effective stress analysis
requires a method to account for the interaction between the pore fluids and soil skeleton in
saturated or partially saturated soil. Various approaches derived from the early work of Biot
(1941, 1956, 1962) and others, including Borja (2006) and Ehlers (2002), have been developed
and added to multiple numerical frameworks, each one adding fluid degrees-of-freedom to
the system using different assumptions (Arduino, 2001). Three primary numerical approaches
are discussed in Zienkiewicz and Shiomi (1984). These approaches include the D − ? − *
formulation (which uses the full coupled system of equations developed for a saturated problem),
the D −* formulation (which assumes both media are incompressible), and the D − ? approach
(which simplifies the system by assuming that the fluid acceleration can be neglected). The
D − ? approach is most common in commercial codes such as PLAXIS [37] and FLAC [31],
and is also available in OpenSees [6] and Real-ESSI [59]. These formulations have also found
application in MPM codes, although at this level it is important to completely separate the
phases. Extensive research is currently ongoing in this field.

10.3 Treatment of Soil–Foundation Interfaces

Interaction of structural components with the surrounding soil is of major concern in geotechnical
earthquake engineering. This issue arises in many geotechnical problems whether related to
retaining structures, foundation engineering, underground construction, or even soil improvement
systems, and is one of the most important and challenging aspects of geotechnical numerical
modeling since it is inherently nonlinear and complex. Different approaches have been proposed
over the past forty years that range from simple interaction springs (? − H, C − I,and & − I
springs) (API, 2007) to methods based on contact mechanics (thin layer and interface elements)
(see Laursen, 2002). Simplified models rely heavily on empirical methods. Extrapolating these
methods to more complicated and general cases requires extreme scrutiny of the problem-at-hand
and method used. The more advanced the methods are, the more complex and costly they
become in terms of computation. PLAXIS [37], FLAC [31], ABAQUS [30], and Real-ESSI [59]
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include interface elements, and OpenSees [6] offers a suite of elements, including nonlinear
springs, interface elements, and contact elements to characterize beam–solid interaction (see
Ghofrani, 2018; Petek, 2006). Coupling between structural systems and geotechnical domains
rely on the appropriateness of these elements. Continued efforts and developments are underway
in this field.

10.4 Soil Constitutive Modeling

Constitutive models play a vital role in geotechnical earthquake engineering. Accurate and
reliable numerical analyses require constitutive models to represent the in situ soil response
and different drainage and loading conditions. Over the years, soil constitutive models have
ranged from relatively simple von Mises, Drucker-Prager, and Mohr-Coulomb plasticity models
to sophisticated models that capture specific aspects of soil behavior; see Borja, 2013. Among
them Cam-Clay and other critical-state-based plasticity models have been of particular value and
significance in geotechnical engineering. Most of these models use isotropic hardening and are
applicable to static and monotonic loading conditions. Most geotechnical FE codes (PLAXIS,
OpenSees, Real-ESSI, etc.) include conventional implementations of these models. For dynamic
analysis, however, kinematic hardening is required to capture the cyclic nature of the soil
response. For this purpose, three families of models are commonly used: multi-yield surface
models, bounding surface models, and multiple-strain mechanisms models. These models differ
in the way kinematic hardening is treated. Multi-surface plasticity models were introduced
for soils by Prevost (1977, 1985) and were extended to liquefiable sands by Elgamal et al.
(2003). These models have been used to represent the constitutive behavior of both cohesive
and cohesionless soils in total and effective stress analyses and are available in OpenSees.
Bounding surface models were first introduced in geotechnical engineering by Dafalias (1986)
and coworkers, and extended using critical-state concepts by Dafalias and Manzari (2004) to
represent the response of liquefiable soils. This model is available in OpenSees, Real-ESSI,
and FLAC. Variations of this model by Boulanger and Ziotopoulou (2017, 2018) (referred
to as PM4Sand and PM4Silt) have been developed to better represent the undrained cyclic
response of sands and silts. These models are available in FLAC, PLAXIS, and OpenSees.
The multi-mechanisms approach is defined in strain space and has been used in Japan, most
particularly through its implementation in the Cocktail model proposed by Iai et al. (2011,
2013).

10.5 Boundary and Loading Conditions

Boundary conditions in geotechnical problems require special attention to ensure appropriate
results. At a minimum, boundaries must be fixed such that all rigid-body displacement modes
are restricted. In static and pseudo-static analyses, the main concern is diminishing the effects
of the boundary on the portions of the model that are of primary interest. For the analysis of a
soil–foundation system, boundary effects can be controlled by extending the limits of the soil
domain away from the location of the foundation elements. Minimizing boundary effects is also
critical in dynamic analysis; however, devising proper boundary conditions is more difficult
than for static or pseudo-static cases. The particular method used for this purpose depends upon
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the objective of the numerical model and originates from the fact that the assumption of a rigid
boundary is typically not valid. Several strategies have been proposed to accommodate the effect
of a semi-infinite subsurface in a numerical model of finite size. The use of periodic boundary
conditions, in which the lateral extents of the model share translational degrees-of-freedom, is
one such approach that attempts to appropriately account for the free-field response of the soil
domain.

Lysmer and Kuhlemeyer (1969) introduced a technique to capture a transmitting boundary
through the use of viscous dashpots. By defining the viscous response of the dashpots based
on the density and shear-wave velocity of the material beyond the boundary, this approach
appropriately captures the outward propagation of wave energy in the numerical model as long
as the waves impinge in a near-normal orientation to the boundary. When defining transmitting
boundaries using the Lysmer and Kuhlemeyer (1969) method, accelerations are not directly
applied to the model. Instead, an effective force is applied using the technique developed by
Joyner and Chen (1975). This effective force is proportional to the input velocity and the
constitutive properties of the material beyond the boundary. This approach is commonly used in
numerical analysis for geotechnical problems to account for the compliance between the soil
domain of the model and the semi-infinite media outside of the considered domain.

Better results can be attained using a perfectly matched layer (PML), which is an artificial
absorbing layer for wave equations commonly used to truncate computational regions in
numerical methods to simulate problems with open boundaries, especially in finite-difference
and finite-element methods (Zhang et al., 2019b). PML’s are designed so that waves incident
upon the PML do not reflect back to the medium at the interface. In general, PMLs have been
shown to produce better results than LK dashpots.

Lastly, a technique to properly account for the differences in wave behavior inside the finite
soil domain represented by the model and the wave behavior in the semi-infinite soil medium
is the domain reduction method (Bielak et al., 2003; Yoshimura et al., 2003). The domain
reduction method (DRM) consists of two phases. The initial phase involves a background
geological model that includes both the source of the earthquake and the region of interest. This
background model is used to compute the free-field displacement wave-field demands on the
boundary of the smaller region of interest. The second phase involves only the reduced region
of interest. In this phase, effective seismic forces are applied at the boundary of the local region.
These effective forces are derived from the boundary displacement demand obtained in the
initial phase. In general, these methods require coupling data from different codes or accessing
databases with recorded or synthetic motions. This is of particular importance in geotechnical
earthquake engineering. The propagation of waves in geologic media can be simulated using
codes such as broad band platforms (BBP) based on Green’s functions and stochastic analysis.
In general, these codes cannot represent the extreme soil nonlinearity observed at the surface
where finite-element methods are more appropriate. When the response of a basin is of interest,
finite-element and finite-difference codes, like Hercules or SW4, can be used to simulate the
propagation of waves in large heterogeneous geologic domains, but they require extensive
high-performance computing (HPC) resources to run properly. Independent of the tool used,
coupling between these codes and conventional finite-element analysis is required. Efforts are
underway to facilitate these simulations by the NHERI SimCenter and DesignSafe.
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10.6 Initial Conditions

Representation of the initial state of stress and initial stress history is of paramount importance
in geotechnical simulations. The soil response (i.e., stress–strain) greatly depends on initial
conditions. Several approaches can be used to create an appropriate initial state. A typical
method is to apply gravitational body forces to the elements prior to any static or dynamic
analysis steps. Most tools facilitate this step by using a staged modeling procedure in which
gravitational stresses are first developed in a base soil mesh. The stress history of the the soil
(i.e., its overconsolidation ratio) should also be specified so the soil constitutive model responds
correctly when first loaded. After this stage is complete, soil elements can be removed or added
and replaced by foundation or additional soil elements, and gravitational stresses are developed
for the new configuration.

10.7 Verification and Validation

Over the years, as numerical formulations have become more refined they have also become
more elaborate, adding complexity to their implementation and use. Therefore, before a newly
proposed tool or model is used in practice or research, verification and validation (V&V)
processes are necessary. Verification is meant to identify and remove programming errors in
computer codes and verify numerical algorithms. Validation is meant to assess the accuracy
at which a numerical model represents reality and includes the essential features of a real
model. In contemporary numerical modeling, V&V has become an integral part of software
development. Today, all numerical tools undergo exhaustive and continuous V&V processes.
Recent comprehensive V&V efforts in geotechnical earthquake engineering include Prenolin,
LEAP, and the NGL project.

10.8 Research Gaps and Needs

• Development and implementation of advanced constitutivemodels for geotechnical earthquake
engineering applications continue to be a challenge. In addition to model formulation and
functionality, robustness and implementation efficiency are of paramount importance;

• Formulations capable of representing multi-phase materials including mixing and separation
and large deformations continue to limit the applicability of numerical tools to simplified
scenarios and conditions. Recent developments in FEMandmeshless techniques are promising,
although extensive work is needed;

• Performing adequate soil–structure interaction (SSI) for major facilities continues to be a
challenge and a gap in geotechnical earthquake engineering. In general, older codes (circa
1970s) continue to be the preferred option. Although very useful, these codes are based on
simplifying assumptions, and do not offer real HPC capabilities; engineers are continually
forced towards model-size-reduction compromises;

• It is still common to idealize incident ground motions as pure vertically propagating shear
and compression waves: this is not correct. Although the research community has engaged
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time-domain nonlinear SSI, there is still a lot of work to do to develop appropriate modeling
solutions for regional simulations. This is really important for major infrastructure systems;

• Integration of capabilities to execute regional-scale simulations of hazard and risk continues to
be a challenge. Software descriptions for earthquake simulations are pretty much stand-alone
and do not discuss the end-to-end coupling needed for regional simulations. It is important to
begin discussions on approaches, challenges, and gaps for effective regional-scale simulation.
This should include computational workflow strategies for handling massive amounts of data
(both input and output) and rigorous coupling of geophysics and structural models; and

• One of the important advancements in earthquake simulations has been the expansive
availability of parallel platforms to the community. As a result, our ability to represent large
geotechnical domains subject to static and dynamic loading conditions is improving at a
rapid pace. In the particular case of geotechnical earthquake engineering, our capacity to
compute ground motions to even higher frequencies is ever increasing. A challenge will be
how to address geologic model uncertainties, i.e., how to select optimal subsurface models.

10.9 Software and Systems

The following list includes softwarementioned in this section and commonly used in geotechnical
earthquake engineering applications:

OpenSees
The Open System for Earthquake Engineering Simulation (OpenSees [6]) is an open-source
software framework capable of performing fully nonlinear dynamic effective stress analyses
(McKenna, 2011). OpenSees is maintained by the Pacific Earthquake Engineering Research
(PEER) Center and actively developed by researchers at UC Berkeley and various research
institutions. Several commonly used soil constitutive models have been implemented in
OpenSees, and additional models can be added based on user needs. The framework is capable
of running on HPC systems and supports MacOS, Linux, and Windows operating systems (see
https://opensees.berkeley.edu/).

FLAC
Fast Lagrangian Analysis of Continua (FLAC [31]), developed by the Itasca Consulting Group, is
a proprietary finite-difference based software package capable of performing dynamic nonlinear
effective stress analyses. FLAC allows users to import custom soil constitutive models either as
pre-compiled dynamic libraries or by using the scripting language FISH. FLAC is not capable
of executing on HPC systems and is closed source. Currently only Windows-based operating
systems are supported (see https://www.itascacg.com/software/FLAC).

PLAXIS
PLAXIS [37], now part of Bentley Systems, is a finite-element software package that can
be used to perform dynamic nonlinear effective stress analyses. Custom soil constitutive
models can be implemented in within the platform. PLAXIS is proprietary and closed source.

https://opensees.berkeley.edu/
https://www.itascacg.com/software/FLAC
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Currently, it is not HPC capable and supports only Windows-based operating systems (see
https://www.bentley.com/en/products/brands/plaxis).

FEAP
The Finite Element Analysis Program (FEAP [51]) is a general-purpose finite-element program
for solving nonlinear, static, and transient partial differential equations. Its primary applications
are directed to the solution of problems in solid mechanics; however, the system may be
extended to solve problems in other subject areas by adding user developed modules to
address problems in fluid dynamics, flow through porous media, thermo-electric fields, and
others. The software is available to run on UNIX/Linux/Mac or Windows environments (see
http://feap.berkeley.edu/).

Real-ESSI
The Real-ESSI [59] Simulator ( Realistic Modeling and Simulation of Earthquakes, Soils, and
Structures and their Interaction) is a finite-element framework for high-performance (sequential
or parallel) analysis of linear and nonlinear geotechnical and structural systems including soil
structure interaction. This software, developed at the University of California, Davis, is available
to run on UNIX/Linux/Mac or Windows environments (see http://real-essi.us/)

General FEM solvers
LS-DYNA [35] and ABAQUS [30] are proprietary general finite-element method solvers capable
of fully nonlinear dynamic effective stress analyses. Custom material models, such as those
required for modeling dynamic soil response, can be implemented in these frameworks.
Depending on the license purchased, LS-Dyna and ABAQUS are capable of running on HPC
systems. LS-Dyna supports Unix, Linux, andWindows-based operating systems, and is currently
available on DesignSafe. ABAQUS currently supports Linux and Windows-based operating
systems.

General 1D tools
Strata [60],ProShake [58], andDeepSoil [57] are well establish tools to perform one-dimensional
linear-elastic and equivalent-linear (SHAKE-type) site response analyses. Deepsoil also includes
nonlinear capabilities and pore-water pressure generation and dissipation models.

General MPM solvers
In recent years, several MPM codes have been proposed. Among them the CB-Geo-MPM
[55], Claymore [56], Uintah [61], and Anura3D [54] are well established open-source MPM
frameworks. CB-GeoMPM is a highly parallel distributedmaterial pointmethod for solving large-
deformation problems in geotechnical engineering. The code supports isoparametric elements,
multiphase materials, and photorealistic rendering (see https://github.com/cb-geo/mpm).
Claymore is a massively parallel and scalable multi-GPU MPM framework for simulating
physical behaviors of materials undergoing complex topological changes, self-collision, and
large deformations (see https://github.com/penn-graphics-research/claymore). The Uintah
software suite is a set of libraries and applications for solving partial differential equations on
structured adaptive grids using hundreds to thousands of processors. MPM functionality has

https://www.bentley.com/en/products/brands/plaxis
http://feap.berkeley.edu/
http://real-essi.us/
https://github.com/cb-geo/mpm
https://github.com/penn-graphics-research/claymore
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been added to the code and used for simulating granular flow, high-impact metal deformation,
and fluid-structure interaction (see http://uintah.utah.edu/). The Anura3D Software is a
three-dimensional implementation of the material point method developed and used alongside
field and laboratory experiments for understanding the physics involved in soil–water–structure
interaction (see http://www.mpm-dredge.eu/).

General DEM solvers
Several DEM codes are available. Among them PFC [36], LIGGGHTS-PUBLIC [33], and
LS-DEM have been used in geotechnical and geological settings. PFC [36] is a general discrete-
element method (DEM) framework developed by the Itasca Consulting group. Together with
FLAC, this tool is commonly used for the analysis of geotechnical and geological problems.
LIGGGHTS, an open-source (at least partially) DEM package, is capable of performing both
pseudo-static and dynamic analyses. Some functionality within LIGGGHTS is not available
in the public version (see https://github.com/CFDEMproject/LIGGGHTS-PUBLIC). LS-DEM is
a variant of DEM that uses level set functions to represent the shapes of constituent particles
(Kawamoto et al., 2018). When used to represent a particle, a level set function is an implicit
function whose value at a given point is the signed distance from that point to the surface of
the particle. In a DEM framework, this formulation is convenient because two of the most
important ingredients in DEM contact detection—interparticle penetration distance and contact
normal—are given. Using this methodology, the tool is able to handle real, complex particle
morphologies, which enable reproduction and prediction of the bulk behavior of experimental
specimens.

10.9.1 Relevant SimCenter Tools

The SimCenter develops both research and educational tools to facilitate performing geotechnical
engineering simulations. The tools currently available focus on the analysis of individual sites
and help with one-dimensional propagation of ground shaking from the bedrock to the free
surface and calibration of numerical materials and models used in geotechnical earthquake
engineering. These methods will be added to the R2DTool to enable the sophisticated simulation
of soil behavior in regional-scale analyses.

quoFEM
The Quantified Uncertainty with Optimization for the Finite-Element Method (quoFEM [7])
tool facilitates model calibration, optimization, uncertainty propagation, reliability analysis,
surrogate modeling, and sensitivity analyses of numerical materials, components, and systems
by combining existing simulation environments with state-of-the-art uncertainty quantification
applications. The graphical user interface currently supports finite-element software (OpenSees
and FEAP) and can also interface with custom analysis packages, including, but not limited to
those based on particle methods, the discrete element and finite difference method and other
commercial software that cannot be bundled with the open-source SimCenter application (e.g.,
LS-DYNA, ABAQUS). These features provide instant uncertainty analysis and optimization
capabilities for numerical models. Furthermore, quoFEMprovides an opportunity for researchers

http://uintah.utah.edu/
http://www.mpm-dredge.eu/
https://github.com/CFDEMproject/LIGGGHTS-PUBLIC
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workingwith experimental facilities to use advancedUQmethods and tools to design experiments
and calibrate numerical models.

QS3HARK
The Site-Specific Seismic Hazard Analysis and Research Kit with Uncertainty Quantification
(QS3HARK) performs site-specific analysis of ground shaking and liquefaction by simulat-
ing wave propagation through soil layers. The simulations use the finite element method as
implemented in OpenSees [6] to perform the calculations. Several advanced material models
are available in QS3HARK (e.g., PM4Sand, PM4Silt, PDMY, PDMY02, PDMY03, Man-
zariDafalias, and Borja-Amies) to support complex site-response analysis. Uncertainties in both
the soil properties and the bedrock ground motion inputs can be characterized and propagated
throughout the simulations to arrive at a probabilistic description of the ground shaking.

EE-UQ and PBE
The Earthquake Engineering with Uncertainty Quantification (EE-UQ [2]) and the Performance-
Based Engineering (PBE [13]) tools facilitate the assessment of structural response and the
expected damage and losses from earthquake events. QS3HARK is integrated in these tools to
allow for propagation of ground shaking from the bedrock to the surface and apply the simulated
surface ground motions to a building model. This allows sophisticated consideration of soil
behavior for the performance assessment of buildings. The workflow used in these tools for
individual buildings will be integrated into the R2DTool, the regional simulation tool of the
SimCenter to enable such high-fidelity analyses at the regional scale.

Educational Tools
The Site-Specific Seismic Hazard Analysis and Research Kit (S3HARK [26]) is the educational
version of QS3HARK that provides the same features and versatile set of material models but
without uncertainty quantification. Removing UQ supports educational needs by streamlining
the user interface and facilitating the setup of simulations.

The Pile Group Tool (PGT [24]) supports studies on the behavior of a pile or a pile-group in
layered soil under ground shaking. Its user interface allows students to interactively observe the
response of the system to changes in the soil characteristics, the pile configuration, and the pile
design.

The Transfer Function Tool (TFT [28]) focuses on calculating the transfer function that maps
a given bedrock motion to a surface motion. The tool allows students to define the characteristics
of layered soil profiles and examine how the input motion is affected by the soil deposit.





Chapter 11
Computational Fluid Dynamics—Wind
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Buildings exposed to wind undergo complex interactions, which preclude a simple functional
relationship between wind and its load effects with the exception of buffeting effects, i.e.,
turbulence excited wind loads along the direction of the wind. Accordingly, wind tunnels have
traditionally served as a means of quantifying wind loads that are combined with structural
analysis codes based on finite-element analysis.

With burgeoning growth in computational resources and parallel advances in computational
fluid dynamics (CFD), computational simulations are evolving with the promise of becoming
versatile, convenient, and a reliablemeans of assessingwind-load effects. Figure 11.1 summarizes
salient advantages and disadvantages of the wind-tunnel-based experimental methods and the
computational CFD-based schemes. Despite the substantial improvements in the efficiency
and fidelity of CFD-based simulation of wind effects, it is prudent to say that the simulation
of wind-load effects using CFD still faces challenges; therefore, wind tunnels remain as an
essential validation tool.

Fig. 11.1 Comparison between experimental and computational approaches.
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11.1 Challenges of CFD

The computational grid of complex geometries and clusters of structures is fundamental to
CFD as it represents the computational domain in which calculations are carried out at regular
intervals to simulate the passage of time. The more compact the spatially discretized grid and
the smaller the time step, the more accurate and realistic are the simulated results. Unfortunately,
simply introducing initial and boundary conditions does not ensure a solution because the
system being solved is nonlinear, and the interaction among terms of the governing equations
leads to the generation of multiple scales. Accordingly, one of the primary challenges with CFD
is the trade-off between accuracy and computational effort. The choice of turbulence modeling
discussed in the following discussion plays a critical role in the level of accuracy obtained and
the computational effort required.

In addition, the efficacy of CFD is still under debate, although it has been successfully
implemented in aerospace engineering and wind tunnels to validate final designs. This is
primarily due to the nature of structural shape in aerospace applications like an airfoil with
a streamlined shape, resulting in a flow field around it that essentially stays attached to the
surface, which can be numerically captured rather accurately. Figure 11.2 summarizes the flow
field around a streamlined airfoil to a circular cylinder and progressing to a sharped-edged
body representing a typical building or a bridge cross section. In contrast, as we move from an
airfoil towards a circular cylinder and a rectangular cross section, the flow field around them
gets progressively more complex as the flow cannot negotiate the sharp changes in direction as
it moves around the body and hence jettisons away, creating separated flow characterized by
flow reversal. Capturing these interacting features numerically poses challenges, which has led
to slower progress in the application of CFD in wind-load assessments on structures. A basic
overview of the issues surrounding flow features around structural configurations and the role
of turbulence is presented below, including ensuing numerical challenges.

Fig. 11.2 Flow around cross-sections with increasing level of complexity (Ding et al., 2018).

The range of the size of eddies that manifest the turbulent flow around structures determines
the grid size, which places demands on both the memory size and speed of the computational
hardware. Ideally, the resolution of all scales in the flow from energetic low-frequency fluctuations
to the smallest scale (the Kolmogorov Scale) in the viscous dissipation regime dependent on
viscosity would be ideal. This approach is referred to as direct numerical simulation (DNS) and
is computationally very intensive as the grid size for a required Reynolds number (Re) flow
requires cells equal to Re9/4. Although highly desirable, such simulations are currently limited
to address basic research in fluid dynamics using CFD.

To overcome this challenge, the Navier-Stokes (NS) equations of motion are filtered based on
a length scale; thus, the motion of eddies smaller than the length scale is not calculated. Rather,
the large eddy motion is computed, and the small-scale motions are modeled using ideas that
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range from enhanced coefficients of viscosity to an additional system of equations representing
closure models. This results in a smoothing process, which helps to relax the number of grid
points necessary to simulate the flow field. This scheme is known as the large eddy simulation
(LES). As computer capacity increases, a broader range of eddies can be resolved, thus reducing
the scales that need to be modeled.

An alternative schema involves time averaging or ensemble averaging of the NS equations
(the Reynolds averaging are referred to as RANS) that result in obtaining only the mean and
deviations from the mean of the computed quantities. It requires a coarser grid resolution
compared to LES. RANS often has difficulty in capturing flow separation and reattachment as
a consequence of averaging (Spalart, 2010). The performance of LES may also be impaired
due to inadequate grid resolution and the treatment of the subgrid-scale turbulence. A hybrid
combination of LES and RANS is referred to as detached eddy simulation (DES), composed of
LES in regions for which the grid resolution can economically simulate the inertial subrange
and reverts to RANS in near-wall regions where turbulence scale is smaller than the grid size
(Hoarau et al., 2016).

That said, moving from the simulation of flow around isolated buildings to a cluster adds
to the demand on computational resources; however, the flow patterns in the street canyons
become more forgiving from the simulation perspective as sharply defined features become
more unstructured due to mixing and can be resolved with less effort. Similar observations have
been made in wind-tunnel studies when examining the influence of adjoining buildings in a
cluster on the aerodynamic loads. This is akin to adding damping in structures and helps to
dampen fluctuations in the flow field. LES nested in weather research and forecasting (WRF)
models may be utilized to predict wind effects in a cluster of buildings in an urban setting under
both extra-tropical and tropical systems.

11.2 Modeling of Flow around Structures

The CFD simulation process for modeling wind around structures involves the following main
steps: problem statement; mathematical model; mesh generation; space and time discretization;
inflow generation; boundary conditions; wall functions; simulation runs; fluid–structure interac-
tion (aeroelastic effects); post-processing; verification/validation; and uncertainty quantification.
Some of the salient aspects are presented schematically in Figure 11.3, with its primary focus
on the choice of turbulence model, the mesh requirement especially near the boundaries of
the structure, and inflow and boundary conditions (Ferziger and Peric, 2012). Generally, due
to limitations in mesh resolution, it is essential to use a wall function. A wide variety of wall
treatments for LES simulations of turbulent flows have been proposed (a recent overview is
given in (Bose and Park, 2018), but the effect of the wall function formulation on the LES
prediction of the turbulent pressure signal on a building has not been fully explored.

In computational wind engineering (CWE) applications, generation of inflow turbulence
satisfying prescribed mean-velocity profiles, turbulence spectra, and spatial and temporal
correlations is of great importance for accurate evaluation of wind effects on buildings and
structures. Several methodologies have been proposed for this purpose, which can be classified
into three general categories: precursor simulation methods, recycling methods, and synthetic
methods. Compared with precursor simulation and recycling methods, in general, the synthetic
methods offer a more practical and relatively efficient approach to generate inflow turbulence.
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Fig. 11.3 Schematic of a digital analog of modeling flow around structures in a wind tunnel (Ding et al.,
2018).

Research activities on synthetic turbulence generation have been vigorous over the past several
decades and have branched out into several categories of techniques (Wu, 2017), including
the synthetic random Fourier method (Hoshiya, 1972; Kraichnan, 1970), the synthetic digital
filtering method (Klein et al., 2003), and the synthetic eddy methods (Jarrin et al., 2006). A
comprehensive modeling approach for the neutral atmospheric boundary layer (ABL): consistent
inflow conditions, a wall function, and turbulence model closure for a RANS based modeling
are detailed in (Parente et al., 2011).

One of the challenges with inflow simulators is the decay of synthetic turbulence as we move
from the inflow plane to the location of a building in the simulation domain (3, 4). One of
the approaches involves an iterative approach through trial and error, or establishing a transfer
function of the decay and embedding that in the simulation scheme. Alternatively, implementing
an optimization to calibrate the inflow parameters is one way to circumvent this challenge and
ensure that the correct turbulent statistics are obtained at the location of interest (Lamberti et al.,
2018). In addition, there are continued efforts to develop improved inflow generation methods
that could further reduce the decay (e.g., Bervida et al., 2020). Independent of the choice for
the inflow generator, the need to first run an ABL simulation and verify whether the correct
turbulence statistics are achieved at the location of interest—similar to the calibration of the
flow in a wind tunnel—is important.

11.3 Computational Details and Post-Processing

The following discussion addresses computing time for simulation, and how it is influenced
by several steps involved in the simulation process. For example, the computing time depends
on the following: (1) the choice of numerical algorithm and data structure; (2) linear algebra
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solvers and criterion prescribed for interactive solvers; and (3) discretization parameters, such
as mesh quality, mesh size, time step; hardware, vectorization, and parallelization. The quality
of simulation results depends on: (1) the mathematical model and underlying assumptions;
(2) types of approximations implied; and (3) stability of numerical scheme in terms of mesh,
time step, error indicators, and iteration stopping criterion. Some of these features operate
in isolation while others operate in combination, which influences both the quality and the
time it takes to perform the simulation. These processes should be revisited when there is a
need to enhance the quality of simulation and/or to reduce the time needed for simulations.
Machine-learning tools—such as supervised, unsupervised learning, reinforcement learning,
and deep learning—offer exciting avenues to learn from the simulations, help classify regions
of similarity, and create predictions for future simulations (Kareem et al., 2019).

Once the simulations are complete, one needs to process data. This also entails the calculation
of derived quantities, e.g., statistics of velocity or pressure fields; integral parameters, e.g., drag
and lift coefficients, building response and their spectral characteristics; local zooming for a
further look at a region of simulation exhibiting features of potential interest; visualization
of data in space and time, a real-time portrait of flow features, digital version of analog flow
visualization using smoke in wind tunnels, overall systematic analysis of data using statistical
and signal processing tools and debugging, verification and validation of CFD models, and
assessing the role of uncertainty.

11.4 Verification and Validation

Wind-tunnel validation of CFD-based simulations often serves as the final step in the process.
The progressive reduction of uncertainty (Roache, 1998) is the only practical way to ensure
any kind of confidence in a given CFD simulation. This calls for vigorous validation (AIAA,
1998), just as in any other complex numerical simulation. In particular, due to limited analytical
solutions being available for simple flows only, CFD validation must be carried out through high-
fidelity experimental testing. For this reason, experimental validation often becomes the essential
step in ensuring the reliability of CFD simulations (Oberkampf and Roy, 2004; Oberkampf and
Trucano, 2008; Roy and Oberkampf, 2011). This is particularly true in computational wind
engineering, where the CFD simulation of a bluff body, like a tall building, immersed in an
ABL is often validated through specific boundary-layer wind-tunnel tests (Yu et al., 2013; Yu
and Kareem, 1998).

Note that many CFD studies seem to lack a thorough validation process, i.e., grid convergence
studies are rarely carried out, and, in general, detailed flow field results are missing. The general
lack of code verification, discretization scheme selection, turbulence modeling, mesh quality,
and sampling time for statistical analysis, etc., adds more uncertainty. It should be observed,
however, that this process is by no means simple and will, in general, be far more involved than
the validation of channel or pipe flow, for instance, for a number of reasons including: (1) most
experimental wind tunnel tests carried out on civil engineering structures are not exhaustive
enough to allow a truly complete CFD validation; (2) the geometric configurations of the bluff
bodies tested in wind tunnels are often too complex for an unsteady CFD analysis; and (3) the
high Reynolds number in wind tunnel testing also adds difficulties in performing a systematic
grid convergence study.
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11.5 Software and Systems

While developments in CFD as applied to a host of topics in basic fluid dynamics, aerospace,
automotive, and urban aerodynamics are evolving at a fast pace, there has been rather limited
research focus on the development of CFD-based tools and schema to advance the computational
modeling of wind effects on structures. Limited commercial software has been widely utilized
by both researchers and industry (e.g. ANSYS Fluent [62]). The inherent nature of modeling and
parametric sensitivities and the lack of flexibility to improvise has often led to simulations that
reflect large variability and, on occasion, depart from experimental observations. This has fueled
the misleading impression that CFD is currently inadequate to fully capture wind–structure
interactions.

Yet, the current state of the art of CFD application in wind effects is defined by in-house
tools wrapped around the popular open-source OpenFOAM [5] environment. CFD for wind
simulation has advanced to the stage that the Architectural Institute of Japan (AIJ) now permits
the use of CFD in place of other approaches, e.g., wind-tunnel testing, with the stipulation that
the AIJ guidelines concerning three-dimensional LES and inflow simulation must be followed.

11.5.1 Relevant SimCenter Tools

The SimCenter aims to include CFD-based simulation of wind effects in its regional risk
assessment workflow and R2DTool, the corresponding desktop application. The regional-scale
CFD simulation capabilities need to build on top of a robust implementation of the analyses of
individual buildings. Therefore, the SimCenter has been focusing on the analyses of individual
buildings first.

TinF
The Turbulent Inflow Tool [63] application helps with the definition and parametrization of
various turbulent inflow models and augments existing OpenFOAM model files with the
respective parameter definitions.

WE-UQ
The Wind Engineering with Uncertainty Quantification Tool (WE-UQ [11]) is designed to
assess the response of buildings subjected to wind loading. Uncertainty Quantification refers to
considering the uncertainty in the properties of the building and the wind loads and propagating
such uncertainty through the simulations. Besides the advanced features in TinF, it also provides
access to other non-CFD-based methods for specifying wind loads, such as online wind
engineering databases (e.g., TPU, 2020) and the stochastic wind load generation available in
smelt. The wind simulations are run using OpenFOAM [5] and the calculated loads are applied
on finite element models using OpenSees. Two-way fully coupled fluid–structure interaction is
currently under development.
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Educational Tools
The CFD Notebooks [44] (CFDN) prepare students for CFD-based research work by providing a
basic working knowledge of OpenFOAM [5], including mesh preparation and the generation of
boundary conditions. CFDN is a series of Jupyter notebooks hosted on DesignSafe. It leverages
DesignSafe’s High-Performance Computing platform to provide an interactive interface for
students or instructors that can demonstrate running OpenFOAM simulations without any
software installation overhead.

11.6 Future Directions

Uncertainty quantification in CFD modeling
Uncertainties in CFD modeling are primarily associated with the uncertain inflow boundary
conditions representing the inherent variability of atmospheric flows and model-form un-
certainties originating from the turbulence modeling assumptions applied to the unresolved
small-scale turbulent eddies. These sources of uncertainties should be appropriately accounted
for, and their impact on the predictive capabilities for the aerodynamic quantities need to
be carefully examined since they may impact the aerodynamic loading characterization in
CFD modeling. Uncertainty quantification (UQ) in CFD modeling involves the quantitative
estimation of both the inflow and model-form uncertainties, and their resulting impact on the
aerodynamic Quantities of Interest (QoIs). Techniques for UQ and uncertainty propagation
including Monte Carlo simulations, polynomial chaos, and Gaussian process regression have
been explored in many engineering problems as non-intrusive approaches that use solution
samples to numerically estimate the output functions (Beran et al., 2017). An efficient UQ
approach that quantifies the effect of coupled inflow and model-form uncertainties would allow
propagation of uncertainties to the aerodynamic QoIs. Recent applications of UQ to CFD
simulations can be found in (Gorlé et al., 2015) that utilizes an interval-based approach, while
(Ding and Kareem, 2019) introduced a surrogate model-based scheme. Advances in data-driven
approaches are leading to other schemes like deep neural networks (DNNs) for UQ (e.g., Ling
et al., 2016b; Luo and Kareem, 2019)].

Multi-fidelity modeling
Computational fluid dynamics evaluations can feature both the high-fidelity models, which
are accurate yet expensive and the low-fidelity models that are computationally efficient but
can produce large modeling errors. RANS and its variants are currently the workhorse of CFD
(Kareem, 2017) as the computational requirements are modest, but because its accuracy is
compromised in separated flow regimes, it is viewed as low fidelity. LES solves the filtered
NS equations at large energy-containing scales and relies on modeling to resolve the smaller
more universal subgrid scales. The results thus offer a higher fidelity compared to RANS, but at
an additional computational effort. Therefore, the simulation data may involve data sources of
multiple fidelities with different computational costs.

In an attempt to blend the variable-fidelity information source, multi-fidelity surrogate
modeling is an attractive avenue that utilizes hierarchical surrogate models relating low-fidelity
(RANS) to high-fidelity (LES) models to obtain high-quality predictions with a computational
effort comparable to RANS. Multi-fidelity surrogate modeling has been successfully applied
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to a host of engineering problems, including beam design, using finite-element analyses with
variable mesh sizes (Leary et al., 2003), optimization of a transonic aircraft wing with two
levels of CFD fidelity (Forrester et al., 2007), and rotor bade design based on the code with
simplified aerodynamics, as well as high-fidelity numerical simulations (Collins, 2008), etc.
Therefore, a multi-fidelity surrogate modeling approach in the aerodynamic shape-optimization
framework that involves data from sources of both RANS and LES simulations would offer
superior surrogates from the context of enhancing the model accuracy as well as maintaining
low computational demand.

Fusion of machine learning and CFD
As discussed earlier in this section, despite recent advances in the computational resources, the
CFD-based simulations are computationally very demanding, especially considering the desired
level of fidelity. Recently, the focus in the CFD area is on the fusion of data-driven approaches
to enhance the computational efficiency and accuracy of simulations (Kutz, 2017; Ling et al.,
2016b; and Kareem, 2020). Using DNNs as a surrogate model to predict CFD simulation results
is also a promising future direction. So far, relevant studies for Reynolds stress modeling using
DNNs, convolutional neural networks (CNNs) for flow prediction, or physics-informed neural
networks (PINN) (which have gained a considerable attention) have been applied to solve simple
flow patterns at low or moderate Reynolds numbers. (e.g., Liu et al., 2020; Mao et al., 2020;
Tompson et al., 2016). This deep-learning-based approach can be also based on experimental
data or an integrated experimental and computational simulation framework (Luo and Kareem,
2019, 2020). Others have involved machine learning as a CFD closure model, whereby closure
model parameters based on representative datasets are extracted and embedded in the flow
solver to enhance the quality of simulations. Similarly, machine-learning models are being
developed to model errors, e.g., RANS- or LES-based prediction compared to DNS data. (Ding
and Kareem, 2018) used a similar surrogate model to account for the discrepancy between
RANS and LES simulations of shape optimization of buildings; this approach also facilitates
UQ in such an exercise (Ding and Kareem, 2019; Ding and Kareem, 2018). Furthermore,
machine-learning approaches can be used as “wrappers” around existing toolsets to enhance
predictive capabilities. Other applications involve invoking the concept of digital twins for the
exploitation of computational physics data, consisting of using machine learning to enlarge the
simulation databases to cover a wider spectrum of operational conditions and provide quick
response directly on the field (Kareem, 2020; Molinaro et al., 2021). The resulting product from
this hybrid physics-informed and data-driven modeling may be referred to as Simulation Digital
Twin. A recent example of CFD, machine learning, sensing, and actuation of a dynamic building
façade shows an example of how the fusion of these technologies can offer a viable platform to
manage autonomously the profile of a building façade under varying wind environments (Ding
and Kareem, 2020).
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Computational Fluid Dynamics (CFD) uses numerical methods to solve governing equations
that arise in fluid mechanics. While the previous section focused on gaseous fluids (e.g., air),
here we focus on applications of CFD for liquid fluids (e.g., water), although modeling of the
water’s free surface arises in many situations, especially those around natural hazard modeling
as it requires modeling the air, the fluid, and the interface between the two. For water, the
standard governing equations are the incompressible Navier–Stokes (NS) equations (Darrigol,
2005). These equations describe the motion of viscous fluid substances; their solution provides
much of the useful information for natural hazards engineering (NHE) problems, e.g., the
current speed of the flow and fluid pressures on built infrastructure.

Solving NS equations without the use of a turbulence model is often referred to as direct
numerical simulation (DNS, Orszag, 1970), in which the whole range of spatial and temporal
scales of the turbulence must be resolved. As a result, the expense of using extremely small grid
sizes and time steps is unaffordable in many practical engineering systems, especially when
the Reynolds number—which indicates the intensity of turbulence—is high. To accommodate
these issues, some variants of NS equations are often used in practice. The two most popular
approaches are Reynolds-averaged Navier–Stokes equations referred to as RANS equations
(Chou, 1945; Reynolds, 1895) and large eddy simulation (LES, Deardorff, 1970)

The two models, while still able to give satisfactory approximations to the turbulence in the
fluid, are much cheaper than DNS because they use new model equations to describe turbulent
energy dissipation. These equations arise from the addition of new variables into the modified
governing equations that result from the averaging and filtering processes to estimate turbulent
phenomena. These unknown variables are typically related to known quantities such as the
velocity gradient.

While the above methods use Eulerian methods, Lagrangian-based approaches such as
Smooth Particle Hydrodynamics (SPH, Gingold and Monaghan, 1977; Lind et al., 2020; Lucy,
1977) have gained some popularity for solving flows around complex geometries. Other recent
alternatives such as the Lattice Boltzmann Method (LBM, Chen and Doolen, 1998) or Immersed
Boundary Method (IBM, Peskin, 1972, 1977, 2002), while less widely used, can be used to take
advantage of specific physical phenomena (e.g., using IBM to consider flow around complex
moving boundaries).
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12.1 Input and Output Data

In all situations where CFD is used, the two basic inputs are the boundary conditions and initial
conditions. The boundary conditions refer to the boundaries of the computational domain,
which may include a wall where water cannot penetrate or an outlet where fluids flow out.
For problems in NHE, such boundaries can include the ground over which the fluid flows, the
outside walls of a building that will affect flow path of the water, or the complex geometry of a
bridge hit by a tsunami or storm surge (e.g., Giles, 1990; Miquel et al., 2018).

The initial conditions refer to the state of the fluids before the simulation starts. For instance,
in tsunami modeling, the initial conditions for some nearshore regions might have all water
at rest at sea level while somewhere in the ocean, a large volume of water is placed above sea
level that represents a tsunami wave. Implementation of these initial conditions is not trivial,
especially along the inlet boundary, and care must be taken to maintain a stable solution as time
marches forward; CFD solvers predict how the water volume and velocity evolve in time from
their initial state. Different initial conditions will give different states later in time.

The output from CFD depends on the equations that are solved but generally includes water
velocities, water pressure, and height of water surface (with extra treatment added to the NS
equations, e.g., coupling the volume of fluid methods (Brackbill et al., 1992; Hirt and Nichols,
1981; Jasak, 1996; Ubbink, 2002; Ubbink, 1997) at any specified moment during the simulation
and at any location within the domain. The pressure field can be further processed to obtain
forces on structures.

12.2 Models and Software Systems

The implementation of CFD algorithms is often very complex. Many CFD software systems are
developed and maintained by either commercial companies or large development teams with
support from user communities. Some popular commercial software include: S.T.A.R.-C.C.M.+
[68], ANSYS Fluent [62], and COMSOL [64]. Commercial software often provide the ability to
customize solvers (to some extent) by allowing user-defined functions. Many researchers prefer
the complete freedom of modifying the source code and use open-source CFD software, such
as OpenFOAM [5] and SU2 [69]. By far, OpenFOAM is the most widely used and provides
very comprehensive functionality in all areas of CFD. The relevant research communities
have also contributed many pre-processing and post-processing tools for OpenFOAM, e.g.,
wave-generation tools that are often required in hazard modeling. Customized versions of
OpenFOAM for certain applications are also available. Some examples include H.E.L.Y.X. [65],
olaFlow [67], and IHFOAM [66]. The latter two are specially designed to simulate coastal,
offshore, and hydraulic-engineering processes (Higuera et al., 2013a,b, 2014a,b, 2015).

12.2.1 Relevant SimCenter Tools

The CFD-based analyses of water flow are primarily used to simulate large-scale, regional
inundation sceanrios in the natural hazards engineering community. Two of such hazards were
discussed in Chapters 7 and 8. The SimCenter first responds to this need in the community, but
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the tools are planned to be extended to allow more advanced structural response simulation in
the future.

Hydro-UQ
The Hydrodynamic loading with Uncertainty Quantification Tool HydroUQ [4] manages
three-dimensional CFD simulations using OpenFOAM [5] and uses a universal interpreter
to interface with two-dimensional, far-from-coast simulations performed by shallow water
solvers (e.g., GEOCLAW [3], ADCIRC [1]). The shallow water simulation results are used
as inputs for simulations in OpenFOAM. The bathymetry and topography of the ocean floor,
the meshing of the model, and other simulation parameters can be conveniently adjusted
through the user interface. The results of CFD simulations are used to generate loads in a
three-dimensional finite element environment (e.g., OpenSees). Uncertainty Quantification
in the name of the tool refers to the ability to consider uncertainties in structural parameters
and propagate them throughout the simulation using DAKOTA. Simulations can run remotely
on the High-Performance Computing clusters linked to DesignSafe. The tool can be used to
model a small portion of a regional study to perform high-resolution simulations around critical
buildings, bridges, or other parts of the built environment. The results of such simulations can
serve as training data for surrogate models that can provide more efficient response estimation
for regional studies without sacrificing the fidelity of CFD simulations.

Educational Tools
The CFD Notebooks [44] (CFDN) prepare students for CFD-based research work by providing a
basic working knowledge of OpenFOAM [5], including mesh preparation and the generation of
boundary conditions. CFDN is a series of Jupyter notebooks hosted on DesignSafe. It leverages
DesignSafe’s High-Performance Computing platform to provide an interactive interface for
students or instructors that can demonstrate running OpenFOAM simulations without any
software installation overhead.

12.3 Major Research Gaps and Needs

Computational fluid dynamics is a broad concept that is used as a simulation approach in
many industry and research fields. Although the general-purpose commercial or open-source
CFD packages can provide a broad variety of requirements, cutting-edge research in a specific
area often requires tackling very specialized problems. As a result, either in-house code must
be developed, or heavy modification and customization must be added to CFD packages.
Fortunately, the prevalence and maturity of open-source CFD software has provided a solid
foundation or is, at the very least, a very helpful resource for researchers that focus on such
software development. One drawback, however, is that there is a consistent lack of complete
documentation for many of these software, creating obstacles for new users.

The lack of open-source meshing tools remains a significant challenge as CFD requires
high-quality structured hexahedral grid for efficient computation; unfortunately, most of the
available open-source meshing tools are better at constructing triangle / tetrahedra-based
unstructured grids (Geuzaine and Remacle, 2009). Automated structured hex meshing tools
are not available, in spite of the several citations in the literature (e.g., Gao et al., 2017;
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Verhetsel et al., 2019; Yamakawa and Shimada, 2003). Thus, the users depend on commercial
pre-processors like Hypermesh. OpenFOAM has two built-in meshing tools, namely blockMesh
and snappyHexMes, but they fall short for problems of interest beyond academia.

Another challenge is the portability and scalability of CFD software, which allows the code to
run on high-performance computing (HPC) facilities. The explosive growth of computing power
in the past two decades has tremendously changed many areas, allowing for the performance of
simulations that were impossible in the past. Unfortunately, CFD software, especially in-house
code or customized solvers, may not run naturally on new machines. OpenFOAM specifically
has been shown to have difficulty scaling to maximize performance on HPC clusters. Different
implementations in the code must be taken and even new algorithms designed such that the
code can run efficiently on a cluster that consists of thousands of computing nodes and a cluster
that consists of new architectures like GPUs.

In terms of modeling physical processes, one significant research gap is in robust modeling
of the air–fluid–structure interaction phenomena associated with wave impacts and fast moving
flows around complex geometries. The effects of air compressibility and potential air entrapment
are often either poorly considered or neglected altogether. Some loosely coupled one-way
approaches for fluid–structure interaction response are available, but a more comprehensive
two-way coupling approach to combine CFD with various structural analysis techniques is
needed. Similar novel coupling mechanisms between CFD solvers and the two-dimensional
approaches presented in Chapter 8 are also a notable research gap. Because of the computational
expense of CFD approaches relative to the nonlinear shallow water or Boussinesq approaches
used at very large scales, developing approaches that allow flow to move between these types of
solvers is a significant challenge.



Part III
Performance Assessment

The built environment is a collection of various types of assets that affect the well-being
and quality of life of residents in an urban area. The list of such assets includes residential
and commercial buildings, bridges, networks of roads, railways, pipelines and power lines,
and their supporting facilities. This part of the report focuses on evaluation of the damage and
direct consequences that typically describe the immediate impact of the disaster and assign a
performance measure to the various assets that make up the built environment. Part IV focuses
on the simulation of recovery and consequences that consider interdependencies between
infrastructure systems, the built environment, and local communities.

The performance of assets depends heavily on the description of the hazard and the simulation
of asset response to one or more characteristic events that are consistent with the hazard at the
asset location. Although this chapter focuses on performance assessment, some of the tools
listed here have hazard and response estimation capabilities as well. Those features have been
covered in Parts I and II, respectively.

This part is organized around the types of assets and asset-networks needed to arrive at a
comprehensive description of the performance of an urban region subjected to a natural-hazard
event. The content is divided into four chapters to facilitate navigation, but the importance of an
integrated assessment is emphasized by highlighting the synergies across assets and hazards
throughout the chapters.





Chapter 13
Buildings

Adam Zsarnóczay,
along with review comments and suggestions by Jack W. Baker, Paolo Gardoni, Thomas
O’Rourke, Vesna Terzic, and Chaofeng Wang

Buildings are arguably the most important asset type when it comes to direct consequences of a
natural disaster. A severely damaged or collapsed building may result in loss of life, injuries,
and significant capital losses. Seismic performance assessment of buildings has received a lot of
attention from the research community and funding agencies in the past few decades (Agency,
1997; ATC, 1985; Fajfar and Krawinkler, 2004; Kircher et al., 2006). Consequently, the most
sophisticated and mature methods are available in that area (ATC, 2012). Several researchers
have focused on adopting these methods for other asset types (Chmielewski et al., 2016; Werner
et al., 2006) and for other types of hazards (Attary et al., 2017; Barbato et al., 2013; Bernardini
et al., 2015; Lange et al., 2014; Vickery et al., 2006b). Although this has led to similar methods
being used for various types of assets, some of the synergies between these methods remain
un-utilized in research.

Historically, two different approaches have been developed for performance assessment of
buildings. Until recently, the methods and models used in these approaches improved in parallel
(Figure 13.1):

• Large-scale simulations of distributed building inventories required idealized, efficient models
that provided sufficiently accurate performance estimates while limiting the computational
workload to make the simulations feasible. The most popular example of such an approach is
the HAZUS framework that has been developed for earthquake (FEMA, 2018a), hurricane
(FEMA, 2018b), and tsunami hazards (FEMA, 2017). HAZUS and similar methods typically
take path I or II in Figure 13.1 and estimate the consequences of a disaster using vulnerability
or fragility functions that link the intensity of the natural hazard directly to measures of
damage and losses at the building level; and

• The assessment of individual buildings has been moving from a holistic towards a component-
based approach. Instead of trying to characterize the building damage as a whole, recent
performance-based engineering (PBE) methods disaggregate buildings into sets of compo-
nents and apply separate models (i.e., functions) to estimate the damage and losses for each
component. These methods require a detailed description of the building and its behavior
under the natural hazard event, necessitating the simulation of building response following
path III in Figure 13.1. In return, they provide high-resolution information about the damage
and losses that allow better understanding of the building’s performance. FEMA P-58 (ATC,
2018a) represents the state of the art in high-fidelity seismic performance assessment for
buildings. Researchers have recently been developing similar PBE methodologies for other
hazards (e.g. Attary et al., 2017; Barbato et al., 2013; Ouyang and Spence, 2020).
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The two approaches presented above were traditionally separated because neither the
computational resources nor the detailed description of assets were available to apply the
high-fidelity models and methods at a large, regional scale. Recent advances in computational
resources, data harvesting, and processing (see Part V) are now bridging the gap between
these methods, suggesting that integrated multi-fidelity performance assessment of large asset
portfolios will become available for researchers in the near future (Deierlein et al., 2020).

Fig. 13.1 Schematic workflows for asset performance assessment (Deierlein et al., 2020).

13.1 Input and Output Data

13.1.1 Input Data

The following types of data are required to evaluate the performance of a building:

Hazard characterization
When the building performance is not conditioned on a particular disaster scenario but is
evaluated considering all possible scenarios within a time period, the likelihood of each possible
scenario needs to be estimated [e.g., time-based assessment in FEMA P-58 (ATC, 2018a)]. The
hazard curve describes the rate of exceeding various levels of an intensity measure (IM) over
the time period of interest. More information about the description of the hazard is provided in
Chapter 2.

Intensity measures
Efficient building performance assessment methods directly link IMs to damage measures (DMs)
and decision variables (DVs) using fragility functions and vulnerability functions, respectively.
For such methods, the inputs need to characterize the intensity of the event either through
parameters of a distribution function (e.g., mean, standard deviation) or by directly providing
samples of the IMs. More information about obtaining IM data is available in Part I.
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Engineering demand parameters (EDPs)
High-fidelity building performance assessment uses EDPs as proxies for the detailed history of
building response under a natural hazard event. Such EDPs should have high correlation with
the building damage of interest and should be estimable with sufficiently high accuracy through
numerical analysis. Estimation of EDPs first requires a building response model that is typically
created in one of the environments listed in Chapter 9. Second, the building model needs to be
excited with loads that correspond to a particular hazard event. The inputs required for these
models and analysis have been described in previous parts of this report.

Engineering demand parameters are extracted from the structural response simulation.
Seismic performance assessment often uses peak responses at every story such as peak story
drift ratios and peak floor accelerations (ATC, 2018a). Other hazards result in different response
histories and damage, and they are characterized by other EDPs, such as external pressures
(Ouyang and Spence, 2020) or maximum inundation depth (Reese et al., 2011).

Component characteristics
Depending on the complexity of the performance assessment method and data availability,
buildings are described as a system of components or component-groups. For example, the
component-group-based approach followed by HAZUS (FEMA, 2011a) aggregates structural
components, non-structural components, and contents into three groups. The FEMA P-58
method represents the other end of the spectrum; it disaggregates the building into units of
components with identical behavior. The component-group-based method typically requires
fewer and more generic inputs such as the type of structural system and the occupancy type to
infer component behavior. The more detailed methods use the quantity, direction, and location
of each component unit on each floor of the building to estimate their damage.

Fragility functions
Fragility functions describe the likelihood of exceeding a particular damage state as a function
of IM or EDP magnitude; see Figure 13.1 and Baker et al. (2021). Many fragility functions
are publicly available, and there is open discussion about their improvement for the seismic
performance estimation of buildings (e.g., Silva et al., 2019). FEMA P-58 enables sophisticated
analysis for seismic hazards by providing (ATC, 2012) and continually revising (ATC, 2018a) a
database with detailed description of more than 700 types of components. The HAZUS platform
includes fragility and vulnerability functions for component-groups for various hazards, but the
development of publicly-available functions that would allow more detailed assessment under
wind and water hazards is a topic of active research.

Vulnerability and consequence functions
Vulnerability and consequence functions describe losses from a disaster as a function of its
intensity and the experienced structural damage, respectively. Vulnerability functions are more
efficient because they do not require information about the damage incurred, but their estimates
have more uncertainty. Vulnerability functions typically describe the consequences at a building-
level (e.g., HAZUS), while consequence functions can use more detailed information (e.g.,
FEMA P-58) about the damage. Each damage state has its corresponding set of consequence
functions. These functions are defined by additional input data such as repair cost per component
unit, affected area for calculation of injuries, or the expected downtime until the building can be
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re-occupied. The description and propagation of uncertainty in these functions is an important
part of the calculation method. Consequences that are primarily a function of damage within
the building and not affected by the performance of other parts of the civil infrastructure are
often referred to as direct consequences. Vulnerability and consequence functions can estimate
such outcomes well.

13.1.2 Output Data

One or more of the following outputs are produced to describe building performance.

Damage measures
Damage in buildings is quantified through damage measures that identify the damage state
(DS) of the investigated building or component. Component damages are classified into a finite
number of damage states, so that each DS groups damage scenarios with similar consequences
together. Performance assessment is typically executed in a stochastic framework; the DMs are
considered random, and the raw results of the assessment are at least thousands of samples of
each output variable. Therefore, interpretation and visualization of the results is an important
part of the process. The majority of applications focus on mean or median values to describe
central tendencies, with the 10th and 90th percentiles used to illustrate the variability of results.
High-performance computing and the improvement in the quality of input data have created the
incentive to improve estimates of the tails of the distributions and to look at the joint distribution
of the variables. These analyses reveal details of complex systems that might be overlooked
when focusing only at central tendencies.

Decision variables
Decision variables describe the losses due to the natural hazard and are used to characterize the
performance of the building and meant to eventually drive decision- and policy-making. Each
type of loss has its own DV, such as number of injuries, repair cost, business interruption time,
etc.

Indirect consequences
The influence of building damage on surrounding buildings and infrastructure is challenging
to model because of the scarcity of data that could be used for calibration and the substantial
increase in the complexity of the analysis when dependencies between buildings needs to
be considered. Decision variables in this group include non-immediate injuries and hospital
demand, displaced households and short-term shelter needs, business interruption costs, demand
surge, and its influence on reconstruction cost and downtime estimates. Modeling and simulation
of these outcomes is discussed in Part IV of this report.
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13.2 Modeling Approaches

The main assumption of the widely used stochastic model for building performance assessment
is that the uncertainty in the DVs can be estimated through a series of independent calculations.
This approach has been developed in the Pacific Earthquake Engineering Research Center
(PEER); it is often referred to as the PEER performance assessment framework or simply the
PEER “triple integral” (see Figure 1.1, Moehle and Deierlein, 2004, and Porter et al., 2001):

1. Describe a set of IM levels (e.g., spectral acceleration intensities) and corresponding
likelihoods based on the hazard at the building location over a given time period;

2. Describe the building response through EDPs at each IM level;

3. Describe component or component-group DSs given the simulated EDP distributions;

4. Describe consequences using DVs given the estimated DS of each component or component-
group; and

5. Aggregate DVs from all components or component-groups in the building.

Depending on which path is taken from Figure 13.1, one or more of the steps above can be
merged. If calculations are performed independently, the models used for these calculations
are decoupled (e.g., the DS for two different IM levels is assumed identical if the IMs generate
identical EDPs). These steps are the basis of the widely used HAZUS models, and they were
the foundation of the FEMA P-58 method that is currently considered the state of the art for
seismic performance assessment of buildings.

Although sophisticated performance assessment methods promise more information about
building performance, their veracity demands more detailed input data about the building
and its components. Consideration of the uncertainty that stems from the limited amount of
building information available is essential for a robust performance evaluation (Bradley, 2013).
The methods available for quantification and propagation of such uncertainty are discussed in
Chapter 21.

Under non-seismic hazards, there is no equivalent of the FEMA P-58 method that would
enable high-fidelity building performance assessment. This partly stems from the lack of publicly
available high-quality databases—which would drive more sophisticated model development—
and from the different nature of the problem. The impact and disruption of earthquakes and
hurricanes are very different in both spatial and temporal distribution, with hurricanes having a
severe impact on a larger region over a longer time period. Therefore, the focus for hurricane
and flood models have always tended to be more regional, and capturing the detailed response
of individual structures receives less attention.

13.3 Research Gaps and Needs

The integration of multiple hazards and multiple asset types in a simulation framework is an
essential step towards a comprehensive performance assessment for the built environment. It
is important to recognize the difference between multiple hazard studies and multi-hazard
studies. Following the naming convention suggested by Bruneau et al. (2017), the former
studies consider multiple, independent hazards in an area, while the latter studies consider the
interactions and cascading effects among those hazards as well. In a multi-hazard analysis, the
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majority of the resulting risk is not from concurrent extreme events because the probability of
two of such events happening simultaneously is very low. The characterization and modeling
of more frequent hazards becomes more important and influential to the results. There are
already several examples of multi-hazard studies in the literature for a wide range of hazard and
asset types: earthquake mainshock and aftershock (e.g., Nazari et al., 2015; Zhang et al., 2013);
ground shaking, liquefaction, and landslides (e.g., Elgamal et al., 2008; Kojima et al., 2014);
earthquake and tsunami (e.g., Akiyama and Frangopol, 2014; Carey et al., 2019); hurricane
wind, wind-borne debris, storm surge (e.g., Lin et al., 2010; Park et al., 2014) and rainwater
(e.g., Pita et al., 2012); and flood and sea level rise (e.g., Hinkel et al., 2014). It would also be
important to model interactions not only at the hazard level (e.g., Gill and Malamud, 2014),
but also include site effects, disruptions of systems, and system-level social and economic
consequences. Analyses that model interactions beyond the hazard level are referred to as Level
II interactions by Zaghi et al. (2016).

Consideration of the time-dependency of the hazard (e.g., non-Poissonian earthquake models,
and the effect of climate change on wind and water hazards), the structural response and
performance (e.g., the effect of aging, retrofitting, and maintenance in general) are gaps in the
widely used frameworks that researchers are working to fill (e.g., Choe et al., 2008; Gavrilovic
and Haukaas, 2020; Pitilakis et al., 2014). Note: bridges have traditionally received more
attention than buildings.

The consideration of non-structural components has improved substantially for seismic
hazards, but disaggregating their contribution from the structural ones would also enhance
the performance assessment under other hazards and in a multi-hazard setting. Besides better
characterization of losses due to non-structural damage, modeling the contribution of these
building components to the strength and stiffness of buildings is also an important component
of more realistic simulations (e.g., Filiatrault and Sullivan, 2014; Welch, 2016)

Constructing a performance model for high-fidelity analyses is also a significant challenge
that has only been tackled by proprietary software such as SP3 [74]. There is no publicly
available rule set that could be used to populate a large inventory of buildings with the types,
locations, and quantities of components based on the limited amount of building information
available for regional-scale assessments. A similar, but distinct problem is the automated model
definition for response estimation. That task has received more attention in recent years (e.g.,
Guan et al., 2020; Xiong et al., 2016) as well as methods that can produce high-fidelity results
without the need to explicitly model and simulate building response (e.g., Zou et al., 2020).

Epistemic uncertainties (i.e., model-to-model variability) and the bias introduced by idealized
models in performance assessment should be taken into consideration (e.g., Aslani and Miranda,
2005; Schotanus et al., 2004) as well as the influence of correlations between EDPs (Shome
and Bazzurro, 2009) and damage and loss models within a building (Ramirez, 2009).

Many of the existing models and methods for performance assessment have not been validated,
and new models are rarely compared to existing ones in the literature. Different approaches to
model development lead to different results. Even if an identical building class is considered,
there can be large variation in the predictions of these. For example, Crowley et al. (2014) shows
60% coefficient of variation in collapse probability among 24 different models for European
reinforced concrete moment frames. This practice risks introducing bias in the performance
assessment results and reduces the credibility of the methods. Silva et al. (2019) provides a set
of recommendations to improve the reliability of these models.
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13.4 Software and Systems

The following is a list of software that provides features required for state-of-the-art research in
building performance assessment.

CAPRA
Development of the Comprehensive Approach to Probabilistic Risk Assessment (CAPRA [70])
platform was initially supported by the World Bank and the Inter-American Development Bank;
it has been managed by Uniandes (Universidad de los Andes in Colombia) since 2017. CAPRA
is designed to become a multi-hazard framework based on several modules that handle different
tasks of the risk assessment workflow. The currently available modules allow risk assessment
using vulnerability functions for several types of hazards (e.g., earthquake, hurricane, and flood).
The open source CAPRA framework uses Visual Basic .NET and provides applications in a
Windows environment.

MAEViz
Developed by theMid-America Earthquake Center (MAE),MAEViz [71] is based on the HAZUS
methodology for scenario risk assessment and it allows users to write their own extensions.
Through these addedmodules, its functionality is not limited to building performance assessment
and allows analysis of infrastructure and lifeline performance as well as indirect consequences in
the region. It uses a Windows-based application with a user interface to guide the user through
the analysis. MAEViz is open source and has been integrated into several platforms in the U.S.
[e.g., ERGO, mHARP] and in Europe [e.g., SYNER-G (Pitilakis, 2014) and HAZturk (Karaman
et al., 2008)].

HAZUS 4.2
The FEMA-supported Hazus 4.2 [17] tool was already introduced in Chapter 2. The damage and
loss assessment modules in the HAZUS earthquake methodology use a component-group-based
approach and categorize components into structural, non-structural, and content groups. HAZUS
methods for other hazards do not separate structural and non-structural components. They
provide building-level estimates of decision variables. Decision variables cover a wide range
of direct and indirect consequences of damage. The efficient use of vulnerability functions in
this methodology allows simulations to be scaled to a regional level without having to resort to
high-performance computing (HPC).

OpenQuake
OpenQuake [21] is developed and maintained by The GEM Foundation. The source code is
written in Python; it is open source, and publicly available at a Github repository. OpenQuake
provides a platform to perform regional disaster risk assessment. The Hazard part of the
library has already been mentioned in Chapter 2. The Risk part of the library performs a
component-group based performance assessment that is similar to the approach taken by
HAZUS. Input data for the platform is collected and made publicly available in an online
repository at platform.openquake.org. Currently, OpenQuake leans heavily towards seismic
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hazard and risk assessment, but there are developments that consider flood impacts, and the
framework is sufficiently flexible to allow other extensions as well.

OpenSLAT
The Open Seismic Loss Assessment Tool (OpenSLAT [72])is an open-source library developed
at the University of Canterbury and written in C++ and Python. It is publicly available and allows
researchers to use the developed functions in their preferred environment. It implements the
Magnitude-oriented Adaptive Quadrature (MAQ) algorithm developed by Bradley et al. (2010)
to efficiently solve the integrals involved in performance-based engineering (PBE) calculations.

PACT
The Performance Assessment Calculation Tool (PACT [73]), published by the Applied Technol-
ogy Council (ATC) is publicly available software that implements the performance assessment
methodology from the FEMA P-58 document (ATC, 2018b). It is designed to describe the
performance of a single building, not a region with a collection of buildings. The software is
controlled by a GUI and is available for the Windows platform only. It does not perform hazard
and structural response calculations, but rather requires researchers to provide the results of
those calculations as inputs. All fragility and consequence functions developed in the FEMA
P-58 project are conveniently available in PACT.

SP3
The Seismic Performance Prediction Program (SP3 [74]) is proprietary software developed by
the Haselton Baker Risk Group. It is widely considered the most reliable implementation of
the FEMA P-58 methodology and ARUP’s REDi framework for downtime estimation (ARUP,
2013). It is used by both practitioners and researchers. Besides the high-quality implementation,
the software also provides valuable damage and loss databases and additional tools that facilitate
building response estimation, and the creation of a performance model for damage and loss
assessment. SP3 can be accessed through a web-based interface that guides the user through the
steps of the performance assessment workflow. Researchers with programming skills can use it
in batch mode that enables more powerful analyses. The calculations run on cloud computing
servers, which allow users to run complex, demanding analyses within a reasonable timeframe.

13.4.1 Relevant SimCenter Tools

The SimCenter develops PELICUN, a performance assessment tool that integrates multiple
conventional damage and loss assessment methods and allows researchers to take advantage
of synergies between them when developing new approaches. PELICUN is available as a
standalone Python library and it is the performance assessment engine behind the applications
developed by the SimCenter.

PELICUN
The PELICUN library (PELICUN [12]) is an open-source Python package that implements the
Probabilistic Estimation of Losses, Injuries, and Community resilience Under Natural Disasters
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(PELICUN) framework developed by the SimCenter. The framework and the corresponding
library is designed to provide a versatile, platform-independent and transparent loss-assessment
tool for the research community. It integrates methods across hazards, resolutions, and asset
types, and supports high-fidelity component-based as well as efficient building-level performance
assessment (Zsarnóczay and Deierlein, 2020). Damage and loss model parameters (i.e., fragility,
vulnerability, and consequence functions) for FEMA P-58, and the earthquake and hurricane
methods from HAZUS are provided with the tool, and researchers can extend these with their
own data. The PELICUN library is platform independent; it allows researchers to work in their
preferred environment (e.g., MATLAB) and call its functions to perform loss assessment.

PBE Application
The Performance Based Engineering Application (PBE [13]) provides a convenient GUI-based
tool for researchers interested in performance assessment. The GUI provides access to the
versatile PBE workflow developed at the SimCenter and allows users to choose the tools and
methods they wish to use for hazard estimation, response simulation, and loss assessment.
Currently, the application is limited to seismic hazards, with wind and water hazard features
under development. Seismic hazard assessment uses OpenSHA and the PEER ground-motion
database (see Chapter 2), response estimation uses OpenSEES to simulate both structural and
soil behavior (see Chapters 9 and 10), and loss assessment uses PELICUN to perform the
calculations. Researchers can expand the set of tools supported by the application. If EDPs
are already available from external tools, those can be imported, and the PBE application can
perform the damage and loss assessment based on those EDPs.

R2DTool
The Regional Resilience Determination Tool (R2DTool [8]) is a research application that focuses
on running regional simulations and interpreting their results. The tool integrates the workflow
components from other research tools developed for individual building assessment (e.g.,
EE-UQ, PBE) and extends them to consider multiple assets and a regional characterization of
hazard scenarios. The first release of the R2DTool provides features for seismic risk assessment.
Additional features planned for 2021 will enable hurricane risk studies including the simulation
of both wind and storm surge effects. Building performance is assessed using PELICUN
to simulate the damage and losses for each building in a region. The tool supports efficient
calculations using damage and loss models based on intensity measures, as well as complex
analyses that require structural response estimation followed by high-resolution damage and
loss assessment based on engineering demand parameters.





Chapter 14
Transportation Networks

Adam Zsarnóczay with contributions by Rodrigo Silva-Lopez and Ertugrul Taciroglu,
along with review comments and suggestions by Jack W. Baker and Thomas O’Rourke

Transportation systems play an important role in regional response and recovery after a disaster.
Roads, railways, and bridges and the interdependencies between these systems and other parts
of the built environment must be considered in a comprehensive regional risk assessment.
There are several challenges in the performance assessment of transportation networks, from
the realistic representation of spatially correlated intensity measures (IMs), through collecting
exposure data that describes the location, geometric, material, and design characteristics of
the network components, to developing models for their response and damage estimation.
Finally, the consequences of network damage are measured by evaluating the quality of service
(e.g., travel times, trips made, etc.). These calculations introduce a set of additional challenges.
Computing travel delays requires modeling the behavior of people, which is highly nonlinear
and difficult to predict in a reliable manner in lieu of post-disaster travel data.

14.1 Input and Output Data

Performance of the transportation infrastructure requires inputs and provides outputs at a
regional scale. Conceptually, some of the inputs are similar to those required for building
performance assessment; however, the regional analysis introduces additional challenges, such
as the necessity to consider spatial correlation in hazard severity and the significant increase
in computational complexity of consequence estimation due to the need to model traffic on
the damaged network. The following list focuses on the differences and the additional details
required when compared to building performance assessment.

Hazard characterization
Regardless of the type of hazard considered, its severity needs to be described by one or more
two-dimensional IM fields. Each field represents one hazard scenario and prescribes an IM map
for the region. In earthquake engineering, these IMs are typically derived from probabilistic
analyses, and researchers need to model the correlation between different locations and different
IMs to ensure that the IM fields provide a realistic representation of a ground-motion scenario
(e.g., Han and Davidson, 2012; Lee and Kiremidjian, 2007; Loth and Baker, 2013). The
probabilistic description of wind and water flow characteristics under a hurricane or tsunami
are considerably more challenging and not part of the typical research workflow. Although
there are examples of probabilistic hazard assessment for non-seismic infrastructure risk studies
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(e.g., Kameshwar and Padgett, 2014), it is more common to investigate such risk based on
scenario events; the IM field under each scenario is a result of a separate, physics-based hazard
simulation (Bjarnadottir et al., 2014). These IM fields represent realistic scenarios; the challenge
in this case is to efficiently capture the range of possible IMs with a finite number of hazard
simulations.

Engineering demand parameters (EDPS)
Road and railroad track damage is usually estimated using fragility functions that link IMs
directly to damage states (e.g., relationships between ground deformation and road damage;
Argyroudis and Kaynia, 2014). In such cases, because performance assessment of these network
components does not involve explicit simulation of the roadway (or railroad) components, it
does not involve calculation of EDPs. Exceptions to this may include cases where empirical
relationships do not apply (e.g., roadways along natural or engineered embankments; Lagaros
et al., 2009; Yin et al., 2017) or to critical infrastructure (e.g., high-speed rail tracks).

Bridge damage can be estimated directly from IMs (e.g., FEMA, 2018a), but the high-fidelity
performance assessment of bridges typically involves structural simulation to relate specific
EDPs to critical damage states in structural components. Depending on the component, these are
local deformations, internal forces, or a DM derived from these quantities (e.g., Park and Ang,
1985) that are well-correlated with the damage states of the particular component (Choi et al.,
2004). Estimation of these EDPs with sufficient accuracy requires nonlinear response history
analysis on reliable models; hence the computational resources available are an important factor
when deciding the level of modeling fidelity.

Fragility functions
These functions describe the probability of exceeding a particular DS of the network component
given an IM that describes the severity of the hazard at the site (e.g., Balomenos et al., 2020) or
evaluates the damage to separate sub-assemblies of the component (e.g., Nielson and DesRoches,
2007; Simon and Vigh, 2016). Both approaches are based on laboratory tests and past experience
in post-disaster inspection. Conceptually, they are similar to building fragility functions.

Consequence functions
The likelihood of direct loss of life and injury due to transportation network damage is
significantly lower than the likelihood of such events due to building damage. Hence, studies
focus more on estimating the cost of reconstruction and downtime for each component as a
function of the damage severity expressed by the DS (Gidaris and Padgett, 2017; Stergiou and
Kiremidjian, 2006). Losses estimated at the component level directly from component damages
cannot consider system-level effects and interdependencies. These consequence functions need
to be complemented with a system-level analysis of indirect consequences.

Traffic models
Network performance assessment and evaluation of the consequences of network component
damage at a regional scale require a model of traffic flow with source and destination data.
Development of a traffic model for a large urban area is a large undertaking. Such models
are prepared and used by local transport authorities, and typically are not publicly available.
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There are good examples of collaboration between academia and local authorities that allow
researchers to take advantage of the mature models and vast data available at the authorities
(Miller and Baker, 2015).

Decision variables
Transportation network performance is described by system-wide downtime, the change in
traffic, or the change in network capacity given the traffic model described above. Probabilistic
assessment of network performance requires a complex and computationally demanding analysis.
Performance metrics that serve as decision variables are a topic of ongoing research (Miller-
Hooks et al., 2012; Miller and Baker, 2015). Changes in travel time (either regional statistics or
focusing on a particular route) and accessibility are two commonly used metrics.

14.2 Modeling Approaches

Natural disaster impact on a transportation network uses the assumption of independent
calculation steps from building performance assessment (Chang, 2000; Kiremidjian et al., 2006;
Miller and Baker, 2015). Hence, the hazard characterization, response estimation, damage
estimation, and consequence estimation are performed by independent stochastic models. This
allows for the following approach to regional simulation; see Figure 14.1:

• Characterize the hazard in the region using IM fields;

• Estimate the response and the corresponding damage in each network component given the
IM at the location of the component; and

• Estimate the downtime and repair cost for each network component and assess the performance
of the transportation network given the level of damage in network components.

Fig. 14.1 Illustration of the transportation network risk assessment framework from Miller et al. (2015).

Structural response and damage (but not the consequences) in one network component is
typically assumed to be independent of other components. This assumption enables more
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efficient simulation through parallel calculation of component damage in the region. It is
expedient to note that this approach may overlook correlations in certain bridges that are
designed and detailed in similar ways (e.g., bridges along major highways that may have been
designed and constructed under one project). The spatially correlated IMs still ensure that
similar components within a small area will experience similar demands and, consequently,
similar damages.

If sufficiently detailed information of the transportation network is available, the cascading
failure of components can be considered; for example, if one overpass fails, its collapse triggers
the collapse of others in a complex highway interchange. Consideration of this type of interaction
between network components prohibits independent, parallel assessment of network component
damage.

A special but important case of transportation network analysis is the investigation of flood
risk to the underground transport infrastructure. Such risk can be evaluated by computing the
volume of water entering the tunnels based on the time history of flood height at each opening.
The performance of the underground system can be evaluated based on the degree of flooding
in each of its tunnels. This methodology is available in the GIS-based analysis tool of Jacob
et al. (2011).

14.3 Software and Systems

The software that aids in the characterization of the hazard and estimation of network component
response were introduced in Parts I and II, respectively. Some of the following tools have such
capabilities, but the focus here is on the performance assessment-related features.

HAZUS 4.2
This FEMA-supported tool has been introduced in Chapter 2. The Hazus 4.2 [17] Multi-hazard
Loss Estimation Methodology provides a comprehensive framework, fragility, and consequence
functions for seismic damage and reconstruction time assessment for bridges and transportation
links. It also provides a model for assessment of bridge damage due to storm surge. HAZUS
covers large groups of bridges with a single configuration; therefore, damage and recovery
estimates cannot account for detailed information about structure type and geometry or the
site-specific post-disaster conditions. Evaluation of the impact of component damage on network
performance requires external tools.

OpenQuake
The risk assessment framework of the OpenQuake [21] tool (introduced in Chapter 13) is
sufficiently flexible to enable the assessment of damage and consequences for transportation
network components. Unlike HAZUS, the fragility and consequence information is not provided
with the tool. The functions available in the HAZUS Technical Manual (FEMA, 2020) can be
adopted with minor effort.
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14.3.1 Relevant SimCenter Tools

The SimCenter develops PELICUN [12], a performance assessment tool that integrates multiple
conventional damage and loss assessment methods and allows researchers to take advantage
of synergies between them when developing new approaches. PELICUN is available as a
standalone Python library and it is the performance assessment engine behind the applications
developed by the SimCenter. Currently, the databases bundled with PELICUN support the
assessment of buildings only; if researchers are interested in the performance of transportation
networks, they need to provide the corresponding parameters of damage models (i.e., fragility
functions). Given those parameters, the SimCenter tools described in Chapter 13 can handle
the damage assessment of transportation networks and their components—PBE can be used to
investigate individual bridges and the R2DTool is suitable for the assessment of entire networks.
A future release of PELICUN will facilitate such studies by having the commonly used fragility
functions for bridges bundled with the default damage and loss database.

14.4 Research Gaps and Needs

The regional assessment methodology for transportation networks in HAZUS 4.2 is known
to have critical shortcomings (e.g. Mangalathu et al., 2017). State-of-the-art transportation
network analyses require tools to construct robust bridge models and integrate the regional
damage simulations with state-of-the-art traffic and socio-economic impact analyses. These
bridge models should be shared with the broader research community so that bridge inventories
at regional scales can be compiled and analyzed. Such a capability stands to revolutionize
seismic resilience assessment studies and could be extended to other hazards (e.g., tsunamis
and hurricanes). Efforts in the aforementioned direction are relatively sparse at the present time;
see, for example, Koc et al. (2020), but they may provide a natural interface between engineers
and researchers, as well as practitioners, including insurance agencies/companies, emergency
response managers/planners, traffic engineers, and social scientists.

The following areas appear ripe for directing and supporting research efforts:

• Development of tools to generate large inventories of bridge models that can be improved
upon as more data is available and shared with other members of the NHE community. These
efforts will likely feature computer vision, machine learning, and data-harvesting techniques;

• Studies on devising system-level hazard resilience metrics that take into account the inherent
dependency of the subject infrastructure (e.g., port facilities) to regional transportation
network performance;

• Development of workflows and tools to facilitate regional-scale risk and loss assessment
studies involving transportation networks; and

• Development of new tools to accurately estimate bridge downtimes and the resulting effects
on mobility.





Chapter 15
Water, Sewer, and Gas Pipelines

Iris Tien,
along with review comments and suggestions by Craig Davis, Thomas O’Rourke, and Adam
Zsarnóczay

There are many methods available for modeling and simulation of lifeline networks. These
include empirical, agent-based, system dynamics-based, economics theory-based, and network-
based approaches. The reader is referred to resources including Ouyang (2014) and Johansen
et al. (2017) for a discussion of the general methods available and the varying measures existing
for assessing community outcomes based on lifeline performance. The techniques described
in the works referenced are general and can be applied to any lifeline network; they are not
described in more detail here. The focus in this report is on modeling and simulation software
for specific lifeline types with parameters particular to the lifeline and resource flow type. The
emphasis is on open and publicly available software tools.

The objective of water, sewer, and gas pipeline network simulation is to assess the ability
to provide critical water, wastewater, and natural gas services for populations under varying
scenarios. Natural hazards engineering (NHE) must assess the states of these lifeline systems
under hazard events and inform decision makers on approaches to improve the expected
performance of these systems when subjected to these hazards. The reader is referred to N.I.S.T.
and O’Rourke (2016) on the role of lifelines in NHE and recovery, and O’Rourke (2014)
and DEP (2013) for information on lifeline resilience to earthquake and hurricane hazards,
respectively. The creation of digital twins, where parallel computational models for water supply,
wastewater, and gas and liquid fuel delivery systems are created as a cyber-system counterpart
to the real system, are also relevant for the modeling and simulation of lifelines (Fan et al.,
2019; O’Rourke, 2010). A digital model of the real system allows users to look into natural
hazards effects and then use the digital twin to improve the real system. For water, sewer, and
gas pipeline natural hazard simulations, the underlying physics lie mainly with the simulation
of individual components in the system, e.g., pipes, junctions, and valves, and the subsequent
system-level analysis based on the component-level information through the use of network
graphs or by more detailed hydraulic flow and pressure analysis through the network.

15.1 Input and Output Data

The information needed to describe the natural hazard at a regional scale is similar to the
hazard characterization explained for transportation networks in the previous section. The
hazard models provide a regional distribution of intensity measures (IMs) that are used as
proxies to express the severity of the hazard in the area. The type of IM depends on the hazard
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type and the network component under investigation. While the effect of a seismic event on
structures is typically described using PGA or spectral acceleration, the analysis of pipelines
requires information about the PGV and the permanent ground deformation and their geographic
distributions (Romero et al., 2010).

Lifeline models require information about the geographical location and classification of
the lifeline components. Such information is often hard to obtain, especially at sufficiently
high resolution for detailed regional assessment. This lack of data stems from privacy and
national security concerns; most databases are privately owned, and there is a lack of records
in the public domain. Water, sewer, and gas pipeline simulation relies on information about
component locations, size (e.g., pipe diameter), pressure, and connectivity. Other assets of
interest in modeling the performance of water, sewer, and gas systems include pump station,
reservoir, treatment plant, regulator station, and compressor station components.

Output data will typically be water, wastewater, or gas pressures, flows or volumes at specific
locations. Of particular interest is the ability to provide these services at final distribution points
in the network. These analyses should be conducted at various times after an event to capture
the time-related consequences of system damage and the geographic distribution of system
service losses, and how these change with system repairs.

15.2 Modeling Approaches

The modeling approach in the simulation is often determined and constrained by the amount
and resolution of available information. Regardless of the modeling fidelity, the approach is
almost always based on the following two steps:

• First, given an IM at the site, component damage is estimated by assigning a damage state
(DS) to each component. In HAZUS, this is done using component-specific fragility curves to
estimate the damage to a given component under the hazard. For facilities and building-like
structures, the damage evaluation is similar to the HAZUS method described in Section 3.1.
For pipeline networks (i.e., water, sewer, and gas), two types of damages are considered: leaks
and breaks. Buried pipeline fragility functions are continuing to be developed, including
in terms of ground strain and peak ground displacement. The sophistication of damage
evaluation heavily depends on the level of analysis and the available IMs; and

• The second step, given estimated damage to lifeline components, is to assess network-level
consequences. In HAZUS, direct consequences are evaluated using empirical relationships
based on past experience. Direct consequences are typically limited to restoration time
and replacement cost in HAZUS. Indirect consequences can have much greater social and
economic impacts; however, these are often difficult to capture within a single software
system.

The HAZUS earthquake model is the most sophisticated among the HAZUS models for
lifeline modeling and simulation. For NHE, HAZUS hurricane and tsunami models are limited
to buildings and do not cover lifelines. The HAZUS flood model provides damage and loss
estimates only for a subset of potable water, wastewater, and natural gas facilities. Damage is a
function of flooding as measured by water level in feet. The information below is based on the
earthquake hazard modeling.
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The default inventory for potable water networks in HAZUS contains estimates of pipelines
aggregated at the census tract level (based on U.S. Census TIGER street file datasets). The
HAZUS methodology suggests three levels of analysis for potable water networks:

• Level 1 is based on the default HAZUS inventory (i.e., census tract estimates);

• Level 2 requires additional information on transmission aqueducts, distribution pipelines,
reservoirs, water treatment plants, wells, pumping stations, and storage tanks; and

• Level 3 requires additional information on junctions, hydrants, and valves, and further
data about connectivity and serviceability (i.e., demand pressures and flow demands at
different distribution nodes). Such information is typically available in KYPIPE, EPANET,
or CYBERNET format.

Analysis of other lifelines requires similar types of information:

• Wastewater networks are described by the geographical layout and characteristics of the
transmission network and its treatment components; and

• Natural gas networks are described by the geographical layout and characteristics of buried
or elevated pipelines and compressor stations.

Although the diameter of pipes is not always considered as a parameter in damage functions,
it may provide a good proxy for capacity of the given network element and used in network
performance assessment in more sophisticated analyses. The rigidity of the pipes in a network is
an important input parameter that heavily influences the damage to the pipelines by earthquakes.
In HAZUS, three levels of modeling fidelity are described that correspond to the previously
introduced analysis level:

• Level 1: Results are limited to number of leaks and breaks per census tract resulting in
a simplified evaluation of network performance (i.e., total number of households without
water);

• Level 2: The network is modeled as a graph. This approach allows for estimates of component
functionality, component damage ratio, and flow reduction to each area served by the network.
Overall network performance can be estimated as a function of the average repair rate
(repairs/km) of the pipes in the network. Such evaluations have been performed for San
Francisco (Markov et al., 1994), Oakland (G&E Engineering Systems, 1994), and Tokyo
(Isoyama and Katayama, 1982); and

• Level 3: The suggested model is based on the work of Khater and Waisman, 1999. It provides
more accurate estimates of the hydraulic flow in the network. This translates into improved
accuracy and reliability of results when compared to Level 2 analyses.

15.3 Software Systems

HAZUS 4.2
This methodology classifies potable water, wastewater, oil, natural gas, electric power, and
communication systems as lifelines. It provides a similar methodology for the modeling and
simulation of these systems. Electrical networks are the only lifelines that have influence on



122 Tien

other lifelines in the HAZUS methodology (i.e., damage to the electrical network and the
consequent loss of power results in loss of function and potential damage in other lifelines).
Electrical system modeling is described in more detail in Chapter 16.

The dependency between network component repair times is not considered by HAZUS. The
dependencies of one lifeline damage or the consequences of such damage on other lifelines
is not taken into consideration in the HAZUS methodology, with the exception of electrical
networks. Assessment of network performance is out of the scope of the HAZUS methodology
for wastewater systems. In general, HAZUS 4.2 allows estimation of lifeline damage and
consequent reduction in network performance. Further details of the software and its limitations
are explained in Chapter 2.

EPANET
EPANET [75] is a software package developed by the U.S. Environmental Protection Agency
(EPA) for water pipeline distribution modeling and simulation. It has been widely adopted
by municipalities and water utilities as a standard format to evaluate their systems. Its two
main uses are for hydraulic modeling (including maintaining flows and pressures in a system)
and contaminant transport simulation. EPANET files can be used as input files for water
distribution pipeline information. EPANET modeling and simulation does not include the
ability to assess the impacts of natural hazards on lifeline components or network performance.
Using EPANET information, the pressure dependent demand (PDD) approach is becoming
the preferred approach to hydraulic network modeling of water distribution systems heavily
damaged by earthquakes and the modeling of hydraulic networks damaged and/or those that
have sustained heavy demands. The reader is referred to references including Jun and Guoping
(2013) and Sayyed et al. (2014) for modeling the relation between pressure and flow in EPANET.
Available flow at a network node depends on the available pressure.

GIRAFFE
The Graphical Iterative Response Analysis for Flow Following Earthquakes (GIRAFFE [76])
was developed at Cornell University to provide a performance assessment tool for pipeline
networks (Wang and O’Rourke, 2008). It uses the EPANET engine to define the water network
and perform hydraulic network analysis. Performance estimates are presented in a user interface
using a GIS framework. Its advantage compared to EPANET is the capability to analyze the
performance of leaking systems.

WNTR
WNTR [77] (Water Network Tool for Resilience) is an open-source library of functions developed
in the Python programming language by Sandia Laboratories. It uses input data in the EPANET
format to define a network and perform an analysis that is similar to the Level 2 and 3 analyses
in the HAZUS methodology. WNTR adds the hazard element to water pipeline simulation.
Using WNTR requires basic Python programming skills, but in return it provides a platform-
independent solution that can easily work in a high-performance computing (HPC) environment.
In addition to the damages and estimated restoration times, it provides estimates of the hydraulic
performance of the damaged network. The library is hazard-agnostic; as long as the IMs and the
corresponding fragility curves are supplied, it performs the damage calculations and evaluates
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the estimated consequences of the damage. Compared to GIRAFFE, WNTR incorporates
emitters as an improvement to modeling damaged systems.

Gas pipeline simulation software
Compared to water pipeline simulation software, natural gas pipeline modeling and simulation
software is mostly commercial and proprietary, e.g., Synergi Gas from DNV-GL conducts
hydraulic modeling and analysis and NextGen from Gregg Engineering creates hydraulic
simulation models to run simulations and calculate pressures, flow rates, and other operational
parameters. Given the emphasis on open-source software in this report, these are not discussed
in more detail.

15.3.1 Relevant SimCenter Tools

The SimCenter develops PELICUN [12], a performance assessment tool that integrates multiple
conventional damage and loss assessment methods and allows researchers to take advantage
of synergies between them when developing new approaches. PELICUN is available as a
standalone Python library and it is the performance assessment engine behind the applications
developed by the SimCenter. Currently, the databases bundled with PELICUN support the
assessment of buildings only; if researchers are interested in the performance of buried pipelines,
they need to provide the corresponding parameters of damage models (i.e., fragility functions).
Given those parameters, the R2DTool described in Chapter 13 can simulate the damage states of
a network of buried pipes and the supporting facilities. The commonly used fragility functions
for pipelines are planned to be bundled with a future release of PELICUN to facilitate the
analyses of pipelines. The SimCenter is also developing a testbed that focuses on the Memphis,
TN, area and will provide exposure data and templates of workflows and models for interested
researchers.

15.4 Research Gaps and Needs

There is great need for improved fragility functions for buried pipelines in terms of ground strain.
Advancing component-level fragility curves and improved simulation of structural response for
critical facilities will lead to a better estimate of expected damage, both in terms of accuracy and
resolution in a simulation. In lifeline modeling and simulation, there is the need for improved
consideration of interdependencies between lifelines (Dueñas-Osorio et al., 2007; Johansen and
Tien, 2018). This will enable researchers to better understand the impacts of natural hazards on
communities. Finally, improved simulation of the recovery process (He, 2019; Tabucchi et al.,
2010; Tomar et al., 2020) will enable researchers to better understand performance and recovery
of lifeline services during and after disasters.





Chapter 16
Electrical Transmission Substations and Lines

Iris Tien,
along with review comments and suggestions by Craig Davis, Thomas O’Rourke, and Adam
Zsarnóczay

The objective of the simulation of electrical substations and transmission and distribution lines
is similar to that of other lifelines: namely, to assess the ability to provide critical electricity
services for populations under varying scenarios. Considering natural hazards engineering
(NHE), the purpose is to assess the state of these lifeline systems subjected to various hazards
and inform decision makers on approaches to improve the expected performance of these
systems under such hazards. For example, compared to hydraulic or pressure flow analyses for
water, sewer, and gas pipeline simulation, the underlying physics of the simulation relies on
power voltage flow analysis in addition to system-level analyses that can be conducted through
the use of network graphs. Electrical power networks are also composed of connected regional
and local systems. Local distribution systems are dependent upon the regional grid for supply,
requiring multiple levels of analysis to capture the performance of the regional grid and local
distribution systems.

16.1 Input and Output Data

Modeling electrical networks requires information about generation facilities, substations, and
transmission and distribution circuits. In addition to the geographical location, the level of
voltage is an important property in a general assessment. The availability of electrical power
system data is subject to many of the constraints of lifeline data given privacy and national
security concerns, and the fact that the databases are privately owned. When there is a lack
of network data availability—particularly a lack of detailed information at the distribution
level—only low-resolution analyses at the transmission system level are possible. Depending on
the type of hazard, other details can be required, such as anchorage of components for seismic
analysis or elevation information for flood hazard assessment. The required inputs and produced
outputs for the power grid depend in part on the type of hazard, e.g., climatic compared to
geologic, and the target fidelity for reliability and risk analysis.

16.2 Modeling Approaches

In general, given the intensity measure (IM) at the site, component-specific fragility curves
can be used to estimate the damage to a given component under a hazard. For facilities and
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building-like structures the damage evaluation is similar to the HAZUS method described in
Chapter 13. Given the damage to the network component, the direct consequences are evaluated
using empirical relationships based on past experience. Direct consequences are typically limited
to restoration time and replacement cost in HAZUS, where fragility of electrical substations
and distribution circuits is defined with respect to the percentage of damaged subcomponents.

Modeling indirect consequences of damage in the electric power network is an ongoing area
of research (Moore et al., 2005). HAZUS does not consider interaction between nodes of the
power network. Interaction between other lifeline systems is considered as follows: the loss of
electric power is assumed to influence the slight/minor and moderate DSs of components in
other lifelines that depend on power. More severe DSs are not influenced by the lack of power.
The substation that serves connected components is assumed to experience the event at the
location of the served component. An even more simplified approach uses a generic damage
algorithm to describe the availability of power as a function of an IM.

16.3 Software Systems

HAZUS 4.2
As mentioned in Chapter 15, Hazus 4.2 [17] groups electric power and communication networks
with the other lifelines and provides similar methodologies for their analysis. Electrical networks
are the only lifeline type that has influence on other lifelines in the HAZUS methodology (i.e.,
damage to the electric network and the consequent loss of power results in loss of function and
potential damage in other lifelines). HAZUS 4.2 software allows estimation of lifeline damage
and consequent reduction in performance. Further details of the software and its limitations are
explained in Chapter 2, and its application to lifeline simulation and pipelines in particular are
described in Chapter 15.

OpenDSS
OpenDSS [79] is a software package developed by the Electric Power Research Institute
(EPRI). It conducts electrical power system simulation for electric utility power distribution
systems. It supports simulations of power flow across frequencies and is mainly used to evaluate
distributed energy resource generation, its integration with utility distribution systems, and grid
modernization technologies. Assessments do not include the impacts of natural hazards on the
system components or network performance for NHE applications.

MatPower
MatPower [78] (Zimmerman et al., 2011) is a free toolbox available in MATLAB for conducting
power flow analysis. It does not have the capability to directly model the effects of natural
hazards.

16.4 Research Gaps and Needs

Similar to the description of the research gaps and needs in water, sewer, and gas pipeline
simulation (Chapter 15), there is the need for improved consideration of interdependencies
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between lifelines as related to electrical systems. Given the critical role of electricity for many
lifelines, this will enable researchers to better understand the impacts of natural hazards on
communities. Advancing component-level fragility curves and improved simulation of structural
response for critical facilities will lead to better estimates of expected damage, both in terms of
accuracy and resolution in a simulation. Needed are improved fragility functions for specialized
structures for each lifeline sector, e.g., generation plants, substations and components, and
transformers for electrical systems. An analysis of equipment supporting these specialized
facilities is also needed. The focus on selected structural components in electrical power network
damage analysis, where fragility functions do exist, can also lead to missing failure mechanisms
and inaccurate risk assessment. Finally, improved simulation of the recovery process will
enable researchers to better understand performance and recovery of lifeline services during
and after disasters. The high computational cost and sometimes computational intractability of
network-level performance analyses for electrical systems is an ongoing research challenge.





Part IV
Recovery Modeling

This section provides an introductory discussion on the modeling of disaster recovery for
infrastructure, residential buildings, businesses, and communities. The aim of this section is
not to present an exhaustive list or propose an ideal approach given the complexity of the
recovery process and the wide variation across hazard types and geographies. Rather, empirical
studies are reviewed to identify factors that are associated with recovery, providing the basis for
conceptual models of recovery. Note: although recovery simulations are often used to obtain
proxies of the disaster resilience, disaster recovery is only one among many metrics of resilience
(Kwasinski et al., 2016; NAS, 2019). For this reason, the scope of this section does not include
a comprehensive review of the broader topic of disaster resilience.

Disaster recovery modeling consists of assessing over time the performance of a system
subjected to a shock (see Figure IV.1). Prior to the shock, the system has a baseline state, &1.
At the time of the event, C0, disturbances to the system reduce its functionality to a new state,
&0. Subsequently, the system is restored until a time C', when its new normal is established.
Recovery may be partial, with the new normal below the pre-disaster state, or improvements
might elevate the new normal above the pre-disaster state.

Fig.IV.1 Resilience triangle (adapted from Bruneau et al., 2003).



While comparing recovery with pre-disaster state is a common practice, another alternative
is to compare it to the projected state of the system had the shock not occurred. Plotting the
state of the system over time, &(C), against the time since the shock provides a graph as the one
shown in Figure IV.1. The curve &(C) is called the recovery trajectory (Bruneau et al., 2003).
While loss assessments focus on the magnitude of the initial drop in the functionality of the
system, recovery modeling is devoted to simulating the recovery trajectory. Hence, the main
output from a recovery model is the time series of &(C).

The magnitude of the initial drop at C0 is a function of the robustness, '1, and the redundancy,
'3, of the system. A perfectly robust system is one that can experience a shock without
significant changes. A perfectly redundant system is one that, if disrupted, can immediately and
cost effectively rearrange itself to provide the same level of service as before the event. The
ability of the system to regain functionality can be estimated from the slope of the recovery
trajectory. The slope is influenced by the capacity of the system to mobilize resources and meet
priorities. These are often called the system’s resourcefulness, 'B, and rapidity, '? (Bruneau
et al., 2003). The concepts in the figure can be employed to study the recovery of critical
infrastructure, housing, and businesses. The following sections discuss the state of the art in
simulation the recovery of these three systems.



Chapter 17
Communities

Rodrigo Costa with contributions by Ann-Margaret Esnard,
along with review comments and suggestions by Henry Burton

A community can be defined as a place designated by geographical boundaries that functions
under the jurisdiction of a governance structure, such as a town, city, or county (Kwasinski
et al., 2016). Communities are composed of physical, social, and economic infrastructure
systems within these geographical boundaries, as well as the relationships between them. Our
understanding of disaster recovery for individual systems has progressed significantly over the
last decades. That said, individual system analysis often lack recognition of dependencies on
other systems, or do not holistically address the impacts to a community (Kwasinski et al.,
2016). Science-based measurement tools to evaluate recovery at community scales, integrated
supporting databases, and risk-informed decision frameworks to support policies aimed at
enhancing community resilience are at a rudimentary stage of development (Ellingwood et al.,
2016). In short, modeling approaches for disaster recovery at the community level are still
in their infancy. Yet, concepts of community recovery are valuable in developing recovery
models with more limited scopes, e.g., for infrastructure, housing, or business recovery. This
section introduces some of these key concepts that provide guidelines for the development of
community recovery models.

17.1 Concepts in Community Recovery Modeling

Modeling community recovery requires a comprehensive understanding of post-disaster cir-
cumstances and conditions. This includes damage and serviceability of buildings and lifelines,
their interactions with social and economic systems, the availability of human and financial
resources for recovery activities, and the decisions made by relevant stakeholders (Deshmukh
and Hastak, 2012). The challenges in modeling a community start with the definition of what
recovery looks like. Table 17.1 provides a partial list of goals and indicators of community
recovery. Different models may be required to evaluate the metrics in Table 17.1. Thus, the
choice of the recovery metric will determine the most appropriate approach, data needs, and
complexity of the community recovery model.

One of the early conceptual frameworks for the simulation of community disaster recovery
was proposed by Miles and Chang (2003) and subsequently improved in Miles and Chang
(2006). This conceptual framework is shown in Figure 17.1. It consists of three levels: lifelines,
neighborhood, and community. Within these are the critical infrastructure networks, residential
buildings, and households, as well as businesses. The arrows in the figure indicate the interactions
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Table 17.1 Example of community recovery goals and indicators (Cutter et al., 2013; Kwasinski et al., 2016).

Community performance goals Examples of recovery indicators

Population stability Number of households dislocated; percent population remaining in the
community; percent population remaining in homes; change in housing
vacancy rate

Economic stability Household income; employment; earnings by sector; assessed value of
property; change in taxes and revenue (resources); change in gross city
product (GCP)

Social services stability Hospital bed demand/supply ratio; school teacher/student ratio; availability
of key retail and financial services

Physical services stability Percent functionality of buildings and transportation systems; percent of
population served by water, wastewater, electric power, gas, and telecom-
munication systems

Governance stability Percent of population with access to police and fire protection and other
essential public government services

between these systems. Recent advances in the understanding of disaster recovery (Miles et al.,
2019) have demonstrated the complexity in these interactions. Nonetheless, this framework
provides a solid foundation for the development of more sophisticated models for community
disaster recovery.

Fig. 17.1 Conceptual model for community recovery (Miles and Chang, 2003).
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To overcome some of the data constraints for community recovery modeling, the Centerville
Virtual Community Testbed was developed as part of the NIST-funded Center of Excellence for
Risk-based Community Resilience Planning initiative (Ellingwood et al., 2016). This testbed is
aimed at enabling fundamental resilience assessment algorithms to be initiated, developed, and
coded in a preliminary form, and tested before the refined measurement methods and supporting
data classifications and databases necessary for a more complete assessment have fully matured.
The Centerville testbed and other testbeds under development are a valuable resource for anyone
developing models for community recovery.

Simulation models for community recovery can greatly improve our ability to evaluate
the benefits of selected mitigation measures. For example, the true benefits of retrofitting
transportation infrastructure may be underestimated if the gains to the business sector are not
accounted for. A more resilient business sector may also improve the recovery capacity of
households. Thus, more than any model for the recovery of individual systems, fully integrated
models for community recovery can greatly increase our capacity to demonstrate the benefits of
building resilience in our communities.

17.2 Major Research Gaps and Needs

A concerted and coordinated research effort is needed to do more and better modeling of
community recovery. As per (Miles et al., 2019), part of this effort can simply be researching
appropriate means of integrating existing infrastructure, housing, and business recovery models.
The development of guidelines for the systematic collection of empirical data in future events is
another area that requires more research. Empirical data play an important role in benchmarking
and verification of simulation models, and yet this type of data is still scarce. The development
of virtual testbed communities, for which detailed and granular information about infrastructure,
buildings, households, and businesses is available, can improve our ability to design community
recovery models. Finally, collaborations between researchers from varied fields should be
encouraged, facilitated, and rewarded. Community recovery is a multi-disciplinary subject,
with physical, social, and economic dimensions. The creation of centers of excellence to foster
multi-disciplinary approaches, facilitate information sharing, and develop partnerships with
public and private sectors can greatly improve our understanding of this field.

17.3 Software and Systems

As discussed in the previous sections, the topic of recovery modeling has gained attention in
recent years. Several modeling tools have been developed, as will be demonstrated throughout
this chapter. The innovations in these tools are briefly discussed in their respective sessions;
references are provided to those interested in obtaining more details. Although there are a large
number of recovery modeling tools developed for specific use,they have been shown to have
limited transferability to other problems and contexts and are not discussed herein. The following
list only includes software and scripts that are targeted at simulating community recovery and
are under continuous development with the intent of widespread use by the research community.
These software and scripts include (or are in the process of including) models for infrastructure,
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businesses, and buildings, as well as households, and are targeted at simulating systems of
systems.

IN-CORE
The Interdependent Networked Community Resilience Modeling Environment (IN-CORE
[81]) was developed as a collaborative effort by researchers from different institutions and
backgrounds, including social scientists, urban planners, and engineers. It contains modules for
building and infrastructure loss assessments and economic and sociological analysis. Although
version 1.0 of IN-CORE has limited recovery modeling features, its strong multi-disciplinary
foundation is expected to be leveraged for recovery assessments in future versions.

DESaster
DESaster [80] is a Python library for discrete event simulation of disaster recovery. Currently,
DESaster focuses on housing recovery. In the discrete-event framework of DESaster, the steps
needed to repair residential buildings are the events, which include inspections, financing, and
construction itself. An update for DESaster is expected in 2021 to include critical infrastructure
restoration and to integrate it to housing recovery modeling.

RecovUS
RecovUS is a spatial, agent-based model that includes spatial locations of homes and community
assets, and captures interactions of households with their neighbors and perceived community
assets. It also simulates the effect of recovery of community, including infrastructure, neighbors,
and community assets, on households’ recovery decisions (Moradi, 2020).

Rts
Rts is a framework of agent-based object-oriented models developed to study housing recovery
(Costa et al., 2020a) and population displacements (Costa et al., 2020b). The Rts framework
includes models for water, power, and transportation infrastructure, resource suppliers, and
buildings (Costa, 2019); it includes a sophisticated modeling approach for the simulation of the
requests and the delivery of supplies.
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Infrastructure Systems

Rodrigo Costa, Luis Ceferino, and Rodrigo Silva-Lopez with contributions by
Ann-Margaret Esnard,
along with review comments and suggestions by Henry Burton, and Vesna Terzic

Critical infrastructure is the term used to describe systems and assets that if incapacitated or
destroyed would have a debilitating effect on security, national economic security, national
public health or safety, or any combination thereof (DHS, 2020). This report focuses on critical
infrastructure in the transportation, water, wastewater, power, fuel, and health systems, which
are dependent on each other, with failures of one system being potentially propagated to others.
Compared to disaster recovery models of housing or businesses, the modeling of disaster
recovery for individual critical infrastructure systems has been more extensively investigated.
More comprehensive studies of system interdependence, cascading failures, and its impact
on society are still needed to foster community resilience. This review introduces some key
concepts on the modeling of critical infrastructure systems, first at a broader level, followed by
a discussion of specific points regarding different systems.

18.1 Input and Output Data

Modeling the recovery of critical infrastructure systems requires estimates of the time needed
to repair each component (including facilities) in these systems. This topic is discussed in
detail in Part III. Beyond repair time estimates, it is necessary understand the interdependencies
between these components, as well as the interdependencies with other systems. Reports by local
authorities are the primary source of publicly available information for critical infrastructure
systems. These provide information on the location, characteristics, and connections of the
components, which can be used for simplified analyses.

Detailed analysis, e.g., hydraulic models of water systems, are often reliant on information
from private entities that can only be obtained through agreements with system operators.
Beyond that, operators of a system are rarely aware of how other systems are reliant on the
system they operate. Due to this siloed management, there is no one organization that can
provide comprehensive information on the interdependencies of the system they operate. This
is one of the main challenges to the development of comprehensive and integrated models for
critical infrastructure recovery.
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18.2 Concepts in Critical Infrastructure Modeling

The disruption of certain components comprising critical infrastructure have the potential
to cause cascading effects on the whole system (Rinaldi et al., 2001). For this reason, the
modeling of critical infrastructure interdependence has gained much attention in the last two
decades, prompting the development of several modeling techniques. Eusgeld and Kroger (2008)
reviewed almost 100 articles on modeling of interdependent infrastructure systems published
between 1987 and 2007, identifying eight modeling techniques: (1) agent-based modeling;
(2) system dynamics modeling; (3) hybrid system; (4) input-output-model; (5) hierarchical
holographic modeling; (6) critical path method; (7) high-level architecture; and (8) Petri nets.
In a more recent review of nearly 200 articles, Ouyang (2014) defined five main groups
of modeling techniques: (1) empirical approaches; (2) agent-based approaches; (3) system
dynamics models; (4) economic theory-based approaches; and (5) network-based approaches.
Ouyang (2014) compared these techniques to evaluate their applicability to evaluating and
improving resilience. Agent-based and network flow-based models were able to support the
most resilience improvement strategies. The readers are referred to the review papers by Eusgeld
and Kroger (2008) and Ouyang (2014) for descriptions of these techniques, including their
strengths and limitations.

Beyond interdependence within a system, critical systems may also be dependent on each
other, creating a system of systems, as discussed in the seminal paper by Rinaldi et al. (2001).
The recovery of interdependent systems requires a decision about the modeling approach. Two
alternatives are illustrated in Figure 18.1. On the left-hand side, a multi-layer approach is shown.
In this approach each system can be simulated independently (Guidotti et al., 2017). The results
of the analyses of the upper systems are inputs to the lower systems. The main advantage of
this approach is that each system can be simulated using a different technique and level of
detail. Cimellaro et al. (2016, p.243) provides a detailed description of the multi-layer approach.
The right-hand side shows a single-layer approach. In this approach, all systems are simulated
simultaneously, and one simulation technique has to be used throughout. These limitations are
offset by the capacity of this approach to simulate interdependence between facilities rather
than systems. For example, a single-layer approach can simulate in the same time step the
interdependence between a power substation and a water pump station, as well between a water
pump station and a power generation facility. This is not possible with a multi-layer approach.

Fig. 18.1 Approaches to interdependency modeling [adapted from Cimellaro et al. (2016)].
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18.2.1 Land Transportation Systems

Transportation network disruption due to natural hazards has been shown to generate significant
impacts on a community’s ability to recover. Traffic disruption following the collapse of bridges
and roads can affect businesses long after the triggering event (Boarnet, 1998). In addition,
the downtime of transportation systems affects the long-term recovery of regional economies
(Chang, 2000). Thus, the recovery of these systems is an important aspect to incorporate when
modeling urban resilience.

The recovery of transportation systems imposes several challenges derived from the inherent
complexities of these networks: the interdependencies between bridges are highly nonlinear,
and modeling how people will travel has proven to be difficult, especially after natural disasters
(Chang, 2010a). As the first step to model recovery, several studies have attempted to estimate
repair time for bridges and roads through the development and implementation of restoration
curves (FEMA, 2015; Padgett and DesRoches, 2007). While these curves are fundamental to
assess the recovery of transportation systems, it is necessary to develop models that account for
the network interactions of roads, bridges, and traffic demand. It is in that regard that researchers
have developed different strategies to help decision-makers to manage transportation assets for
enhanced recovery.

One strategy has been to develop optimized scheduling of bridge repairs. This approach
aims to propose the order in which bridges should be repaired or restored so that travel flow
in the region recovers to its previous level in the shortest time (Vugrin et al., 2014). Besides
focusing on the flow of the network, some studies have explored how resources, funds, and crews
should be allocated (Karlaftis et al., 2007). A second strategy explored has been to propose
retrofitting strategies that mitigate damage from the event and thus decrease the initial network
disruption (Zhang and Wang, 2016). These two strategies are complementary and can often be
implemented synergistically.

18.2.2 Power Systems

The timely recovery of electric power systems is particularly critical because most other lifeline
systems need electricity for their operation and management. Recovery for power systems is
often measured by the amount of flow or services delivered, the availability of power for critical
facilities, the number of customers served, or the support of economic activities. Although
power systems are composed of several components, e.g. transformers and switches, it may
be impractical to include all such components in a model. Typical critical facilities of electric
power systems include generation power plants and transmission substations that are connected
by transmission and distribution lines. The transmission lines connect generation power plants
to transmission substations that carry high voltage electricity over long distances. Additionally,
distribution lines, carrying lower voltage electricity, deliver electricity to end users.

Developing models of post-disaster recovery of electrical power systems fall into two
categories: statistical or simulation-based models. Although statistical approaches are easier to
implement and require less computational power, these approaches require a significant amount
of training data and cannot be used for “what-if” analyses, which are important for recovery
planning. A review of a statistical model is provided by Liu et al. (2007). The authors collected
data on the duration of power shortages at different locations after Hurricane Ivan in 2004. A
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10-fold cross-validation method was employed, and the out-of-sample error was calculated and
compared to a naive model defined simply as the mean power shortage duration. Five methods
were investigated: (1) accelerated failure time (AFT); (2) Cox proportional hazard models
(Cox PH); (3) regression trees (CART); 4) Bayesian additive regression trees (BART); and (5)
multivariate additive regression splines (MARS). The BART, MARS, and AFT approaches
improved prediction capacity when compared to the naive model, whereas the Cox PH and
CART models did not demonstrate any improvement over the naive model.

Among the simulation-based approaches, those based on arcs and nodes, as well as discrete-
event simulation, and agent-based approaches are the most common (Eusgeld and Kroger, 2008;
Ouyang, 2014; Sun et al., 2019). In these approaches, the components of the system are modeled
explicitly and their post-disaster state is evaluated using fragility curves. The availability of
resources and the sequence of restoration are also modeled (Ouyang and Duenas-Osorio, 2014).
The main advantage of these approaches is their ability to consider the effects of different
strategies to support resilience, e.g., different restoration sequences. Their disadvantage is that
they require detailed information about the system, which may not be publicly available.

18.2.3 Water and Wastewater Systems

Disruptions to water and wastewater systems can exacerbate the impact of a disaster by
compounding sanitary and ecological issues. Moreover, households and businesses in physically
safe buildings may be forced to leave or suspend operations due to interruptions in water and
wastewater services. These reasons make water and wastewater systems pivotal for recovery.

Infrastructure involved in water delivery and wastewater collection include pumping stations,
treatment and purification stations, reservoirs, storage tanks or towers, and water pipelines.
Another consideration relevant to water and wastewater systems is the post-disaster capacity of
the system. Water stored in distribution tanks may provide residual capacity to serve customers
during recovery; however, comprehensive studies of storage tanks subjected to earthquake
loads have shown that there is correlation between the tank fill level and physical vulnerability
(Cooper and Cooper, 1997; Eidinger and Davis, 2012; O’Rourke and So, 2000). For wastewater
systems, if their post-disaster capacity is significantly compromised, the system may overflow
some time after the event. In both cases, it is important for recovery models to account for the
demand for these systems during recovery.

Water and wastewater systems have been studied using several modeling approaches. Miles
et al. (2019) separated these models into seven groups: resource-constrained modeling, machine
learning, network modeling, system dynamics, agent-based, discrete-event, and stochastic
simulation. A review of these techniques and their advantages and limitations are discussed in
detail in Miles et al. (2019); they are not replicated here for brevity. The choice between these
approaches is influenced by the recovery metric being used. For example, machine-learning
algorithms excel in estimating the duration of probable disruptions but offer limited guidance
for operational management especially in the case of insufficient data. Agent-based and discrete
event simulations do not share this limitation; however, they may require significant effort to
simulate the flow relevant characteristics of various components. Network-based approaches
can represent flow well, but if overly-abstracted can result in erroneous conclusions, leading to
ineffective allocation of resources (Hines et al., 2010).
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18.2.4 Fuel Systems

Fuel shortages in the aftermath of disasters are not uncommon (Holguin-Veras et al., 2014;
Smythe, 2013). These disruptions can cause logistical as well as public relations concerns,
compound emergency response difficulties, and affect public services. The reality however is
that no one entity has control over the fuel system. Fuel caches are stored at gas stations and local
authorities may have difficulty controlling the distribution of fuel. Additionally, panic-buying,
or hoarding, is a common practice after extreme events (Helbing et al., 2006; Shen, 2017), and
the demand for fuel may significantly increase following a disaster. These characteristics make
the simulation of the recovery of fuel systems reliant on a deep understanding of the system and
community at hand.

Two approaches exist in the literature to simulate hoarding behavior. The economic theory
assumes that consumers are rational individuals that seek to maximize their utility. Thus, models
based on utility theory are good candidates to simulate hoarding from the economic theory
perspective. Game theory (Hallsworth and Tolley, 2000), and the “Tragedy of the Commons”
(Hardin, 2009) fall in this category. The assumption of perfect rationality is appealing because
it simplifies the models. Other scholars challenge this assumption and view consumers and
individuals with bounded rationality, imperfect information, and limited cognitive ability and
time to make decisions. A comprehensive discussion on the bounded-rationality theory is
provided by Wheeler (2020).

18.2.5 Hospital Systems

Hospitals are critical in the aftermath of a disaster because they must respond to the emergency
by treating patients and preventing additional deaths. Disasters can place particularly high
strains on hospitals because they can cause injuries as a result of damage to infrastructure
(Ceferino et al., 2018a,b; Johnston et al., 2014; Jun et al., 2010). Additionally, natural disasters
can dramatically reduce a hospital’s ability to function. Damage to a hospital’s structural and
non-structural components can rapidly disrupt the functionality of treatment procedures highly
necessary for earthquake patients (Bambaren, 2011; Mitrani-Reiser et al., 2012). The recovery of
hospital systems is particularly dependent on other infrastructure systems. Hospitals dependent
on utilities such as power and water to operate (Achour et al., 2014; Hiete et al., 2011; Jacques
et al., 2014; McDaniels et al., 2008); on fuel for ambulances and power generation if electrical
power is disrupted (Hiete et al., 2011); and on the transportation network for accessibility.
Organizational challenges, e.g., limited staff, are another issue for the recovery of hospital
systems (Cimellaro and Pique, 2016).

The literature suggests using the quality of the healthcare provided as a metric of recovery
(Hamby and Fraser, 2004; Vieth and Rhodes, 2006). The length of waiting time that a patient
spends in the queue before receiving care is often used as a proxy of the quality of the medical
care. Methods to model hospital response after disasters have been developed mainly at the
single-hospital scale. Structural modeling and functionality models have been key to evaluating
the hospital’s ability to provide treatment after disasters (Cimellaro et al., 2011; Jacques et al.,
2014; Yavari et al., 2010). Other methods based on discrete event simulation and minimum-cost
flow models have been developed to represent emergency response and allocate resources during
the earthquake aftermath but also at the single-hospital scale (Aghapour et al., 2019; Gul and
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Guneri, 2015; Vugrin et al., 2015; Yi, 2005). More recently, a model on emergency response of
hospitals at the system-scale rather than at the single-hospital scale was proposed (Ceferino
et al., 2020). The higher complexity and data requirements of this approach are offset by its
ability to simulate coordination between hospitals to effectively allocate medical resources and
patients. This coordination is key to guarantee patients are treated in a timely manner after
disasters.

18.3 Major Research Gaps and Needs

While the modeling of individual critical infrastructure system recovery has progressed
significantly, the modeling of the recovery of interdependent systems requires further research.
To foster community resilience, it is fundamental to understand how the recovery of each system
relies on other systems and how this affects the recovery of businesses and households. This
effort will require solid collaborations between researchers and the public and private sectors
due to privacy concerns regarding the data needed for the development of these models. Recent
studies have also demonstrated that hindcasting can be effectively used to validate the recovery
of individual infrastructure systems (Tomar et al., 2020). Model validation via hindcasting, as
well as the collection of data to support hindcasting are topics that require further research.
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Housing

Rodrigo Costa with contributions by Ann-Margaret Esnard,
along with review comments and suggestions by Henry Burton and Vesna Terzic

The recovery of residential buildings is essential in restoring a sense of normalcy post-event.
Recent events have demonstrated that housing recovery estimates based solely on building
damage underestimate reality (Comerio, 2006). Repairs to residential buildings took between
two and ten years after earthquakes in 1989 in Loma Prieta (Comerio, 2006), 1994 in Northridge
(Olshansky, 2006), 1995 in Kobe (Comerio, 2014; Olshansky, 2006), 2009 in L’Aquila (Di
Ludovico et al., 2017a,b), 2010 in Chile (Comerio, 2013), and 2011 in East Japan (Ranghieri
and Ishiwatari, 2014). The repairs needed after the 2010 and 2011 Canterbury earthquakes are
expected to extend beyond 2020 (Wood et al., 2016). During recovery, economic growth and
quality of life are impacted, and socioeconomic inequities can be exacerbated (Bolin, 1985;
Peacock et al., 2014; Wang et al., 2015).

It is generally accepted that predictive models of housing recovery can provide valuable
insights and serve as a platform for evaluating the benefits of different mitigation actions. There
is growing agreement that housing recovery needs to be modeled in the context of the community,
being influenced by infrastructural and socioeconomic factors, and constrained by the availability
of resources (Bilau et al., 2018; Davidson, 2015; Ellingwood et al., 2018; Lee et al., 2019;
Masoomi and van de Lindt, 2018; Sutley et al., 2017). This section introduces key concepts that
become important when modeling the recovery of a portfolio of residential buildings: limited
resources, decisions of owners, and interdependency with other systems. Previous sections have
discussed the estimation of repair times for single- and multi-family buildings. This section
assumes the reader is familiar with the concepts of repair-time estimation.

19.1 Input and Output Data

The simulation of housing recovery starts with estimating the repair time for buildings of
interest. Repair-time estimation is discussed in detail in Part III. In short, it requires information
about building locations, type, and occupancy, as well as hazard levels at the buildings sites.
Repair time is a measure of the time needed for damage to be fixed. Repair time should
be differentiated from recovery time, which encompasses both the repair time and the time
needed to procure the resources required for repairs to begin. The time needed to procure
resources depends on building characteristics, as well as the resources of the building owners
themselves. A building owner may be less capable of procuring resources due to financial
constraints. Thus, two buildings requiring equal repair time may have significantly different
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recovery times. Because socioeconomic factors may affect the recovery capacity of the building
owners, associating socioeconomic data to individual buildings becomes a requirement for
housing recovery simulations. Since these data are not directly available from the Census, an
alternative has been the use of synthetically generated data. In this case, aerial data aggregated
at the Census tract/block level is used to simulate the socioeconomic demographics of the
owners of each building in the portfolio (Rosenheim et al., 2019).

Another aspect of housing recovery modeling is the availability of resources. Disasters may
lead to a surge in the demand for materials or skilled workers, and a reduction in resources,
such as construction materials due to supply chain disruptions. The resource constraints will
determine how many buildings can be repaired simultaneously, introducing another source
for extensions in the recovery time. The number of workers in the construction sector can be
estimated from Census data, city reports, permit data, or housing databooks (Costa et al., 2020a;
Kang et al., 2018).

Obtaining detailed data on all aspects highlighted above may prove to be a challenge. The
level of detail sought in the simulation outputs should determine the level of detail in the input
data. The use of “what-if” simulations to investigate the importance of certain considerations
can help identify which inputs need to be refined. For example, one can compare a scenario
where resource scarcity is not a problem to a scenario where only a fraction of the buildings can
be repaired at the same time. This comparison provides insights on the importance of collecting
detailed data on the availability of resources.

19.2 Concepts in Housing Recovery Modeling

As previously discussed, housing recovery is as much a socioeconomic process as an engineering
process, as evidenced by a wide range of approaches that integrate social, economic, and
engineering considerations observed in the recent literature (Bilau et al., 2018; Burton et al.,
2018; Costa et al., 2020a; DESaster 2018; Hamideh et al., 2018; Moradi, 2020; Nejat et al.,
2020). These integrated approaches are motivated by the premise that the homeowners are
rational in that they must have both the means and willingness to embark on repairs and recovery.
The means are often represented by financial capital. The willingness refers to the decision to
repair immediately after the shock, wait and see, or sell the building. Socioeconomic status,
perception of value of reconstruction, the decision of neighbors, and the state of the community
have been shown to influence the ability to fund and willingness to repair for homeowners
(Bilau et al., 2015; Boiser et al., 2011; Bothara et al., 2016; Burton et al., 2018; Chang et al.,
2011; Comerio, 2006; Hwang et al., 2015; Moradi, 2020; Nejat and Damnjanovic, 2012).

Statistical and simulation-based models have been developed for post-disaster housing
recovery. The former type of model is based on observations of past events and the use of
machine-learning procedures. Nejat and Damnjanovic (2012) presents a model for housing
recovery that uses the Least Absolute Shrinkage and Selection Operator (LASSO). A hierarchical
Bayesian geo-statistical model has recently been proposed by Nejat et al. (2020). Although
statistical models are simpler to implement and have lower computational costs when compared
to simulation-based models, the scarcity of data on post-disaster housing recovery is a limiting
factor for using this type of approach.

Simulation-based approaches rely on models for the hazard, its consequence, and the post-
disaster recovery itself. Hazard and consequence modeling are discussed in the previous parts
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in this report. Regarding the recovery modeling, Figure 19.1 shows a conceptual algorithm for
housing recovery simulation. The algorithm assumes that the recovery of a portfolio of #�
buildings is of interest. Four decisions are evaluated sequentially. Decision (1) guarantees that
the state of each building is evaluated on each time step. Decision (2) checks for the occurrence
of a shock on the current time step. If the shock has occurred, damage, loss, and the time needed
to repair building i, )A ,8, are assessed. Part III in this report describes the methodology to assess
the immediate impact. If there is no shock, the assessment of impacts is skipped. Decision (3)
checks if building i is still damaged, and if it returns “No,” the algorithm moves to building
8 + 1. Decision (4) is the core of the algorithm, where the decision of the building owners, the
availability of resources, and neighborhood conditions among many other factors are evaluated
to determine if the building can be repaired. If willingness and capability to repair are identified,
the repairs can advance. The conceptual algorithm in Figure 19.1 should be evaluated repeatedly
to simulate the progress along the timeline of recovery.

Fig. 19.1 Conceptual algorithm for housing recovery.

The framework in Figure 19.1 is conceptual. More sophisticated frameworks that incorporate
the concepts outlined in the figure are presented in Sutley et al. (2017), Burton et al. (2018), and
Costa et al. (2020a). In particular, Decision (4) in Figure 19.1 is complex, and many individual
models may be necessary to assess it. Table 19.1 compiles some of the factors identified as
drivers of recovery in past events. These factors should be acknowledged in Decision (4). The
literature reviews in Costa (2019) and Moradi (2020) are the main sources for Table 19.1. Note:
the majority of the studies in Table 19.1 investigated recovery of single-family buildings from
earthquakes.
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Table 19.1 Drivers of recovery.

Race Bullard and Wright, 2009; Fussell et al., 2010; Kamel and Loukaitou-Sideris, 2004;
Nejat et al., 2019; Peacock et al., 2014; Wu, 2004

Income Bilau et al., 2015; Bolin and Bolton, 1983; Hamideh et al., 2018; Nejat et al., 2018,
2019; Peacock et al., 2014; Wang et al., 2015; Wu, 2004; Zhang and Peacock, 2009

Immigration status Kamel and Loukaitou-Sideris, 2004; Loukaitou-Sideris and Kamel, 2004

Education Burton, 2015; Nejat et al., 2018, 2019

Family structure Nejat, 2018; Nejat et al., 2018; Nejat and Ghosh, 2016

Age Henderson et al., 2010; Nejat et al., 2018; Ngo, 2001; Sanders et al., 2004

Gender Nejat et al., 2018

Employment Bolin and Bolton, 1983; Wang et al., 2015

Household size Nejat et al., 2019; Sadri et al., 2018

Home ownership Hamideh et al., 2018; Kamel and Loukaitou-Sideris, 2004; Loukaitou-Sideris and
Kamel, 2004; Mayer et al., 2020; Peacock et al., 2014; Wu, 2004; Zhang and Peacock,
2009

Disaster experience Binder et al., 2015; Kick et al., 2011; Moradi, 2020; Nejat, 2018; Sadri et al., 2018

Disaster damage Fussell et al., 2010; Hamideh et al., 2018; Mayer et al., 2020; McNeil et al., 2015;
Myers et al., 2008; Peacock et al., 2014; Sadri et al., 2018

Social capital Airriess et al., 2008; Aldrich, 2010, 2011, 2012; Burton, 2015; Li et al., 2010; Sadri
et al., 2018

Place attachment Binder et al., 2015; Chamlee-Wright and Storr, 2009; Cutter et al., 2010; Kick et al.,
2011; McNeil et al., 2015; Reid and Beilin, 2015

Neighbor’s recovery Dacy and Kunreuther, 1969; Nejat and Damnjanovic, 2012; Rust and Killinger, 2006

Financing Comerio, 2014; Kamel and Loukaitou-Sideris, 2004; Loukaitou-Sideris and Kamel,
2004; Nejat and Ghosh, 2016; Wood et al., 2016; Wu, 2004

Materials Almufti and Willford, 2013; Bilau et al., 2015; Comerio, 2006

Skilled workforce Almufti and Willford, 2013; Bilau et al., 2015; Boiser et al., 2011; Bothara et al., 2016;
Chang et al., 2011; Comerio, 2006; Hwang et al., 2015

Infrastructure Burton, 2015; Comerio, 2014; Miles and Chang, 2011; Nejat et al., 2019

Community assets Burton, 2015; Comerio, 2014; Miles and Chang, 2011; Nejat et al., 2019

19.3 Major Research Gaps and Needs

One of the main challenges for the development housing recovery models is verification and
validation. Empirical data on housing recovery collected longitudinally and systematically
are still scarce, as catastrophic events are rare and data have been consistently collected only
recently for the purpose of informing simulations models. The development of testbeds, as well
as devoting funds to longitudinal studies of post-disaster housing recoveries are important steps
to close this gap.

Although current housing recovery simulations have limited predictive power, they are valuable
tools for comparing proposed disaster recovery strategies. Housing recovery simulations can be
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employed to inform the development of new policies, by identifying regions or socioeconomic
groups less capable of recovering. This topic has not yet been explored extensively from a
research perspective.

Risk is not static in time. As cities grow, new technologies are developed, population behaviors
evolve, and the assets exposed as well as the vulnerabilities change. Integrating risk dynamics
models with housing recovery simulations can significantly improve the assessment of the
benefits of housing recovery policies. This is another topic that can benefit from further research.





Chapter 20
Businesses

Rodrigo Costa

Businesses play a major role in the recovery of a community because they provide a large portion
of the local jobs. Without employment, households may experience difficulty in financing
the restoration of their homes and will be forced to relocate (Bolin and Bolton, 1983; Wang
et al., 2015). With fewer clients, even businesses that survive a disaster may be forced to close,
creating a synergy between slow business recovery and failed housing recovery. Despite its
importance for community recovery, the literature on post-disaster business recovery is scarce.
On the one hand, the rarity of extreme natural events make the systematic and longitudinal
collection of business recovery data challenging. On the other hand, larger economic cycles
exert a strong influence on the well-being of individual firms, making it difficult to disaggregate
macroeconomic and disaster-related effects.

Some of the most comprehensive studies of business recovery in the U.S. were conducted
by the Disaster Research Center (Webb et al., 2000). These studies found that direct physical
damage is only one of the many factors influencing business loss and recovery. Often, physical
damage plays a secondary role to financial and market stability.

20.1 Input and Output Data

The majority of the existing business recovery models have been developed using survey data,
collected shortly after or even years after a disaster. These surveys collected data on the number
of full time employees, a surrogate measure of size, age, industry sector, and pre-disaster
financial conditions of the surveyed businesses. Data about the business neighborhood and how
it was impacted have also been shown to be relevant (Chang, 2010b). The level of engagement
in disaster preparedness activities of the businesses is another dimension of interest. Measures
of disaster impact, such as physical damage or disruptions to utilities are also important data.
Finally, scholars have also argued that the ability of owners to make quick decisions about
relocation, financial injection, and switching to new business models is crucial for recovery
(Morrish and Morrish, 2011; Stevenson et al., 2014). These data can also be obtained from
surveys. The outputs of business recovery models are often a list of factors that lead businesses
to recover more quickly or in a more sustainable manner.
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20.2 Concepts in Business Recovery Modeling

Businesses are diverse in nature. Industry sector, size, age, being a franchise, location, primary
market, and financial stability are a few of the factors that may influence how a business responds
to a shock and recovers from it. For this reason, understanding what factors contributed to
the successful recovery of business in past events is important to guide data collection and
development of new models.

Within the U.S., business recovery was studied in the aftermath of a few major events.
Short-term business recovery after the 1994 Northridge, California, earthquake was affected by
direct physical impact on business operations, ecological aspects, and neighborhood location
of the business (Dahlhamer and Tierney, 1998). Conversely, in the long-term, the business
sector, its primary market, disaster impacts, and the broader economic climate affected business
recovery. The post-disaster business climate was also determinant for the recovery of businesses
affected by the 1989 Loma Prieta, California, earthquake and Hurricane Andrew in 1992
(Webb et al., 2002). Business size and disaster preparedness were also significant predictors
for recovery after these two events. In 2001, a meta study involving seven disasters in seven
communities across the U.S. identified the business and market stability, asset losses, and
entrepreneurial savvy as good predictors of recovery (Alesch et al., 2001). Also in 2001, after
the Nisqually, Washington, earthquake, size, ownership over property, access to resources,
market diversification, market stability, and neighborhood conditions influenced the recovery of
businesses in two districts of Seattle (Chang and Falit-Baiamonte, 2002).

Outside of the U.S., the most extensively studied event in terms of business recovery is the
2010 and 2011 Canterbury earthquake sequence. These events led to the cordoning of the
Christchurch Central Business District for nearly two and a half-years (Brown, 2019). One
outcome was that many local businesses had to relocate to distant regions, thereby losing
much-needed staff and customers (Morrish and Jones, 2020). Businesses that struggled to
gain new customers and find new employees in their new location suffered the most, denoting
a correlation between business relocation and recovery. Businesses whose suppliers were
disrupted were significantly more likely to experience decreased productivity (Brown, 2019).
The ability of owners to make quick decisions about relocation, financial injection, switching
to new business models, or stating inter-organizational cooperation for sharing of knowledge,
resources, risks, and profits was crucial for recovery (Morrish and Morrish, 2011; Stevenson
et al., 2014). Beyond that, commercial insurance, industry sector, property ownership, and
customer issues were shown to affect recovery, whereas business size and age did not (Brown
et al., 2017, 2015; Kachali et al., 2015).

The majority of empirical studies focusing on business recovery have utilized statistical
modeling techniques to identify the various predictors of successful recovery, but without
focusing on the development of predictive models (Aghababaei et al., 2020); among those,
logistic regression was widely used (Dahlhamer and Tierney, 1998; Marshall et al., 2015;
Watson et al., 2020). Logistic regression models share many similarities with linear regression
models. The important difference is that the independent variable, . , is binary, e.g., having
states “Yes” and “No”, or “1” and “0”. Logistic regression is named after the function used
at the core of the method, the logistic function. This is an S-shaped curve that can take any
real-valued number and map it into a value between 0 and 1, but never exactly at those limits.
The logistic function is used to estimate the probability that . = 1
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where ? is the number of predictors, and the coefficients V8 can be estimated using maximum-
likelihood estimation. Although logistic regression is a linear method, the transformation using
the logistic function makes it so that we can no longer understand the predictions as a linear
combination of the inputs. Everything else being equal, the coefficients V8 represent the increase
in the odds-ratio of . = 1 to . = 0 when G8 is increased by one unit. Section 4.4 in Friedman
et al. (2001) provides in-depth explanations of logistic regression models.

More recently, Aghababaei et al. (2020) described a model for post-disaster business recovery
that employs Bayesian methods. The main advantage of this approach, compared to approaches
based on regression analysis, is that it can be constantly improved as new data becomes available;
however, aggregating data from different communities and different disasters is not a trivial task.

20.3 Major Research Gaps

The recovery of businesses remains an under-studied topic, even when compared to the recovery
of infrastructure and housing. Business recovery after catastrophic disasters has only been
investigated for a handful of events, e.g., Hurricanes Ike and Katrina, and the Northridge and
Canterbury earthquakes. It is unclear if the findings from these events are transferable to other
locations and hazards. It is also unclear if business recovery after concentrated but destructive
events shares the same patterns.

Previous studies have been inconsistent in their findings. For example, the existence of a
correlation between disaster preparedness and recovery performance is debatable. While a
positive correlation is intuitively expected, studies of business recovery after major disasters
show no relationship at all between preparedness measures and recovery outcomes; see Webb
et al. (2000). There remains the questions of whether or not these studies were designed in a
way whereby the effect of disaster preparedness on business recovery could be captured (Xiao
and Peacock, 2014). This is a topic that remains open and in need of further investigation.

The role of entrepreneurial decision on the post-disaster survival of businesses is another
topic that deserves more attention. The majority of the studies conducted to date have focused
on physical damage and disaster preparedness metrics. Nonetheless, it is argued that quick and
informed decisions by the owners have had a large impact on business recovery (Morrish and
Jones, 2020).





Part V
Cross-Cutting Methodologies

This section of the report examines two related cross-cutting topics—uncertainty quan-
tification and artificial intelligence—which have applications across all phases of natural
hazards engineering (NHE). Both areas are developing rapidly, propelled by the capabilities of
modern high-performance computing (HPC), information technologies (IT), and data harvesting
technologies, and supported by algorithmic developments.

Uncertainty quantification (UQ) covers a broad range of topics that include: (1) characteriza-
tion of uncertainties in natural hazards, their damaging effects on the built environment, and the
resulting consequences on communities; (2) propagation of uncertainties through simulations of
natural hazards through to their consequences; (3) statistical calibration of simulation models,
including Bayesian inference methods to update models with observed data; and (4) design
under uncertainty, including design of physical assets through to strategies and practices to
mitigate risk and promote recovery from natural disasters.

Artificial intelligence (AI) and machine learning (ML) have a wide range of potential
applications to NHE, the capabilities of which are just beginning to be realized, including:

1. Developing features of buildings and other assets that form the basis for simulating the effects
of natural hazards on communities;

2. Developing surrogate data-driven models at various scales, ranging from material models in
finite-element simulations, to models of natural hazard intensity parameters, to simplified
models of buildings and other assets in regional simulations; and

3. Detecting and assimilating observational data from post-disaster reconnaissance.

As described in Chapter 22, AI/ML tools encompass a range of techniques, including
knowledge-based expert systems, statistical-based neural networks, kernel-based methods, and
deep-learning approaches. While the AI/ML show great potential and promise to revolutionize
NHE, success in this regard hinges on identifying appropriate uses of these technologies and
taking care to validate and develop confidence in the methods.





Chapter 21
Uncertainty Quantification

Alexandros Taflanidis, Joel P. Conte, George Deodatis, and Sanjay Govindjee,
along with review comments and suggestions by Aakash B. Satish, Michael D. Shields, Lance
Manuel, and Sang-ri Yi

Uncertainty quantification (UQ) is a rapidly evolving scientific field, with advances in computer
science and statistical computing promoting constant developments in the way uncertainty is
incorporated in predictive analysis of engineering systems (Smith, 2013). In particular, over the
last few decades, the popularity of high-performance computing (HPC) and machine-learning
tools have dramatically impacted the way computational simulation is utilized within the
UQ field, lifting many barriers that were traditionally associated with simulation-based UQ
techniques, and allowing the incorporation of detailed characterization and propagation of
uncertainties in computationally intensive numerical models to solve highly complex problems.
The current consensus within the UQ community is that these advances will remove or have
already removed the need for simplified approaches with respect to both the uncertainty
characterization (assumptions/models used to describe uncertainty and system performance) or
uncertainty propagation (estimation of statistics of interest).

When discussing computational advances and state-of-the-art tools in UQ, greater emphasis
is typically placed on algorithmic approaches than the corresponding software facilitating the
implementation of these approaches. The reason for this is that development of scientific tools
for UQ has focused traditionally on a specific UQ sub-field [for example, surrogate modeling to
support UQ analysis (Gorissen et al., 2010; Lophaven et al., 2002)], with a large number of
researchers (e.g., Bect et al., 2017; Clement et al., 2018) offering open-source algorithms to
address a specific class of problems even within each of these sub-fields. Although many of
these algorithms have been developed in MATLAB, in recent years significant emphasis has
been placed on open-source libraries developed using Python (or less frequently C++ or R) and
typically distributed though GitHub.

Since UQ is a very broad field, discussions herein focus on applications within the natural
hazards engineering (NHE) domain, with some references to relevant general UQ advances also
offered. Emphasis is on computational aspects, the most pertinent UQ feature for a review of
the state of the art in UQ simulation methods. Additionally, discussions focus on algorithmic
developments, with some references also on relevant software. With respect to description
of uncertainty, emphasis is placed on probabilistic characterization. Alternative approaches
exist (Beer et al., 2013), such as use of fuzzy sets and interval analysis, however, the current
standard of practice in NHE is to rely on probabilistic UQ analysis. This can be attributed to the
tradition in civil engineering design codes to describe performance with respect to statistical
measures (probability of exceeding performance limit states), or because hazard severity, the
most significant source of variability when discussing risk in the context of NHE, is almost
always described using probabilistic measures (McGuire, 2004; Resio et al., 2007).
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Note: all references provided here are examples and general in scope; several of them can be
regarded as seminal work since the UQ field—even with respect to NHE applications—is very
broad and constantly expanding.

21.1 Uncertainty Characterization

In NHE, characterization of the uncertainties impacting predictions is integrally related to
risk quantification. Performance-based engineering (PBE) (Barbato et al., 2013; Ciampoli
et al., 2011; Fischer et al., 2019; Goulet et al., 2007; Riggs et al., 2008; Whittaker et al.,
2003) represents undoubtedly the foundational development for this task. Performance-based
engineering decouples the risk quantification to its different components, mainly hazard and
exposure analysis, structural analysis (vulnerability), and loss analysis (consequences), with
uncertainties included (and impacting predictions) in all these components. Variability of the
hazard itself, in terms of both occurrence and intensity, is widely acknowledged to correspond
to the most significant source of uncertainty in this setting. Frequently, hazard variability is
represented through a resultant intensity measure (IM) (Baker and Cornell, 2005; Kohrangi et al.,
2016), though comprehensive approaches that focus on connecting the excitation to parameters
of the geophysical process creating it also exist. For example, in earthquake engineering,
the description of time-histories through stochastic ground motion models dependent on
seismological parameters (Bijelić et al., 2018; Vlachos et al., 2018); in coastal risk estimation
surge modeling numerical tools are dependent on atmospheric storm characteristics (Resio
et al., 2007). Beyond the hazard variability, uncertainties related to parameters of the structural
model or generalized system model (for applications not examining directly structural risk) and
to the characteristics for describing performance are also recognized as important for inclusion
in risk estimation (Porter et al., 2002). The term “system” will be used herein to describe the
application of interest; e.g., this may pertain to a building model, to an infrastructure network,
or to a soil–structure interaction system configuration.

Uncertainty within this NHE risk characterization setting is ultimately described through
a discrete number of parameters (treated as random variables) pertaining to either the hazard
or the system/performance model—including parameters—to describe interdependencies and
deterioration characteristics (Akiyama et al., 2020; Jia and Gardoni, 2018). Even when the
uncertainty description for the underlying problem actually entails a stochastic sequence/process
or a random field, a discretized approximation of these functions is commonly utilized, as
necessitated by the numerical tools used to compute the system response (Gidaris et al., 2014).
This translates into use of a parameterized realization for the excitation or model characteristics,
an approach that seamlessly fits within the overall PBE framework. Exceptions exist primarily
for stochastic dynamics problems, for which propagation of the stochastic excitation uncertainty
can be performed using random vibration theory, such as exact or approximate solution of
stochastic differential equations or estimation of stationary statistics in the frequency domain
(Li and Chen, 2009). Though such approaches offer substantial benefits, their implementation
is primarily constrained to linear systems or nonlinear systems with moderate degree of
complexity (dos Santos et al., 2016; Wang and Der Kiureghian, 2016), such as systems with
very small number of degrees-of-freedom or nonlinearities having a simple, analytical form.
As such, their utility within NHE is limited to specialized applications. Even in such cases,
the remaining uncertainties, beyond the stochastic excitation itself, must be described using a
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parametric description. The overall parameterized uncertainty description promoted within PBE
is therefore well aligned with such approaches, as their adoption simply requires substitution of
the deterministic simulation system model with a stochastic simulation system model, the latter
representing the solution of the stochastic dynamics problem.

When using Monte Carlo simulation (MCS) techniques to propagate uncertainty (see
discussion in the next paragraph), a critical part of the methodology is the numerical generation
of sample functions of the stochastic processes, fields, and waves involved in the problem,
modeling the uncertainties in the excitations (e.g., wind velocities, seismic ground motion, and
ocean waves) and in the structural system (e.g., material, mechanical, and geometric properties).
These processes, fields, and waves can be stationary or non-stationary, homogeneous or
non-homogeneous, scalar or vector, one dimensional or multi-dimensional, Gaussian or non-
Gaussian, or any combination of the above. It is crucial for a simulation algorithm to be
computationally efficient as a very large number of sample functions might be needed. A
wide range of methodologies is currently available to parametrically describe uncertainty
and perform these simulations including the spectral representation method (Benowitz and
Deodatis, 2015; Li and Kareem, 1991; Shields et al., 2011; Shinozuka and Deodatis, 1991),
Karhunen-Loeve expansion and polynomial chaos decomposition (Ghanem and Spanos, 1991),
auto-regressive moving-average models (Deodatis and Shinozuka, 1988; Spanos, 1983), local
average subdivision method (Fenton and Vanmarcke, 1990), wavelets (Zeldin and Spanos, 1996),
Hilbert transform techniques (Wang et al., 2014), and turning bands methods (Mantoglou and
Wilson, 1982).

The setting outlined in the previous two paragraphs leads, ultimately, to risk characterized as
a multidimensional integral over the parametric uncertainty description (input), with uncertainty
propagation (output) translating to estimation of the relevant statistics (estimation of integrals
representing moments or failure probabilities with respect to different limit states). Through
proper definition of the statistics of interest, different attitudes towards risk can be further
described, including risk aversion which is especially relevant for NHE applications (Cha
and Ellingwood, 2012). The aforementioned integral is frequently expressed with respect to
the conditional distributions of the different resultant risk components (Barbato et al., 2013;
Goulet et al., 2007), e.g., hazard / response given hazard / consequences given response. This
represents merely a simplification for risk quantification purposes as it allows for the decoupling
of the different components. Even when this simplification is invoked, risk fundamentally
originates from the uncertainty in the model parameters of the problem formulation (including
hazard/system/performance description), quantified by assigning a probability distribution
to them, representing the UQ input. Note: in many NHE applications, some aspects of the
performance (and of the associated risk) are described by utilizing resultant statistical models
instead of explicitly addressing the underlying sources of uncertainty. For example, in PBE,
fragility functions are frequently leveraged to describe the combined effect of the uncertainties
influencing the parameters of capacity and demand models, while in loss estimation, resultant
distributions are leveraged to encompass the multiple sources of uncertainty influencing
consequence quantification. In such cases, the integral quantifying risk is expressed with respect
to the remaining parametric uncertainty sources.
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21.2 Uncertainty Propagation

For uncertainty propagation, the traditional approach in NHE has been the use of point estimation
methods, either methods that focus on the most probable values of the model parameters like
the first-order second moment (FOSM) method (Baker and Cornell, 2008) and its variants
(Vamvatsikos, 2013), or methods that focus on the peaks of the integrand of the probabilistic
integral (design points) like the first- and second-order reliability methods (FORM/SORM)
(Koduru and Haukaas, 2010). Point estimation methods are inherently approximate, with no
available means to control their accuracy. Recent advances in computer science and statistics,
including the development of innovative MCS techniques, such as Subset Simulation (Au and
Beck, 2003b), Efficient Global Reliability Analysis (EGRA) (Bichon et al., 2013), and Adaptive
Kriging with Monte Carlo Simulation (AK-MCS) (Echard et al., 2011), have encouraged
researchers to rely more heavily on Monte Carlo simulation (MCS) tools for uncertainty
propagation in NHE (Deb et al., 2019b; Esposito et al., 2015; Smith and Caracoglia, 2011;
Taflanidis and Jia, 2011; Vamvatsikos, 2014).

Although point estimation methods do still maintain utility and popularity, NHE trends
follow the broader UQ community trends in promoting computer and MCS approaches, as
these techniques facilitate high-accuracy uncertainty propagation (unbiased estimation) with
limited fundamental constraints on the complexity of the probability and numerical models used.
Of course, computational complexity is still a concern for MCS, especially for applications
with high-dimensional uncertainties and challenging quantities of interest (such as rare event
simulation), creating in many instances practical constraints for the efficient implementation.

The current state of the art in NHE for addressing these constraints is to leverage both
advanced MCS techniques (Au and Beck, 2003b; Bansal and Cheung, 2018; Li et al., 2017)
but, more importantly, machine-learning and advanced computational statistics tools (Abbiati
et al., 2017; Ding and Kareem, 2018; Echard et al., 2011; Su et al., 2018; Wang et al., 2018).
Relevant recent advances for MCS focus on variance reduction techniques, e.g., Latin hypercube
sampling (Vamvatsikos, 2014), stratified sampling (Jayaram and Baker, 2010), importance
sampling (Papaioannou et al., 2018), Markov chain Monte Carlo methods (Au and Beck, 2003b)
and sequential approaches for rare event simulation (Jia et al., 2017), with substantial emphasis
on problems with high-dimensional uncertainties (Au and Beck, 2003b; Wang and Song,
2016). For machine learning, the focus is primarily on use of a variety of surrogate modeling
(meta-modeling) techniques (Bernier and Padgett, 2019; Gentile and Galasso, 2020; Le and
Caracoglia, 2020; Stern et al., 2017; Zhang and Taflanidis, 2018; Zhang et al., 2020).

Many machine-learning implementations in NHE fall under the category of direct adoption
of techniques developed by the broader UQ community, though a number of studies do address
challenges unique to the integration of surrogate modeling in NHE problems, e.g., the need to
address high-dimensionality of input when stochastic description is utilized for non-stationary
excitations (Gidaris et al., 2015).

Note: the NHE modeling community has been continuously increasing the complexity of
the models they adopt. Such high-fidelity numerical models, which are able to capture the
behavior of structural, geotechnical and soil–foundation–structural systems all the way to
collapse or the brink of collapse, are inherently nonlinear hysteretic (path-dependent) and
frequently degrading/softening. Therefore, such models present serious challenges in term of
robustness of convergence of the iterative schemes used to integrate their equations of motion.
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The significance of these challenges will further increase in the MCS-based UQ context and
requires much research effort to overcome. One of the implicit outcomes of this complexity
increase is a further increase of the input/output dimensionality in NHE UQ problems. This
leads to applications with high-dimensional uncertainties that, traditionally, pose challenges for
UQ algorithms (Au and Beck, 2003a; Schuëller et al., 2004). Different approaches have been
explored to address this challenge within NHE applications, ranging from specialized MCS
algorithms (Au and Beck, 2001; Wang and Song, 2016) to the formal integration of dimensional
reduction techniques (Jia and Taflanidis, 2013), to the use of global sensitivity analysis indices
to the selection of subsets of inputs to emphasize in different MCS schemes (Jia et al., 2014). It
is evident, though, that greater research effort will be required on this topic.

Discussing more broadly the advances in the UQ field, current emphasis is on machine-
learning techniques for accelerating UQ computations (Ghanem et al., 2017; Murphy, 2012;
Tripathy and Bilionis, 2018). The relevant developments are frequently integrated with advanced
MCS techniques, e.g., for topics like rare event simulation (Balesdent et al., 2013; Bourinet,
2016; Li et al., 2011). Regarding machine learning, although some emphasis is being given on
the approaches for tuning and validation (Mehmani et al., 2018), the primary focus is on the
proper design of the computer simulation experiments (DoE) (Kleijnen, 2008; Kyprioti et al.,
2020; Picheny et al., 2010) that are used to inform the development of the relevant computational
statistics tools.

Adaptive DoE is widely acknowledged to offer substantial advantages in balancing compu-
tational efficiency and accuracy for UQ analysis when machine-learning techniques are used,
and significant research effort is currently focused on advancing DoE techniques; this remains
an open challenge for the community. Note: characteristics of the adaptive DoE depend on
the utility of the surrogate model (Liu et al., 2018), whether it is intended to serve as a global
replacement of the original numerical model (i.e., develop the surrogate model first and then
leverage it to perform different UQ tasks) or it is used for very specific UQ tasks (e.g., to
estimate the reliability index for a specific limit state).

The concept of model fidelity remains unexplored within the NHE community, but it plays a
central role in modern UQ techniques, with a range of algorithms developed to properly integrate
hierarchical fidelity models to promote efficient and accurate uncertainty propagation (Geraci
et al., 2017; Peherstorfer et al., 2018). Combination of machine-learning (primarily surrogate
modeling) techniques with different fidelity models is also a topic that has been receiving
increasing attention for facilitating the use of expensive numerical models in UQ (de Baar
et al., 2015; Zhou et al., 2016b). In the NHE setting, discussions on explicitly exploiting model
fidelity for risk estimation are very limited; therefore, the community still heavily emphasizes
use of high-fidelity models while still examining how different levels of simulation fidelity and
the use of reduced order models can be properly combined to promote efficient and accurate
risk estimation. Undoubtedly, multi-fidelity Monte Carlo and hierarchical surrogate modeling
techniques constitute important opportunity areas for advancing UQ analysis in NHE.

Another important aspect of uncertainty propagation is the concept of sensitivity analysis.
In NHE, this has been primarily implemented as local sensitivity analysis, i.e., estimation of
gradient information (Gu et al., 2009; Haukaas and Der Kiureghian, 2007), since this fits well
with the point estimation methods used frequently for calculation of statistics (facilitating the
identification of design points).Within the UQ setting, global sensitivity analysis is more relevant
(Rahman, 2016; Saltelli, 2002; Sobol, 1990), as it allows identification of the relative importance
of the different sources of uncertainty, offering insights with respect to both accelerating UQ
computations (facilitating, in particular, the use of high-dimensional applications as discussed
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earlier), as well as providing additional understanding of the critical factors impacting the
overall risk. Though global sensitivity analysis can be particularly useful for hazard applications
(Vetter and Taflanidis, 2012), it is currently receiving limited practical interest within NHE.
Implementations do exist even for all purpose codes; see Bourinet et al. (2009) for example. More
formal integration of global sensitivity analysis tools within the NHE community represents
another topical area where advancements should and can be made. The computational cost for
global sensitivity analysis—say, calculation of first and higher order sensitivity indexes—is
much higher than the cost of simple uncertainty propagation; relevant techniques range from
use of quasi-Monte Carlo (Saltelli, 2002) to surrogate modeling (Sudret, 2008) to sample-based
methods relying on approximation of conditional distributions (Hu and Mahadevan, 2019; Li
and Mahadevan, 2016).

21.3 Model Calibration and Bayesian Inference

Model updating/calibration plays an important role in NHE, with data coming from both
experiments (at component or system level) experiments and observations (at system level)
during actual excitation conditions or post-excitation. Within the UQ setting, the current
standard to perform this updating is Bayesian inference (Beck, 2010; Kontoroupi and Smyth,
2017). Using observation data, Bayesian inference can be leveraged to provide different type of
outputs/results (Beck and Taflanidis, 2013) through the following three tasks: (1) identifying
the most probable model parameters or even update the entire probability density function for
these parameters (obtain posterior distributions); (2) performing posterior predictive analysis
and updating the risk using the new information; and (3) when different numerical models
are examined, identifying the probability of each of them (as inferred by the data) to either
select the most appropriate or calculate the weights when all of them will be used in a model
averaging setting (model class selection).

Typical implementation refers to model parameter updating, which is traditionally viewed
as model calibration. Model class selection is less frequently used, especially within NHE
community applications. Still, Bayesian model class selection offers a comprehensive tool
for evaluating appropriateness of different models (Muto and Beck, 2008). For NHE, such
applications can be integrated with health monitoring tools (Oh and Beck, 2018). Ideally,
model parameter updating should be performed accounting for pertinent sources of real-world
uncertainties (e.g., noisy input–output measurements, uncertainty in model parameters, model
form uncertainty, and environmental variability). Formulating the likelihood equation to account
for such uncertainties is a crucial part of the Bayesian model updating/calibration process. The
so-called Kennedy O’Hagan framework has emerged as a robust approach to account for all
these uncertainties, especially the model form error (Kennedy and O’Hagan, 2001).

From a computational perspective, Bayesian updating may correspond to a significant
computational burden, especially when complex finite-element models are utilized. Such
finite-element models contain numerous unknown parameters that drastically increase the
computational cost of the Bayesian updating process. This necessitates the use of identifiability
and sensitivity analyses prior to model updating to select the most significant parameters to
use in the updating process. This step substantially improves the calibration process run-time
of complex finite-element models with numerous parameters, resulting in better parameter
estimation results (Ramancha et al., 2021b). In addition, non-identifiable parameters result



21 Uncertainty Quantification 159

in non-unique parameter estimates (Ramancha et al., 2020). Fisher information-based local
identifiability analysis and variance-based global sensitivity analysis are commonly used
methods for parameter screening to identify the most significant and identifiable parameters
(Ramancha et al., 2021b).

Beyond this critical dimensionality reduction, a variety of algorithmic approaches are
commonly used to address the computational complexity in Bayesian updating applications.
Common approaches include the use of advanced MCS techniques to reduce the total number
of simulations needed (Quiroz et al., 2018), the integration of meta-modeling to approximate
the complex system model (Angelikopoulos et al., 2015; Giovanis et al., 2017; Wang and
Shafieezadeh, 2019; Zhang and Taflanidis, 2019), or the use of direct differentiation tools to
accelerate computations (Astroza et al., 2017). The second candidate implementation, the use
of surrogate modeling techniques, has undoubtedly significant potential in accommodating the
use of complex models within Bayesian calibration schemes.

Bayesian updating may rely on point estimates, which is equivalent to identifying and using
only the most probable (based on the observation data) model parameter values (expressed as
a nonlinear optimization problem), or leveraging the entire posterior distribution (expressed
as a problem of sampling from this distribution). For the latter, Markov Chain Monte Carlo
(MCMC) techniques need to be used for any of the three tasks entailed in Bayesian inference
(Catanach and Beck, 2018). In particular, transitional MCMC (TMCMC) is a versatile method
for sampling the posterior distribution (Betz et al., 2016; Ching and Chen, 2007). Due to its
computationally parallel nature, it is ideal for Bayesian inference of computationally expensive
FE models (Ramancha et al., 2021a,b). For problems involving inference for dynamic models
(pertinent to the majority of applications in NHE), updating can be done in batch mode, using
all observation data at once, or recursive mode, sequentially updating model characteristics
during the time history for the observations (Astroza et al., 2017; Ramancha et al., 2021b).

The batch approach is a direct implementation of the broader Bayesian inference framework.
The recursive implementation typically leads to filtering approaches, including Kalman filters
(KF) and its variants (ExtendedKF or Unscented KF), that rely on linear or Gaussian assumptions
(Astroza et al., 2017; Erazo and Nagarajaiah, 2018; Kontoroupi and Smyth, 2017), and particle
filters (PF) that reproduce the work of KF in nonlinear and/or non-Gaussian environment by a
sequential MCS approach (Chatzi and Smyth, 2009; Olivier and Smyth, 2017; Wei et al., 2013).
This recursive approach is used primarily for real-time or online applications, focusing mainly
on the most probable parameter values.

21.4 Design under Uncertainty

In NHE, design under uncertainty has been traditionally expressed as a reliability-based design
optimization (RBDO) (Chun et al., 2019; Spence and Gioffrè, 2012) or as a robust design
optimization (RDO) (Greco et al., 2015) problem. Some recent approaches deviate from this
pattern and follow directly PBE advances, formulating the design problem with respect to
life-cycle cost and performance objectives (Shin and Singh, 2014), and even adopting multiple
probabilistic criteria to represent different risk-attitudes (Deb et al., 2019a; Gidaris et al., 2017;
Haukaas and Mahsuli, 2012; Li and Conte, 2018). Practical applications focus on design of
supplemental dissipative devices (Altieri et al., 2018; Gidaris et al., 2017; Shin and Singh, 2014)
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member-sizing (Huang et al., 2015; Suksuwan and Spence, 2018), or even topology-based
optimization of structural systems (Bobby et al., 2017; Zhu et al., 2017b).

With respect to the solution of the corresponding optimization problem, the NHE community
follows broader UQ trends. Design under uncertainty optimization problems undoubtedly present
significant computational challenges since they combine two tasks, each with considerable
computational burden: uncertainty propagation and optimization. Discussed next is how
uncertainty propagation is handled within this coupled problem.

Common approaches, especially within context of RBDO and RDO, typically rely on
approximate point-estimationmethods like FORM/SORM (Papadimitriou et al., 2018)with some
sort of decoupling of the optimization/uncertainty-propagation loops to accelerate convergence
(Beyer and Sendhoff, 2007). Over the past decade, advances in the use of simulation techniques
within UQ have created new opportunities to incorporate MCS techniques in solving design
under uncertainty problems (Flint et al., 2016; Spall, 2003), lifting some of the traditionally
associated computational barriers. Greater emphasis is continuously placed on solving design
under uncertainty problems using advanced Monte Carlo techniques (Medina and Taflanidis,
2014), which are frequently coupled with an intelligent integration of surrogate modeling tools
(Bichon et al., 2013; Dubourg et al., 2011; Zhang and Taflanidis, 2018). This trend is expected
to continue since computer science and machine-learning advances have dramatically altered
the computational complexity for leveraging MCS for design optimization under uncertainty,
offering an attractive alternative to traditional approaches that relied on the approximate (but
highly efficient) point estimation methods.

21.5 Relevant Software

Beyond specific UQ algorithms developed by individual researchers and shared in repositories
like GitHub or MATLAB’s File Exchange, two other important UQ software categories exist:

• Libraries integrated with existing modeling tools appropriate for NHE analysis, like the
general purpose finite-element model reliability tools offered through FERUM (Bourinet
et al., 2009). These libraries frequently address a specific type of UQ analysis, e.g., direct
MCS or reliability estimation.

• Software that approach UQ analysis with a broad brush that could be appropriate for use
in NHE applications (but as of yet has not necessarily been developed specifically for that
purpose). Such software typically covers the entire range of UQ analysis, with continuous
integration of the relevant state-of-the art advances. They are composed of scientific modules
that perform different UQ tasks, connected through the main software engine and, in addition,
are commonly equipped with an appropriate GUI.

The last category of UQ software packages is of greater interest, especially since it covers
the entire domain of a rapidly expanding field and facilitates the integration of the relevant
developments, which typically leverage different classes of tools, e.g., rare-event simulation
using surrogate models with adaptive refinement. UQ software programs typically address the
following tasks:

• Probabilistic modeling This pertains to standard uncertainty characterization, extending
from simple parametric description to stochastic characterization (including dimensionality
reduction), and represents the input to the UQ software.
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These tasks encompass direct MCS with Latin hypercube sampling, use of point estimation
methods (FORM/SORM), variance reduction, and rare event simulation. UQ outputs consid-
ered correspond typically to statistical moments, probabilities of exceedance for different
limit states or fitted distributions. The numerous software programs adopt different tools for
the aforementioned tasks and most lack a complete adaptive implementation; some degree of
competency on behalf of the end-user for selecting appropriate algorithms and parameters
is assumed. Recently, many types of software have begun to integrate multi-fidelity MCS
approaches;

• Surrogate modeling Common classes of meta-models used include Gaussian processes,
polynomial chaos, support vector machines, and radial basis functions. The developed
surrogate models can be then leveraged within the software to accelerate computations for
other UQ tasks. Adaptive DoE options are typically available and used frequently; standard
DoE approaches are not, however, necessarily tailored to the specific UQ task of interest to
the end-user. Most software programs sacrifice robustness (an approach that is reliable and is
independent of the end-user competency) for efficiency (the ability to develop high-accuracy
meta-models with the least number of simulation experiments);

• Global sensitivity analysis This is typically performed through calculation of Sobol indices
(UQ output) using some approximate (quasi-Monte Carlo) technique or surrogate modeling
(polynomial chaos expansion);

• Data analysis andmodel calibrationwith some emphasis on Bayesian inference techniques.
Although Bayesian updating is very common, model class selection is not. Addressing
modeling complexity remains a bigger challenge for Bayesian inference applications since
integrating meta-modeling techniques is not trivial. The challenge here is to establish a fully
automated integration that can address different degrees of competency for the end-user and
a wide range of application problems with certain degree of robustness (impact of metamodel
error). For problems with dynamical models, the typical approach is to use the batch updating
method since that leads to a common broader Bayesian inference framework; and

• Design-under-uncertainty Though this is not a common option, some software programs
do offer the ability to perform some form of optimization under uncertainty; most of these
programs are applicable to RBDO and RDO problems. Integrating state-of-the-art MCS
techniques in this setting remains a challenge. Implementations are typically computationally
expensive or rely on approximate approaches for the uncertainty propagation.

Out of the many UQ software programs that currently exist, the programs listed below are worth
direct mention as they represent the state of the art:

DAKOTA
Developed by the Sandia National Laboratory and written in C++, Dakota [83] is widely
considered as the standard for UQ software and delivers both state-of-the-art research and robust,
usable tools for optimization and UQ (Adams et al., 2009). It has a range of algorithms for all
aforementioned UQ tasks and has a wide community that supports its continuous development.
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OpenTURNS
It is an open-source (C++/Python library) initiative for the treatment of uncertainties and risk
in simulations (Andrianov et al., 2007). It addresses all aforementioned UQ tasks apart from
design under uncertainty.

UQLab
Developed at ETH Zürich, UQLab [89] is a MATLAB-based general purpose UQ framework
(Marelli and Sudret, 2014). Like OpenTURNS it addresses all the aforementioned UQ tasks
apart from design under uncertainty.

OpenCOSSAN
OpenCOSSAN [86] is the MATLAB based open-source version of the commercial software
COSSAN-X [82] (Patelli et al., 2017), which was initially developed to integrate UQ and
reliability techniques within FEM analysis, with modules that extend across all aforementioned
UQ tasks.

UQpy
UQpy [90] is a continuously expanding open source (Python-based) library of tools for UQ
analysis (Olivier et al., 2020). It addresses all UQ tasks apart from design-under-uncertainty (at
least in its current form).

MUQ
MIT Uncertainty Quantification Library [85] is an open source (C++/Python library) collection
of tools for UQ analysis, with emphasis on probabilistic modeling, Bayesian inference, and
surrogate modeling. Although developments in MUQ have been slightly more accelerated
recently, overall it has not kept pace with the other open-source initiatives mentioned above.

Beyond these specific software and open-source tool collections, there is an increasing
number of Python-based open-source libraries that are offered by researchers for UQ analysis,
including UQ-Pyl [88], FilterPy [84], and SMT [87]. Most of them are focused on specialized
UQ tasks (or groups of tasks) and do not intend to establish a generalized UQ analysis workflow.
The degree of ongoing improvement and bug fixes also varies substantially between these
efforts.

21.5.1 Relevant SimCenter Tools

The SimCenter supports uncertainty quantification in natural hazards engineering by developing
interfaces that can connect the state-of-the-art UQ engines mentioned above with the simulation
tools used by the NHE research community. The connected UQ engines currently provide
uncertainty propagation capabilities to the research tools (e.g., EE-UQ, WE-UQ, R2DTool)
and they will enable the development of surrogate models within those tools in a future release.
Meanwhile, the full functionality of connected UQ engines is embedded in quoFEM [7], a
UQ-specific research tool that features a graphical user interface to facilitate the use of the
underlying UQ software.
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quoFEM
The Quantified Uncertainty with Optimization for the Finite-Element Method (quoFEM [7])
tool supports model calibration, optimization, uncertainty propagation, reliability analysis,
surrogate modeling, and sensitivity analyses of numerical materials, components, and systems.
The graphical user interface currently supports finite-element software (OpenSees and FEAP)
and can also interface with custom analysis packages, including, but not limited to those based
on the discrete element and finite difference method and other commercial software that cannot
be bundled with the open-source SimCenter applications (e.g., LS-DYNA, ABAQUS). The GUI
can also be configured by users to employ custom UQ engines that are not currently provided
with the tool. These features provide instant uncertainty analysis and optimization capabilities
for numerical models. Furthermore, quoFEM provides an opportunity for researchers working
with experimental facilities to use advanced UQ methods and tools to design experiments and
calibrate numerical models. Some of the planned future capabilities of quoFEM include support
for multi-fidelity models, sequential Bayesian updating, surrogate enhanced optimization and
calibration, and optimization under uncertainty.





Chapter 22
Artificial Intelligence and Machine Learning
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At present, Artificial Intelligence and Machine Learning (AI/ML) research is one of the
fastest-growing fields in academia and industry. Between 1998 and 2018, the volume of peer-
reviewed AI papers has grown by more than 300%, accounting for 3% of peer-reviewed journal
publications and 9% of published conference papers (Perrault et al., 2019). The global market
for machine-learning technologies, including hardware, software and services, is expected to
grow astronomically from about $3 Billion in 2017 and the current $7 Billion in 2020 to over
$30 Billion in 2024 (Future, 2019). Artificial intelligence and machine-learning technologies
have already penetrated in many aspects of our everyday life, including health care, business
and commerce, transportation, agriculture, manufacturing, natural and built environment,
education, etc. These technologies will continue to have tremendous impacts to our society as
a whole (NSTC, 2016a,b, 2019). As advances in computing technologies such as computer
graphics, finite-element methods and CAD/CAE have had in the past, AI/ML will potentially
revolutionize how engineering modeling, design, and simulations are conducted. With rapid
advances in hardware and software technologies, and continuing developments in all aspects of
computational science and engineering, natural hazards engineering (NHE) and simulations
will be dramatically impacted by AI/ML.

Generally speaking, the field of artificial intelligence (AI) aims to create computational
systems (or machines) that behave and solve problems in ways that emulate human intelligence.
Often based on stipulated rules and pieces of knowledge, AI systems have the ability to learn,
reason, adapt to changes, and self-correct with facts and data. Machine learning (ML) is a
sub-field of AI that enables machines to learn from past data or experiences, self-adapt in
a changing environment, and self-correct with new information. By optimizing the (feature)
parameters of an ML model using training data or past experiences, the model may have the
ability to make generalizations and predictions for certain events in the future and/or gain new
knowledge within the model domain. Deep learning (DL), typically consisting of many (deep)
layers of computational units, is a technique for realizing machine learning by automatically
discovering possible model features from the data. Data mining shares many of the same
techniques in machine learning; however, data mining aims to discover interesting patterns,
extract rules, or construct models from large volumes of data. While data mining models possess
high predictive ability similar to MLmodels, they often lack the “intelligence” to learn and adapt
automatically to changes. As opposed to optimization, where a single well-defined objective
function of the problem is to be maximized or minimized, a machine-learning model is devised
from the training data by finding the optimal values for the (feature) parameters using scoring
metrics that give the best predictive accuracy. While a mathematically optimized model is not
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easily adapted to a new set of parameters, constraints, or data, an ML model may be generalized
to apply beyond the training data; the model can be adapted and transferred—with appropriate
accuracy measurements and validation—to build models for problems of similar types.

The purpose of this report is to provide a brief review of the latest AI/ML technologies and
how they can potentially be applied to NHE. As AI/ML is a rapidly growing field with new
methods and new applications being discovered constantly, comprehensive coverage of all the
developments is beyond the scope of this report. The report is purposely written in general terms
with a short introduction to the different methodologies in AI and machine learning. Similarly,
NHE is a very broad field dealing with impacts due to earthquake, tsunami, wind/hurricane,
flood, liquefaction, fire, and other hazards. Covering all possible applications of AI/ML in all
hazard areas is a task beyond this report and the ability of the writers. A few selected examples
of prior works in different natural hazard domains are briefly described herein to illustrate the
potential applications of AI/ML. Additionally, some of the ongoing efforts on the use of DL
methods at the SimCenter towards the development of workflows for natural hazard modeling
and analysis are discussed. Lastly, potential opportunities for AI/ML technologies in NHE are
discussed to engender further research and developments in this field. Finally, it should be
emphasized that the references and the works cited in this report represent only a small number
of illustrative examples in the field as the possibilities of AI/ML are almost boundless.

22.1 Overview of AI/ML methods

Knowledge-based expert systems
Since the 1950s, when the term AI was coined, considerable progress has been made. Early
research and developments in the 1980s (often known as the first wave of AI) were dominated by
the rise of rule-based expert system and knowledge-based expert system (KBES) technologies
(Hayes-Roth et al., 1983). With expert knowledge handcrafted as “if-then” or logic rules,
expert systems with enabled reasoning and inference mechanisms have been used to address
many interesting ill-posed problems, albeit often in some narrowly defined domains (Simon,
1973). One class of ill-posed problems is the conceptual structural design of buildings, which
often requires prior experiential knowledge and considers downstream design and construction
constraints (Jain et al., 1991a,b; Kumar and Raphael, 1997; Sriram et al., 1985). Indeed, KBES
technologies have created significant excitement in all disciplines of civil engineering, including
structural, geotechnical, earthquake, transportation, and environmental engineering (Cohn and
Harris, 1992; Dym and Levitt, 1991; Kostem and Maher, 1986; Palmer, 1987; Sriram, 1997).
How knowledge is represented is crucial to the usefulness of KBES as the representation would
dictate how the system interacts with rules and data. While research on KBES has slowed
down for the past couple of decades, advances in semantic information modeling and ontology
continue to prevail (Noy et al., 2009; Stevens et al., 2000). For instance, in civil engineering,
research on semantic modeling and the process of capturing the semantic information about
buildings and infrastructures has given rise to Building Information Modeling, which has
been embraced by the building and construction industry worldwide for the delivery of project
information throughout a facility’s life cycle (Sacks et al., 2018). Ontology, with defined terms
and relationships among the terms in a domain, can play a critical role in bringing together
disparate sources of information and effectively supporting NHE modeling and simulation, e.g.,
in estimating earthquake damage to structures and infrastructures (Yu and Baker, 2016).
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Statistical-based AI
Artificial intelligence research and developments in the 1980s and 1990s have popularized a
number of reasoning and inference mechanisms (such as decision trees, Bayesian networks,
etc.) and statistics-based classification, clustering and regression techniques (such as logistic
regression, k-means, random forest, etc.) that find ample applications in data mining and
knowledge discovery as well as in engineering. For instance, Bayesian networks are commonly
used in structural reliability analysis (Straub and Der Kiureghian, 2010). Boosted decision trees
have been applied to detect pipe failures and to assess weak points of geographically distributed
water systems (Kumar et al., 2018; Winkler et al., 2018). Neural networks (also commonly
known as artificial neural networks or ANNs) have emerged as a powerful computational and
knowledge representation paradigm to build self-organized models that are able to discover
patterns or draw associative relationships between input and output data (Bishop, 1995).
Fitting (mathematical) models to experimental data and extracting knowledge from the data
to explain physical observations are nothing new in science and engineering. However, the
ability for a computational “machine” to automatically “learn” models by analyzing the data
and extract relationships and patterns can have important implications for modeling complex
systems. Neural networks have found many applications in all disciplines of civil engineering
(Garrett and Smith, 1996; Kartam et al., 1997). For instance, instead of expressing material
behaviors and constitutive relations in mathematical forms, neural network models are trained to
represent constitutive models and thermal properties of complex materials, such as composites
and laminated materials, and nonlinear behaviors of structural components directly using
experimental data and observations (Aquino and Brigham, 2006; Ghaboussi and Garrett, 1991;
Ghaboussi et al., 1998).

Kernel-based methods
Another notable development in data-driven ML is a class of statistical-based Kernel methods
(such as support vector machine (SVM), principal component analysis (PCA), Gaussian process
regression (GPR) models), which draw on measuring similarity between data samples (Hofmann
et al., 2008; Rasmussen and Williams, 2006). Like neural networks, kernel methods, such as
support vector regression (SVR), have been employed to develop material and component
behavior models (see, e.g. Luo and Paal, 2018). Kernel methods are also commonly used as
surrogate models in multi-scale modeling, inverse problems, and optimization (Eriksson, 2018;
Park and Law, 2016; Santin and Haasdonk, 2019; Wirtz et al., 2012). Often known as Kriging
in geoscience and mapping, kernel methods have been widely used for geospatial analysis and
employed as a geostatistical estimator for interpolating geospatial information with quantifiable
uncertainties (Jia et al., 2016; Olea, 2012). As material modeling, multi-scale modeling and
analysis, inverse and optimization problems, reliability analysis and uncertainty quantifications,
and regional geostatistical analysis are all fundamental components of NHE, AI-based inference,
and statistical and data-driven ML methods that are likely to find ample applications in natural
hazards modeling and simulation.

Deep (machine) learning
With the present abundance of data of different types (text, time series, numerical/audio/video
data, images, etc.) available from a large variety of sources (web and social media), as well as
devices (sensors, cameras), data-driven statistical learning (often known as the second wave
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of AI) has become popular since the 2000s; this area of research has largely been dominated
by what is known as “deep learning” (DL) (LeCun et al., 2015). Deep-learning methods are
typically based on multi-layered neural networks that can automatically discover features from
the data and use the learned features to perform predictions and make decisions for a specific task.
Many different DL architectures exist—such as deep (multi-layered) neural networks, recurrent
neural networks, convolutional neural networks, generative adversarial networks, and many
others—with each having different designs and learning strategies. The learning or training
process can be typically classified by supervised (with labeled training data), unsupervised
(without labeled training data), semi-supervised (with a small number of labeled but large
amounts of unlabeled data), or iterative reinforcements (by optimizing the model according to
some pre-defined criteria and policy).

Deep-learning methods have been successfully applied to many fields, such as computer
vision, image processing, speech and audio recognition, natural language processing, and
language translation, producing results that often exceed human expert performance. The
successes of DL, particularly in pattern recognition and computer vision, have drawn significant
attention in the civil and environmental engineering community. Within structural engineering,
DL methods have been widely applied in the field of structural health monitoring (Salehia
and Burguernoa, 2018). By treating the damage detection problem as object detection, and
classification and segmentation of images, computer vision (CV)-based DL methods have
been applied successfully to detect and identify many types of structural and material damage
(Cha et al., 2017; Ferguson et al., 2018; Gao and Mosalam, 2018a; Lenjani et al., 2020; Yeum
et al., 2019). For instance, during the 2018 Structural ImageNet and PEER Hub ImageNet
Challenge (Gao andMosalam, 2018b), DLmethods were shown capable of performing relatively
well on several detection tasks, including classification and identification of scenes, damage
states/levels/types, material types, collapse states, and component types. With the publicly
available street and satellite images, CV-based DL methods hold significant potential for being
an integral component in (regional) natural hazards modeling and simulations.

Among these approaches, knowledge-based expert systems are intuitive and interpretive,
but building them requires a lot of domain knowledge. In contrast, statistics-based AI and
kernel-based methods are more data-driven, often requiring handcrafted features. The former
approach assumes that the features are given, while the latter finds ways to implicitly lift
the given feature to a more expressive space. The significance of DL approaches is that they
eliminate the need for feature engineering and allows a classification or regression model to
be trained entirely from the data in an end-to-end learning fashion. With the availability of
large-scale datasets and increasingly powerful computing hardware such as GPUs, DL models
that have a very large number of parameters can be explored and—particularly for problems
that are highly “nonlinear” in nature—can deliver high performance unmatched by previous
approaches.

22.2 AI/ML in Natural Hazards Engineering

Artificial intelligence and machine learning have been applied across many fields of NHE for
quite some time and have gained increasing popularity in recent years. Such applications range
from data acquisition, hazard modeling, engineering simulation, reconnaissance studies, to
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developing predictive surrogate models using observed and simulated data. The following are
some examples of machine learning applications in the areas of natural hazards.

• In earthquake engineering, ML has been used for seismic wave discrimination and early
earthquake warning (Li et al., 2018b), ground-motion simulation (Alimoradi and Beck, 2015),
pre-earthquake vulnerability screening (Yu et al., 2019), post-earthquake damage detection
from imagery data (Bai et al., 2017; Cooner et al., 2016), and seismic damage and risk
analysis of structures (Gidaris et al., 2015). Deep-learning approaches have also been shown
capable of estimating earthquake magnitude from recorded raw seismic signals (Mousavi and
Beroza, 2020). Recently, a comprehensive review of the current and potential applications of
AI/ML to a broad range of research in earthquake engineering has been provided by Xie et al.
(2020);

• Landslides, induced by earthquakes or heavy rainfall, are another natural hazard phenomenon
that has attracted much attention (Dou et al., 2014). Machine-learning methods such as SVM,
ANN, Kriging, Random Forest, etc., have been employed to predict the susceptibility of a
landslide based on topographic, geological, and hydrological data (Goetz et al., 2015; Pham
et al., 2016; Yao et al., 2008). More recently, deep convolutional neural networks have shown
the potential for recognizing landslides using aerial and satellite imagery (Ghorbanzadeh
et al., 2019);

• Flood is one of the most destructive natural hazards, which can cause massive damage to the
built infrastructural systems and significant socioeconomic loss. Machine-learning methods
have been shown to provide better insight for flood prediction and better predictive accuracy
that outperform conventional modeling approaches (Abbot andMarohasy, 2014; Mosavi et al.,
2018). Methods such as ANN, SVM, SVR, long short-term memory (LSTM), neuro-fuzzy,
decision tree, etc., have been found effective for short- or long-term flood susceptibility and
damage assessment (Darabi et al., 2019; Gizaw and Gan, 2016; Kim et al., 2016; Le et al.,
2019; Resch et al., 2018). More recently, deep convolutional neural networks have been
employed for regional flood susceptibility analysis using remote sensing images (Gebrehiwot
et al., 2019; Li et al., 2019b; Wang et al., 2020b); and

• Hurricanes are another disastrous hazard that can cause significant damage to buildings and
infrastructure systems. It has been shown that ML methods such as ensemble learning and
bagging decision trees are capable of predictingwind-induced damages of individual buildings
with better accuracy compared to HAZUS models (Subramanian et al., 2013). Methods
such as random forest and logistic regression have also been employed to predict damage to
residential structures due to hurricanes and high winds (Salazar, 2015). Deep learning has
been applied to classify damages using post-hurricane aerial imagery (Kersbergen, 2018; Li
et al., 2018a; Thomas et al., 2011).

The examples cited are merely illustrative examples of a wide range of possible applications
of AI/ML to NHE, from hazards susceptibility analyses to post-disaster reconnaissance studies.
Complementary to conventional numerical modeling and simulations, AI/ML can be employed to
support a number of NHE tasks, such as characterization of the built, natural, and socioeconomic
environments, enhancing understanding of hazard models, constructing data-driven response
estimation models, assessing structural performance, and simulating recovery processes. Among
the many challenges in applying data-driven AI/ML methods to NHE is the critical need in
gathering, generating, and managing the data, as well as making the data readily usable for
NHE modeling and simulations (Padgett et al., 2020)
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22.3 SimCenter’s Ongoing AI/ML Efforts

As noted, significant research efforts have been reported in applying ML methods to NHE. With
the advances in computer hardware and the abundance of data, in the form of text, time-series
signals, point clouds, and images that are being generated and made publicly available (Rathje
et al., 2017), innovative applications of advanced ML technologies in NHE will undoubtedly
continue to grow. Nevertheless, extracting meaningful information from such data and rendering
the data useful for natural hazard modeling and simulations is labor-intensive, computationally
demanding, and requires significant infrastructural investments. Another challenge is that data
from public sources is often incomplete with missing information. Learning from available data,
ML can potentially and effectively extract the relevant features and reconstruct the missing
information, which are needed for engineering analyses and hazard modeling. As shown in
Figure 22.1, one of the ongoing efforts at the SimCenter is to develop frameworks for natural
hazards modeling and simulation, and to demonstrate the workflows from data acquisition
to hazard/risk analyses and simulation. Machine learning can play a key role in the overall
workflows for NHE modeling and analysis, particularly for regional-based simulations.

Fig. 22.1 Computational framework for natural hazards modeling and analysis: from data acquisition to
simulations.

22.3.1 From Building Information Model (BIM) to Structural Analysis Model (SAM)

Widely adopted by the architecture, engineering, and construction professionals, building
information modeling is defined as a process that involves the generation and management of
a “shared digital representation of physical and functional characteristics of any built object
[...] which forms a reliable basis for decisions,” (ISO, 2016). The digital Building Information
Models (BIMs) can be an ideal source of information for natural hazard analyses. For example,
based on the data and information captured in a BIM, structural analysis models (SAM) can
potentially be created for dynamic finite-element analysis of buildings under seismic or wind
load conditions (Lu et al., 2020).

Converting BIM to SAM is not a trivial process, however, and requires advanced knowledge of
computer-aided design, structural engineering, finite-element analysis, and practical experience.
Manual conversion is an expensive and labor-intensive task, especially for large-scale regional
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simulations. To this end, SimCenter has initiated an effort to develop a framework to demonstrate
the applicability of ML for bridging the gap between a BIM and a SAM.

The BIM-to-SAM framework is schematically shown in Figure 22.2. Information in BIM
is first distilled into a vector representing the features of the BIM. These features are then
used as the input to a neural network, which yields another vector that represents features
of the corresponding SAM. Based on the generated features, a SAM can be constructed
programmatically. The BIM and SAM can then be stored in a standard neutral file format, such
as JSON, which is a data-interchange format that uses human-readable text to store and transmit
data objects consisting of attribute-value pairs and array data types. It should be emphasized
that the framework is designed primarily to illustrate the overall workflow and the tasks involved
in generating SAM from BIM using the ML approach. Continuing research and development
efforts are needed to generalize the methodology, from the current effort on modeling of
structural walls and frames to other structural components and systems. Demonstrations of the
framework can be found in SimCenter’s GitHub repositories (NHERI-SimCenter/BIM2SAM.AI
[98]; SWIM [53]).

Fig. 22.2 BIM to SAM framework.

22.3.2 Building Features Extraction and Characterization—Soft-Story Identification

Rapid and accurate identification of building features and structural integrity is crucial in
evaluating the seismic vulnerability of buildings city-wide. Structural irregularities due to abrupt
variations of story stiffness, such as a soft-story building, increase the likelihood of damage
to a building during a moderate or severe earthquake. Identifying and retrofitting soft-story
buildings in a city represents a vital effort in earthquake preparedness and mitigation; however,
soft-story building identification at a city-scale is a labor-intensive and time-consuming process.
Visual screening is often the first step in the identification process. For instance, FEMA 154
(ATC, 2015) provides a screening methodology to evaluate the seismic safety of buildings
mainly based on the visual cues of the building exteriors and to determine whether a building
requires more detailed evaluation. The purpose of this effort is to design a workflow that can be
applied to rapidly identify potential soft-story buildings on a city scale.
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The availability of street-view images and recent advances in computer vision and ML
techniques make the automated screening of soft-story buildings a viable proposition. Structural
attributes—e.g., frame types, geometric irregularities, and foundation conditions—can often be
identified from certain observable visual cues. Many of such visual cues—such as a garage with
relatively narrow wall widths on both sides of the garage opening, a large opening at the ground
floor level, a story with less wall area or fewer columns than other stories, etc.—are used by
trained professionals to rapidly screen for potential soft-story buildings. To date, the visual
screening process remains labor-intensive as it requires collecting a large amount of image data
of the buildings, and subjective interpretations can be error-prone. An automated process that
is able to extract building features and identify a specific type of structural vulnerability by
interpreting the relevant features would be beneficial to the rapid screening of a large number of
buildings in a city or a region.

As a demonstrative workflow on visual screening of building features, the SimCenter has
developed an automated process using a ML approach to rapidly identify buildings that
potentially have soft-story characteristics (Yu et al., 2019, 2020). Using the data available for
the study, five cities in California, namely, Santa Monica, Oakland, San Francisco, San Jose,
and Berkeley, were selected. As shown in Figure 22.3, the first step of the workflow process is to
collect street view images of the buildings (e.g., using Google Street View Static API) based on
the addresses in each city obtained from the official city website. A training set is then developed
with annotations to train the soft-story classification model using convolutional neural networks,
such as the Inception (Szegedy et al., 2017, 2016) and ResNet (He et al., 2016) architectures.
The trained classification model can then be used to identify potential soft-story buildings in the
city of interest. Two specific novelties of the workflow are worth mentioning. First, as a large
number of images need to be labeled as having a soft story or not, a semi-automated annotation
process has been developed to minimize the manual labeling effort. Second, as shown in Figure
22.3, a class activation map (Zhou et al., 2016a) is employed to highlight the regions (that are
likely to correspond to a soft-story) and to help interpret the predictive results.

22.3.3 Regional-Scale Natural Hazard Risk Management

Many environmental and geographical models, such as those used to understand regional
hazards and those used in climate studies, often rely on spatially distributed data as input that are
known to be scarce and imperfect. Generally, there is a lack of knowledge about the distribution
pattern of the variables over the spatial area in the region. In other words, spatial uncertainties
exist because of noise, incompleteness, and the uncertainties in the data. For regional risk
analyses, spatial uncertainties in the input data, such as the hazard intensities or asset attributes,
can propagate into model predictions across the whole region. To quantify such uncertainties,
SimCenter has developed a Spatial Uncertainty Research Framework, SURF (Wang, 2019).
The framework has been implemented as a Python package for performing spatial uncertainty
analysis using random fields and neural networks. Given a spatially scattered dataset, SURF
learns the variation patterns in the dataset and infers missing attributes and values where there
observations are absent.

For regional hazard evaluation, an important first step is to collect the relevant information of
existing buildings to establish an inventory of buildings in the region. Attributes of a building,
such as the number of stories, the year of construction, structure type, occupancy type, and
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Fig. 22.3 A workflow framework for soft-story identification.

others, are important parameters to assess the effects of natural hazards on the building structure.
Many of these textual building attributes are available as public information, e.g., tax assessor
records. That said, the building record is often incomplete with missing data. Furthermore, key
attributes (e.g., roof types) needed for specific hazard assessment studies are often not recorded.
With the availability of street view and satellite images and other open data sources, recent
advances in computing technologies, including computer vision, geospatial analytics, and ML,
can help bridge the information gaps for regional hazard modeling and risk analysis. To this
end, the SimCenter has initiated a building information modeling project, BRAILS (Building
Recognition using AI at Large Scale) (Yu et al., 2019). BRAILS employs ML/DL methods to
help create building inventories at the city or regional scale.

As illustrated earlier, DLmethods can be applied to screen seismically vulnerable buildings by
capturing the visual cues of a building with geometric irregularities (Yu et al., 2020). Similarly,
many building attributes, such as structural and material types, can be “learned” and identified
using the observable cues from building images via ML. For instance, CNN is shown to be
effective in classifying roof shapes (flat, gabled, or hipped) using satellite images (Yu et al.,
2020). In addition to extracting attribute information using individual building images, ML can
also infer missing building information using geospatial patterns in the region of interest. To
develop a geospatial learning module, the aforementioned Python package (SURF) is encoded
as a part of the BRAILS framework, which has been designed for regional hazard analysis
(Wang, 2019).

Figure 22.4 shows the BRAILS workflow for the building inventory development process for
regional hazard risk analysis (Wang et al., 2020b). The workflow infers building information
from multiple sources (e.g., tax assessment, street view images, satellite images, etc.) to form a
large building inventory. For example, in one of the testbeds, the coastal cities of Atlantic County
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in New Jersey are selected to assess the effects of high wind and hurricanes on the region’s
buildings. The data sources included the tax assessor records, Microsoft’s Building Footprints
dataset, and street view and satellite images obtained using Google Maps API. Textual data
from tax assessor records and the information inferred from images using convolutional neural
networks are aggregated or “fused” to establish the building information needed by the damage
models and fragility functions defined in FEMA’s HAZUS MH2.1 (FEMA, 2011a). The source
code, the data, the pre-trained CNN models, and the building inventory database are available
at SimCenter’s repository (Yu et al., 2019). The key significance of this effort is to create an
AI/ML-based workflow from data acquisition, building information model development, and
hazard modeling to spatial hazard risk analysis.

Fig. 22.4 A workflow framework for regional hazard modeling and analysis.

22.4 Research Challenges and Opportunities

Applications of AI/ML to NHE are numerous in that almost all facets of NHE can potentially
benefit from AI/ML. For instance, instead of traditional physics-based representations, material
constitutive models can be represented using ML models (such as SVR, ANN, GPR, or DL),
which can self-adapt and “learn” with new data. At the large scale, ML can be (and has
been) used to understand human behaviors (such as evacuation), social structure (such as the
population residing in an area), and environmental and hazard conditions (such as wind intensity
and seismicity) that could have implications on regional NHE decision-making processes.

While the field of AI/ML in NHE is too broad to enumerate, this report presents three general
issues that could enhance the adoption and facilitate the development of AI/ML in NHE. First, an



22 Artificial Intelligence and Machine Learning 175

AI/ML model should be able to provide documentation of the outcomes to help build the users’
trust and confidence in the model. Second, while an ML model, once trained or built adaptively
with new information that can be incorporated as a “surrogate” and used efficiently in a larger
simulation or optimization setting, the limitations and the uncertainties that can potentially
propagate to the system need to be addressed. Lastly, as significant amounts of relevant and
labeled data are necessary to build even the baseline AI/ML models in support of NHE, the data
issues from acquisition to management require new approaches and a collaborative community
effort to enable progress and advancements in this field.

22.4.1 Explainable and Physics-Informed AI/ML

Early AI research such as knowledge-based expert systems have inherent inference mechanisms
that can be used to explain how a system leads to a conclusion based on the rules and knowledge
executed. For instance, incorporated with handcrafted rules and first principles, SACON
(Bennett et al., 1978)—an expert consultant system for structural analysis that was built upon
the EMYCIN framework (Van Melle et al., 1984)—could not only recommend an appropriate
analysis class for solving a given engineering problem but also provide associated explanations
for the specific recommendation. While DL methods (such as multi-layered neural networks)
have been shown to be superior and capable of solving many complex and difficult problems
where it is infeasible to write down the explicit rules, they are often criticized as black-box
models that lack transparency. It is not always clear how an ML model reaches a decision.
Developing ML models that can provide contextual explanation, interpretation, and induction
of the model is challenging; thus, it is exceedingly important to validate the models and justify
their use with hindcasting-type studies (DARPA, 2016; Rudin and Radin, 2019; Samek et al.,
2019).

Artificial intelligence and machine-learning models that are unable to adequately answer
questions on how a problem is solved and why a conclusion is made may suffer trust and
confidence issues in practice. The users may hesitate to deploy these models and utilize their
results. Naturally, ML-based models that lack the ability to explain their output and interpret
their own performance will likely encounter skepticism and slow adoption in NHE.

Much active research effort is now underway that aims to enhance our understanding of
why AI/ML techniques work well in practice, what classes of problems AI/ML are capable
of solving, and which AI/ML algorithms are particularly effective in solving certain types of
problems. The advancements in attention-based methodologies, which mimic human cognition
and intuition, have enabled tools to recognize the important features of a trained model and
highlight the results generated by the model (Kafle and Kanan, 2017; Nakka and Salzmann,
2018; Xu et al., 2015; Zhou et al., 2016a). For example, the highlighted results could help a
user to gain insights about the ML-trained model, trace the features involved in the correct
(or incorrect) identification of the results, and assess the relevance of the information that
propagates through the model.

Graph-based methodologies that are able to incorporate domain concepts and features into
ML models have also attracted much attention (Baru, 2017; Hamilton et al., 2017; Koller and
Friedman, 2009; Wu et al., 2020). For instance, graph neural networks are now widely used in
bridging ML methodologies with modeling of engineering problems (Park and Park, 2019; Seo
and Liu, 2019). The feature information embedded in graph-based models can help construct
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interpretable models, enhance the reasoning process, and ensure the quality of the generated
results.

The ability to interpret the results and to explain the trained model using domain terminologies
is important to encourage the adoption of ML methods. Traditionally, engineering models are
developed using fundamental principles of physics or other fields of science and statistically
validated with experimental data and empirical evidence. For obvious practical reasons,
engineering models are often simplified to lessen the complexity of physical phenomena
and to allow the selection of model parameters that are measurable. On the other hand, ML
models constructed using data can often perform well even for complex problems; but as
discussed above, their inferences are hard to explain, and the models are difficult to generalize.
One common approach is to evaluate a ML model based on qualitative interpretation and
quantitative correlation between the behavior of the trained ML model and the physical system.
For example, Kratzert et al. (2019) show the interpretation of LSTM (long short-term memory)
for a rainfall-runoff model by examining the outputs of the LSTM network based on the domain
knowledge about the annual variation of the hydrological pattern and the correlation between
the memory cells of the LSTM network with the physical state of the hydrological system.
Linking the relationships between the ML model and the physical problem is important to
realize the significance of the outputs and gain confidence over the results.

Recently, much research effort has been dedicated to taking advantage of first-principle
domain knowledge and ML methodologies by combining the data and the domain features
when training an ML model (Willard et al., 2020). The research typically focuses on two basic
questions: (1) to what extent should first-principle knowledge be embedded in an ML model?;
and (2) how should the features of the physical system and the first principles be incorporated in
the training process? For instance, using examples in turbulence modeling and crystal plasticity,
Ling et al. (2016a) discussed how symmetric and invariance properties inherent in physical
systems could be incorporated and learned by ML algorithms such as random forests and deep
neural networks. Another approach is to train the ML models in accordance with physical laws,
e.g., which are described by differential equations (Raissi et al., 2019). One advantage of a
physics-based ML model is that it may be possible to assess the uncertainties of the model
parameters using data collected from sensor measurements on the physical systems (Zhang
et al., 2019a). One other approach is to augment an ML method with physics-based features
such that these features penalize inconsistencies with the laws of physics (e.g., conservation
of momentum), e.g., using an appropriately devised loss function during the training process
(Jia et al., 2020). This physics-guided approach has been demonstrated for simulating the
temperature profile of a lake using sparse observation data while achieving high-prediction
accuracy. Methods that incorporate first-principle knowledge into the training of ML models
could provide the basis needed for verification and validation and ensure that the models are
consistent with physical systems.

Explainability and interpretability of ML models are important for their adoption in NHE.
Further studies are needed to set the foundations in this field. In a broader context, research
in explainable ML models advocates fruitful synergy and provides ample opportunities for
collaborations between AI/ML researchers and domain experts in NHE.
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22.4.2 Surrogate Modeling

Particularly in the last decade, the number of surrogate modeling studies involving data-driven
methods has seen a steady increase in NHE. Despite differences in theMLmethods utilized, these
efforts share a common goal. They are aimed at creating computationally efficient alternatives
to procedures that are otherwise too resource-intensive for the considered application (which,
typically, requires large-scale simulations as in regional-level risk assessment). These studies
range from surrogate model development efforts for peak or time-dependent storm surge
predictions based on high-fidelity hydrodynamic model outputs (Jia et al., 2016) to deck
unseating fragility of bridges subjected to hurricane-induced wave loading developed using the
results of nonlinear fluid-structure interaction simulations (Ataei and Padgett, 2015). However,
the concentration of these studies across the sub-domains of NHE is not uniform. Most surrogate
modeling studies focus on flood forecasting. In some areas, such as in earthquake engineering, the
research is just beginning, whereas surrogate models to be applied in geotechnical engineering
are practically non-existent.

Virtually all of the existing data-driven surrogate modeling studies in NHE rely on simulated
data. Hence, in the process of creating computationally-efficient representations of processes,
the use of surrogate models may introduce epistemic (model) uncertainties and bias, depending
on the ability of the training data to cover the entire domain of the modeled process and
the capability of the ML method used to capture the underlying mechanisms from this data
without overfitting. Model uncertainties are significant for many NHE problems (Gokkaya
et al., 2016), yet limited attention is being paid to the uncertainty associated with data-driven
surrogate models and the effects of the uncertainties to the overall system. This may be due to
the long-standing research gap in this area.

In recent years, key advancements were made in uncertainty quantification for neural network-
based learning methods. As a direct outcome of these developments, various accepted practices
continue to become public. The confidence interval determination methods summarized by
Kabir et al. (2018) provides a snapshot of the procedures for determining uncertainties associated
with neural network models. Many successful implementations of the ideas presented in this
work exist in finance, medicine, and control systems applications. Bayesian Neural Networks
(Blundell et al., 2015) are another alternative that enables the assessment of uncertainties
in neural network models. McDermott and Wikle (2019) demonstrated that the practical
implementation of Bayesian Neural Networks to different network architectures, such as
recurrent neural networks, is possible.

So far, translation of the recent progress in uncertainty quantification for neural network-based
methods and ML models in general to surrogate modeling of NHE processes remains a largely
unexplored territory. Given that the computational foundations of such studies are currently
being established, ample opportunities remain open for further research.

22.4.3 Data Generation and Management

Data plays an indispensable role inNHEandML.There are at least three categories of information
commonly employed in NHE: assets of the built infrastructures, models of the natural hazards,
and geospatial information about the built, natural, and socioeconomic environments. For
instance, in addition to the physical, architectural (such as footprints, exterior walls, roof
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shapes, openings, etc.) and structural (such as materials and framing systems) information, other
attributes of buildings such as year built and property values may contribute to the evaluation
of structural integrity and affect the decision making on retrofitting and repair strategies.
Environmental information such as wind speed and direction, weather conditions, seismicity,
etc., may be required for the hazard simulation models. In addition, geospatial data/metadata
about the terrain, vegetation, and landscapes, proximity to water bodies, nearby highways and
lifeline networks are essential to regional hazard evaluation. Even socioeconomic data—such as
residential, commercial, and industrial zonings, tax assessments, and real estate values— play a
part in regional impact, risk analyses, and emergency planning.

Different datasets and different types of data are needed for different hazard models and
for the different objectives and purposes of an NHE evaluation. A typical data collection
process involves identifying available data from public and private sources, getting access to
the data, and integrating the data in a meaningful way that is suitable for the tasks at hand.
Gathering high-quality and well-organized useful data is often the most time consuming and
challenging task in NHE research. Indeed, the data issue has often been considered one of the
main impediments in NHE studies.

Natural hazard engineering, particularly at a regional scale, requires a wide variety and
large volume of data. Many ongoing data initiatives exist, such as those towards developing
digital twins for smart cities (Day, 2019; Lehner and Dorffner, 2020; NIC, 2017; Schrotter
and Hürzeler, 2020). While such efforts, which often involve computer vision, sensing, and
ML technologies, could potentially help create useful digital data and providing geometric
descriptions of the built environment in a city or a region in the future, many significant research
challenges remain in gathering and creating the data needed for NHE studies as well as in
managing and facilitating access to the data. Presently, NHE researchers rely heavily on publicly
accessible datasets, such as building inspection files and tax assessor records. To date, many of
such data are collected and gathered manually and entered manually into databases (with tools
such as Excel, Access, etc.), often with subjective judgments and interpretations. Despite the
best intentions and efforts from all parties involved, erroneous entries and missing information
are common. Information specific to NHE, such as material types, roof type and geometry, and
building configuration, are often not recorded. ML can be a valuable tool to generate and fill in
some of the data needed to support NHE applications.

For certain problems and data types, an ML model can be developed and applied to enhance
data quality, augment existing datasets, and create new datasets useful for NHE applications. For
example, ML methods, combined with engineering simulations, can potentially be applied to
cross-check field measurement data. Methods such as PCA, SVR, and recurrent neural network
(RNN) have been shown capable of identifying erroneous measurements and reconstructing
vibration signals (Jeong et al., 2019; Kerschen et al., 2005). Kriging has been combined with
statistical-based methods to estimate wind speeds and extrapolate information at locations
that are not physically measured (Xu et al., 2014). Historical (analog) seismic records can be
converted to useful digital seismic signals using DL (Wang et al., 2019b). Machine learning
has the potential to ensure data quality and provide estimates (or predictions) on some of the
missing attribute data that are critical to NHE simulations. While developing ML models often
requires a large amount of labeled data, active and assistive learning strategies can help alleviate
some of the time consuming and laborious annotation efforts and build useful ML models (Joshi
et al., 2009; Wong et al., 2019; Yu et al., 2020).

One of the main challenges in regional hazard analysis is to establish an inventory of
assets and their properties over a geospatial area of interest. With advances in computational
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geometry, computer vision, and ML, street view, satellite, and aerial images are tremendous
data sources that can be used to acquire 2D and 3D building geometry metadata and to
extract other valuable information about the buildings and their surrounding environment.
For instance, semantic segmentation and polygonalization of aerial images have produced
over 125 million building footprint geometries in the U.S. (https://github.com/microsoft/
USBuildingFootprints). Similar techniques can be used to help identify other building attributes,
such as garages, windows, number of floors, structural materials, and other meaningful metadata.
Depending on the level of detail (LoD) required for a specific NHE application, different
computational algorithms and AI/ML methodologies have been proposed to construct 3D
building models. For instance, 3D block models (consisting of building envelope and roof
geometry) can be extruded from footprint data and ML edge extraction techniques (Maninis
et al., 2017; Yu et al., 2017). Such 3D block models could be useful for low-fidelity NHE
simulations or prescriptive code-based analyses. Many active ongoing research efforts, utilizing
a combination of computational geometry algorithms, ML methods, and rule-based inferences
that incorporate design and planning principles are underway that aim to construct detailed
building information models (Chen et al., 2018; Martinović et al., 2015). The generated models
with detailed descriptions of buildings—including materials, windows and openings, roof
shapes, and chimneys—can be used for conducting high-fidelity computational simulations
such as nonlinear structural analyses and CFD studies. In short, AI and ML can find ample
applications to help build data inventory necessary for NHE modeling and analyses, as well as
for training and testing ML models.

Numerous current efforts have focused on collecting and generating data for individual
simulation applications and for ML model development. The challenges in achieving tangible
advances in NHE go well beyond the abilities of individual researchers or even organizations
and require well-coordinated community efforts. The significant impact of publicly available
large datasets—such as ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014)—is critical
in advancing the fields of computer vision and ML. Within the NHE domain, open-source tools,
such as OpenSees (McKenna, 2011) and OpenFoam (Chen et al., 2014), have greatly facilitated
research and developments in earthquake and wind engineering. The current community-driven
initiative in making NHE data accessible on the DesignSafe CyberInfrastructure platform will
help expedite progress in this field (Rathje et al., 2017). To promote, encourage, and facilitate
the adoption of AI and ML research in NHE, a community-based platform that is specific to the
NHE domain would be useful, analogous to the “model zoo” established in the ML community
(see https://github.com/collections/ai-model-zoos) that allows publishing and sharing of
ML models and datasets.

Even when researchers and organizations are willing to share and make their data and
models available publicly, the data objects (i.e., the data and the models) need to be “Findable,
Accessible, Interoperable and Reusable” (FAIR) (Wilkinson et al., 2016). Metadata constructed
using standardized representation, authorization, and authentication protocols can play a key
role in improving on the FAIR quality of data. Machine-learning and NHE applications have to
“understand the data” in order to use it for training and engineering simulations. Metadata and
domain ontologies will enable data shareability, interoperability, and usability, and advances
in ML and NHE. For instance, BioPortal, enabled with an ontology authoring and accessing
tool Protégé, has provided researchers and interested users access to a library of biomedical
ontologies and terminologies, that, in turn, has facilitated a broad spectrum of medical research
activities (Whetzel et al., 2011). Semantic web technologies—such as RDF, OWL, SPARQL, and
other tools (see https://www.w3.org/standards/semanticweb/fordetails)—can help define,

https://github.com/microsoft/USBuildingFootprints
https://github.com/microsoft/USBuildingFootprints
https://github.com/collections/ai-model-zoos
https://www.w3.org/standards/semanticweb/ for details
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publish, link, and query data objects. Recently, knowledge graphs, a representation for capturing
data objects and their relations describing a domain or a field of study, have been proposed to
manage and to facilitate retrieval of unstructured data objects, such as video, images, audio, and
text, that do not fit neatly into the tabular structure of relational databases (Bonatti et al., 2018;
Paulheim, 2016; Reinanda et al., 2020). The traversable graph representation allows search and
access to different data objects and enables the fusion of information from different sources.
Knowledge graphs have also been shown great promise to integrate with ML (Lin et al., 2018).

Developing and managing data, models, and knowledge bases is an expensive endeavor. To
alleviate some of the burdens on individual communities or organizations, Open Knowledge
Network is one recent movement that attempts to build an open national-scale domain-agnostic
infrastructure accessible to a broad community (Baru, 2017). The open infrastructure has the
potential to drive innovation across science and engineering and allows data sharing within and
outside a specific domain such as NHE.

In summary, data is at the core of ML methods and many aspects of NHE. To enable advances
in AI/ML and NHE, the availability of large volumes of high-quality and relevant data is
essential. Using existing data and knowledge, ML methods can, at times, build models that
can help generate new (possibly labeled) data needed to train ML models and to support NHE
applications. A common open platform that can attract a broad-base community involvement
will be useful to promote collaborations and encourage the sharing of data and models. The
adoption of semantic technologies will potentially further enhance data accessibility and model
interoperability, and further facilitate the research and development as well as deployment of
AI/ML in NHE.

22.5 Summary and Discussion

Artificial intelligence and machine learning is poised to bring significant changes to scientific
research and engineering practice. Although the potential applications of AI/ML in NHE is
enormous, the field is still in its infancy. This report aims to provide a glimpse of the possibilities
of applying AI/ML technologies in NHE, to encourage collaborations between NHE and AI/ML
researchers, and to engender further research and developments in this promising field. However,
many open questions and barriers remain that may deter the pace of progress and the adoption
of the technologies in practice.

First, just like with any new technological advancement, unrealistic expectations by the
NHE researchers and practitioners about the applicability of AI/ML technologies should be
avoided. While research and exploration of AI/ML and its applications in NHE are encouraged,
their misuse and flawed developments can quickly draw disproportionate criticisms within the
NHE community and hinder advancements in the field. While statistics-based measures—such
as root-mean-square-error, precision, recall, F1 scores, mean IoU, and other metrics—are
commonly used to assess ML model accuracy, proper verification and validation of their results
based on engineering knowledge, and professional judgment remain valuable. It should be
cautioned that an accurate DL model does not necessarily imply a good model in practice
(Mignan, 2019). Furthermore, a model trained using a dataset (say, obtained in a residential
neighborhood) may not necessarily be generalized to data that differs from the training set (say,
from a commercial area), even within the same domain of interest. In other words, AI/ML does
not diminish the importance of the fundamental knowledge and professional know-how in NHE.
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Additional research is needed to develop a broad spectrum of evaluation techniques that include
standards, benchmarks, and testbeds. Most importantly, community engagement is essential to
guide and evaluate progress.

Advancements in this field require a strong and well-trained community of researchers
from both AI/ML and NHE. The demands for developing such a community entail educating
a new generation of NHE researchers and practitioners who become well-versed in AI/ML.
Researchers in NHE should acquire a knowledge of AI and ML methods and understand the
applicability of the technologies and their limitations. Synergistic and genuine collaborations
between NHE and AI/ML researchers are necessary in order to foster new and innovative
solutions as advances in AI/ML will continue to grow rapidly in years to come.

22.6 Relevant AI/ML Software

With the growing interests and importance of AI/ML in academic research and commercial
developments, universities and companies have built a number of frameworks and tools that are
now used by researchers and practitioners to build and execute AI/ML models. Both Matlab
and Mathematica, the computational tools commonly used in education settings, have ML and
DL toolboxes. Cloud service vendors, such as Amazon AWS, Google Cloud, Microsoft Azure,
IBM, Oracle, and others, all have ML platforms that support end-to-end model training and
executing (scoring) functions.

In addition to commercial platforms, examples of open ML frameworks and tools publicly
available include:

Scikit-learn
Originally developed as a Google Summer of Code project, Scikit-Learn [95] is a free software
ML library that features a collection of statistical-based ML algorithms for classification,
regression, and clustering, such as support vector machines, random forests, k-means, decision
trees, and numerous others. The library is designed to interoperate with NumPy and SciPy,
Python’s numerical and scientific libraries.

CAFFE
Originally developed at UC Berkeley, CAFFE [91] (Convolutional Architecture for Fast Feature
Embedding) is an open-source DL framework, written in C++ with a Python interface, featuring
CNN, RCNN, LSTM, and other deep neural networks and specializing in computer vision and
image classification and segmentation. It is no longer being actively developed as CAFFE2 was
merged into PyTorch in 2018.

TensorFlow
Originally developed by the Google Brain team, TensorFlow [96] is a free and open-source
software library for high-performance numerical computation and dataflow and differentiable
programming. Its flexible architecture allows for easy deployment of computation across various
platforms (CPUs, GPUs, and TPUs). TensorFlow is commonly used to develop ML applications
such as deep neural networks.
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PyTorch
Primarily developed by Facebook’s AI Research Lab, PyTorch [94] is an open-source machine
learning library (based on the Lua-Torch library) with Python and C++ interface, featuring
accelerated tensor computing onGPU and deep neural networks built on automatic differentiation
system. PyTorch also supports CAFFE2, a version of CAFFE. PyTorch has been used for
applications such as computer vision and natural language processing.

CNTK
Developed by Microsoft Research, Microsoft Cognitive Toolkit (CNTK [92]) is an open-source
toolkit for distributed DL with parallelization across multiple GPUs and servers. The CNTK
describes neural networks as a series of computational steps via a directed graph and allows users
to easily realize and combine popular model types such as feed-forward DNNs, convolutional
neural networks (CNNs), and recurrent neural networks (RNNs/LSTMs).

Theano
Developed at the University of Montreal, Theano [97] is a Python library and optimizing
compiler for manipulating and evaluating mathematical expressions efficiently on either CPU
or GPU architectures, and supports ML application developments.

Keras
Developed as part of the research project ONEIROS (Open-ended Neuro-Electronic Intelligent
Robot Operating System) at Google, Keras [93] is an open-source neural network library written
in Python. It offers a higher-level, intuitive set of abstractions that make it easy to develop
DL models regardless of the computational backend used. It is capable of running on top of
TensorFlow, Microsoft Cognitive Toolkit, R, Theano, and other platforms. Keras is supported in
Tensorflow’s core library.

Note that all of these tools are publicly available. Additionally, a large number of ML and
DL models developed using the open-source frameworks can be found at https://github.com/
collections/ai-model-zoos.

https://github.com/collections/ai-model-zoos
https://github.com/collections/ai-model-zoos


Part VI
Appendix





Appendix A
List of Software Tools

The tables in this appendix were prepared to provide an overview of a few important features of
the tools mentioned in each chapter. The presented information is meant to help researchers
compare the available tools and see which one fits their needs.

The type of license and supported platforms are based on the available descriptions and data
on each software’s website. An empty license means that the developers have not provided that
information; it does not necessarily mean that the software is freeware. Even though applications
with an open source code could often be compiled on all three platforms considered here, the
information in the tables corresponds to their availability for typical usage. That is, if there
are pre-built binaries available and typical users would download those binaries, then the
information in the tables refers to the platforms supported by those binaries.

Ticks in the DesignSafe column identify applications that are either available in theWorkspace
on the DesignSafe website or they can take advantage of DesignSafe resources by establishing a
secure remote connection to the service.

The identification of certain commercial systems and research tools in the tables does
not imply recommendation or endorsement by the SimCenter or the academic institutions of
contributing authors. Nor does such identification imply that those products are necessarily the
best available for the task.

The abbreviations used in the tables are listed in tables A.1 and A.2.
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Table A.1 Abbreviations of license names used in appendices.

Full license name

MPL 2.0 Mozilla Public License 2.0 (MPL 2.0)
LGPLv2 GNU Lesser General Public License v2 (LGPLv2)
GPL GNU General Public License (GPL)
NA NA
CeCILL-2.1 CEA CNRS Inria Logiciel Libre License, versio...
Other/Proprietary Other/Proprietary License
GPLv2+ GNU General Public License v2 or later (GPLv2+)
BSD BSD License
OSI Approved OSI Approved
LGPL GNU Library or Lesser General Public License ...
GPLv3 GNU General Public License v3 (GPLv3)
MIT MIT License
AGPLv3 GNU Affero General Public License v3 (AGPLv3)
Apache Software Apache Software License
Other Other
Free for non-commercial use Free for non-commercial use
CC-BY-NC-ND Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND)
LGPLv3 GNU Lesser General Public License v3 (LGPLv3)
Public Domain Public Domain
Free For Educational Use Free For Educational Use

Table A.2 Abbreviations of operating system names used in appendices.

Operating System

Win Windows
Mac MacOS
Lin Linux

Table A.3 Introduction

Name License Platforms Prog. Lang. DesignSafe
ADCIRC NA Mac/ Win/ Lin Fortran
BRAILS BSD Mac/ Win/ Lin Python -
EE-UQ BSD Mac/ Win/ Lin C++
GEOCLAW BSD Mac/ Win/ Lin -
HydroUQ BSD Mac/ Win/ Lin C++ -
OpenFOAM GPLv3 Mac/ Win/ Lin C/ C++ -
OpenSees 1 BSD Mac/ Win/ Lin C++
PBE 2 BSD Mac/ Win -
PELICUN BSD Mac/ Win/ Lin Python -
R2DTool BSD Mac/ Win C++
SURF BSD Mac/ Win/ Lin Python -
WE-UQ BSD Mac/ Win C++
quoFEM BSD Mac/ Win/ Lin C++
1 Finite-Element based
2 Analyze individual buildings

https://adcirc.org/
https://nheri-simcenter.github.io/BRAILS-Documentation/
https://nheri-simcenter.github.io/EE-UQ-Documentation
http://www.clawpack.org/geoclaw
https://github.com/NHERI-SimCenter/HydroUQ
https://openfoam.org
https://opensees.berkeley.edu/
https://simcenter.designsafe-ci.org/research-tools/pbe-application/
https://nheri-simcenter.github.io/pelicun/
https://nheri-simcenter.github.io/R2D-Documentation/
https://nheri-simcenter.github.io/SURF-Documentation/
https://nheri-simcenter.github.io/WE-UQ-Documentation/
https://nheri-simcenter.github.io/quoFEM-Documentation
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Table A.4 Hazards: Earthquake - Ground Shaking

Name License Platforms Prog. Lang. DesignSafe
AWP-ODC BSD Lin C -
CyberShake BSD Lin - -
EE-UQ BSD Mac/ Win/ Lin C++
EvW 7 BSD Mac/ Win C++ -
HAZ GPLv3 Win Fortran -
Hazus 4.2 1,2 - - - -
MDOF 7 BSD Mac/ Win C++ -
NSHMP-Haz Public Domain Mac/ Win/ Lin Java -
OpenQuake 3 AGPLv3 Mac/ Win/ Lin Python -
OpenSHA Apache Software Mac/ Win/ Lin Java -
OpenSees 6 BSD Mac/ Win/ Lin C++
PBE 5 BSD Mac/ Win -
PGT 7 BSD Mac/ Win C++ -
R-CRISIS Apache Software Win - -
R2DTool BSD Mac/ Win C++
S3HARK 7 BSD Mac/ Win C++ -
SW4 4 LGPLv2 Lin C++/ Fortran -
TFT 7 BSD Mac/ Win C++ -
The Broadband Platform Apache Software Lin Fortran/ Python -
smelt BSD Mac/ Win/ Lin C++ -
1 HAZUS MH only
2 Regional level
3 Regional analysis
4 Finite-Difference based
5 Analyze individual buildings
6 Finite-Element based
7 Educational Tool

http://hpgeoc.github.io/awp-odc-os/
https://scec.usc.edu/scecpedia/CyberShake
https://nheri-simcenter.github.io/EE-UQ-Documentation
https://simcenter.designsafe-ci.org/learning-tools/evw-application/
https://github.com/abrahamson/HAZ
https://simcenter.designsafe-ci.org/learning-tools/multiple-degrees-of-freedom/
https://github.com/usgs/nshmp-haz/wiki
https://www.globalquakemodel.org/openquake
https://opensha.org/
https://opensees.berkeley.edu/
https://simcenter.designsafe-ci.org/research-tools/pbe-application/
https://nheri-simcenter.github.io/PileGroupTool/
http://www.r-crisis.com/
https://nheri-simcenter.github.io/R2D-Documentation/
https://nheri-simcenter.github.io/s3hark-Documentation/
https://zenodo.org/record/1063644#.X5PqWe1lBhE
https://nheri-simcenter.github.io/TFT-Documentation/
https://strike.scec.org/scecpedia/Broadband_Platform
https://github.com/NHERI-SimCenter/smelt
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Table A.5 Hazards: Earthquake - Surface Fault Rupture

Name License Platforms Prog. Lang. DesignSafe
ABAQUS 1 Other/Proprietary Win/ Lin -
FLAC 4 Other/Proprietary Win - -
LAMMPS GPL Mac/ Win/ Lin C++ -
LIGGGHTS-PUBLIC 3 GPLv2+ Lin C++ -
LMGC90 CeCILL-2.1 Mac/ Win/ Lin - -
LS-DYNA 1 Other/Proprietary Win/ Lin -
OpenSees 1 BSD Mac/ Win/ Lin C++
PFC 3,5 Other/Proprietary Win - -
PLAXIS 1 Other/Proprietary Win - -
YADE 2 - Lin C++ -
quoFEM BSD Mac/ Win/ Lin C++
1 Finite-Element based
2 Discrete Element Method
3 Pseudostatic & dynamic analysis
4 Finite-Difference based
5 Distinct-Element Modeling Framework

Table A.6 Hazards: Earthquake - Soil Liquefaction

Name License Platforms Prog. Lang. DesignSafe
Cliq 1 Other/Proprietary Win - -
FLAC 3 Other/Proprietary Win - -
LiqIT 1 Other/Proprietary Win - -
Liquefy-Pro 1 Other/Proprietary Win - -
NovoLIQ 1 Other/Proprietary Win - -
OpenSees 2 BSD Mac/ Win/ Lin C++
PLAXIS 2 Other/Proprietary Win - -
1 Simplified methods
2 Finite-Element based
3 Finite-Difference based

Table A.7 Hazards: Earthquake - Slope Stability and Landslides

Name License Platforms Prog. Lang. DesignSafe
ABAQUS 2 Other/Proprietary Win/ Lin -
FLAC 3 Other/Proprietary Win - -
LS-DYNA 2 Other/Proprietary Win/ Lin -
OpenSees 2 BSD Mac/ Win/ Lin C++
PLAXIS 2 Other/Proprietary Win - -
SLAMMER 1 Public Domain Mac/ Win/ Lin Java -
quoFEM BSD Mac/ Win/ Lin C++
1 Newmark sliding block
2 Finite-Element based
3 Finite-Difference based

www.simulia.com
https://www.itascacg.com/software/FLAC
https://github.com/lammps
https://www.cfdem.com/
http://mimetics-engineering.fr/index.php/en/lmgc90-2/
http://www.lstc.com/
https://opensees.berkeley.edu/
https://www.itascainternational.com/software/pfc
https://www.bentley.com/en/products/brands/plaxis
https://yade-dem.org/doc/
https://nheri-simcenter.github.io/quoFEM-Documentation
https://geologismiki.gr/products/cliq/
https://www.itascacg.com/software/FLAC
https://civiltech.com/liquefypro/
https://novotechsoftware.com/geotechnical-software/soil-liquefaction-software/
https://opensees.berkeley.edu/
https://www.bentley.com/en/products/brands/plaxis
www.simulia.com
https://www.itascacg.com/software/FLAC
http://www.lstc.com/
https://opensees.berkeley.edu/
https://www.bentley.com/en/products/brands/plaxis
https://www.usgs.gov/software/slammer-seismic-landslide-movement-modeled-using-earthquake-records
https://nheri-simcenter.github.io/quoFEM-Documentation
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Table A.8 Hazards: Tropical Cyclone - Wind

Name License Platforms Prog. Lang. DesignSafe
EvW 1 BSD Mac/ Win C++ -
MDOF 1 BSD Mac/ Win C++ -
smelt BSD Mac/ Win/ Lin C++ -
1 Educational Tool

Table A.9 Hazards: Tropical Cyclone - Storm Surge

Name License Platforms Prog. Lang. DesignSafe
ADCIRC NA Mac/ Win/ Lin Fortran
CFD Notebooks 2 BSD Mac/ Win/ Lin C++
Clawpack BSD Mac/ Win/ Lin - -
Delft3D - Win/ Lin - -
FVCOM Other - - -
GEOCLAW BSD Mac/ Win/ Lin -
HydroUQ BSD Mac/ Win/ Lin C++ -
OpenFOAM GPLv3 Mac/ Win/ Lin C/ C++ -
SLOSH 1 - - - -
1 Surge hazard results available from NOAA
2 Educational Tool

https://simcenter.designsafe-ci.org/learning-tools/evw-application/
https://simcenter.designsafe-ci.org/learning-tools/multiple-degrees-of-freedom/
https://github.com/NHERI-SimCenter/smelt
https://adcirc.org/
https://github.com/NHERI-SimCenter/CFD-Notebooks
https://www.clawpack.org/
https://oss.deltares.nl/web/delft3d
http://fvcom.smast.umassd.edu/fvcom/
http://www.clawpack.org/geoclaw
https://github.com/NHERI-SimCenter/HydroUQ
https://openfoam.org
https://www.nhc.noaa.gov/surge/slosh.php
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Table A.10 Hazards: Tsunami - Inundation

Name License Platforms Prog. Lang. DesignSafe
ADCIRC NA Mac/ Win/ Lin Fortran
CFD Notebooks 1 BSD Mac/ Win/ Lin C++
GEOCLAW BSD Mac/ Win/ Lin -
HydroUQ BSD Mac/ Win/ Lin C++ -
OpenFOAM GPLv3 Mac/ Win/ Lin C/ C++ -
Tsunami-HySEA CC-BY-NC-ND - CUDA -
1 Educational Tool

Table A.11 Response: Structural Systems

Name License Platforms Prog. Lang. DesignSafe
BFM 2 BSD Mac/ Win C++ -
EE-UQ BSD Mac/ Win/ Lin C++
EvW 2 BSD Mac/ Win C++ -
FEAP 1 Other/Proprietary Mac/ Win/ Lin Fortran -
FEAPpv 1 Free for non-commercial use Mac/ Win/ Lin Fortran -
LS-DYNA 1 Other/Proprietary Win/ Lin -
MDOF 2 BSD Mac/ Win C++ -
OpenFOAM GPLv3 Mac/ Win/ Lin C/ C++ -
OpenSees 1 BSD Mac/ Win/ Lin C++
R2DTool BSD Mac/ Win C++
SWIM 2 BSD Mac/ Win C++ -
WE-UQ BSD Mac/ Win C++
quoFEM BSD Mac/ Win/ Lin C++
smelt BSD Mac/ Win/ Lin C++ -
1 Finite-Element based
2 Educational Tool

https://adcirc.org/
https://github.com/NHERI-SimCenter/CFD-Notebooks
http://www.clawpack.org/geoclaw
https://github.com/NHERI-SimCenter/HydroUQ
https://openfoam.org
https://edanya.uma.es/hysea/index.php/models/tsunami-hysea
https://simcenter.designsafe-ci.org/learning-tools/braced-frame-modeling/
https://nheri-simcenter.github.io/EE-UQ-Documentation
https://simcenter.designsafe-ci.org/learning-tools/evw-application/
http://feap.berkeley.edu/
http://projects.ce.berkeley.edu/feap/feappv/
http://www.lstc.com/
https://simcenter.designsafe-ci.org/learning-tools/multiple-degrees-of-freedom/
https://openfoam.org
https://opensees.berkeley.edu/
https://nheri-simcenter.github.io/R2D-Documentation/
https://github.com/NHERI-SimCenter/SWIM
https://nheri-simcenter.github.io/WE-UQ-Documentation/
https://nheri-simcenter.github.io/quoFEM-Documentation
https://github.com/NHERI-SimCenter/smelt
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Table A.12 Response: Geotechnical Systems

Name License Platforms Prog. Lang. DesignSafe
ABAQUS 1 Other/Proprietary Win/ Lin -
Anura3D 4 Other/Proprietary Win - -
CB-Geo-MPM MIT - C++ -
Claymore MIT Win/ Lin - -
DeepSoil 2,3 Other/Proprietary Win -
EE-UQ BSD Mac/ Win/ Lin C++
FEAP 1 Other/Proprietary Mac/ Win/ Lin Fortran -
FLAC 2 Other/Proprietary Win - -
LIGGGHTS-PUBLIC 5 GPLv2+ Lin C++ -
LS-DYNA 1 Other/Proprietary Win/ Lin -
OpenSees 1 BSD Mac/ Win/ Lin C++
PBE 7 BSD Mac/ Win -
PFC 5,6 Other/Proprietary Win - -
PGT 8 BSD Mac/ Win C++ -
PLAXIS 1 Other/Proprietary Win - -
ProShake 2,3 Other/Proprietary Win - -
Real-ESSI OSI Approved Mac/ Win/ Lin C++ -
S3HARK 8 BSD Mac/ Win C++ -
Strata GPLv3 Mac/ Win/ Lin C++ -
TFT 8 BSD Mac/ Win C++ -
Uintah 4 MIT Lin - -
quoFEM BSD Mac/ Win/ Lin C++
1 Finite-Element based
2 Finite-Difference based
3 Transfer function
4 Material point method
5 Pseudostatic & dynamic analysis
6 Distinct-Element Modeling Framework
7 Analyze individual buildings
8 Educational Tool

Table A.13 Response: Computational Fluid Dynamics - Wind

Name License Platforms Prog. Lang. DesignSafe
ANSYS Fluent Other/Proprietary Win/ Lin - -
CFD Notebooks 1 BSD Mac/ Win/ Lin C++
OpenFOAM GPLv3 Mac/ Win/ Lin C/ C++ -
Turbulent Inflow Tool BSD Mac/ Win C/ C++ -
WE-UQ BSD Mac/ Win C++
1 Educational Tool

www.simulia.com
http://www.mpm-dredge.eu/
https://www.cb-geo.com/research/mpm/
https://github.com/penn-graphics-research/claymore
http://deepsoil.cee.illinois.edu/
https://nheri-simcenter.github.io/EE-UQ-Documentation
http://feap.berkeley.edu/
https://www.itascacg.com/software/FLAC
https://www.cfdem.com/
http://www.lstc.com/
https://opensees.berkeley.edu/
https://simcenter.designsafe-ci.org/research-tools/pbe-application/
https://www.itascainternational.com/software/pfc
https://nheri-simcenter.github.io/PileGroupTool/
https://www.bentley.com/en/products/brands/plaxis
http://www.proshake.com/
http://real-essi.us/
https://nheri-simcenter.github.io/s3hark-Documentation/
https://github.com/arkottke/strata
https://nheri-simcenter.github.io/TFT-Documentation/
http://uintah.utah.edu/
https://nheri-simcenter.github.io/quoFEM-Documentation
https://www.ansys.com/products/fluids/ansys-fluent
https://github.com/NHERI-SimCenter/CFD-Notebooks
https://openfoam.org
https://nheri-simcenter.github.io/TinF-Documentation/
https://nheri-simcenter.github.io/WE-UQ-Documentation/
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Table A.14 Response: Computational Fluid Dynamics - Water

Name License Platforms Prog. Lang. DesignSafe
ADCIRC NA Mac/ Win/ Lin Fortran
ANSYS Fluent Other/Proprietary Win/ Lin - -
CFD Notebooks 1 BSD Mac/ Win/ Lin C++
COMSOL Other/Proprietary Mac/ Win/ Lin - -
GEOCLAW BSD Mac/ Win/ Lin -
H.E.L.Y.X. Other/Proprietary Win/ Lin - -
HydroUQ BSD Mac/ Win/ Lin C++ -
IHFOAM - - - -
OpenFOAM GPLv3 Mac/ Win/ Lin C/ C++ -
S.T.A.R.-C.C.M.+ Other/Proprietary - - -
SU2 LGPLv2 Mac/ Win/ Lin C++/ Fortran/ Python -
olaFlow - - C/ C++/ Python -
1 Educational Tool

Table A.15 Performance: Buildings

Name License Platforms Prog. Lang. DesignSafe
CAPRA 3,4 - Win - -
Hazus 4.2 5,3 - - - -
MAEViz - - - -
OpenQuake 6 AGPLv3 Mac/ Win/ Lin Python -
OpenSLAT GPLv3 - C++ -
PACT 1,2 - Win - -
PBE 2 BSD Mac/ Win -
PELICUN BSD Mac/ Win/ Lin Python -
R2DTool BSD Mac/ Win C++
SP3 1,2 Other/Proprietary Mac/ Win/ Lin - -
1 FEMA P58 only
2 Analyze individual buildings
3 Regional level
4 HAZUS based
5 HAZUS MH only
6 Regional analysis

Table A.16 Performance: Transportation Networks

Name License Platforms Prog. Lang. DesignSafe
Hazus 4.2 1,2 - - - -
OpenQuake 3 AGPLv3 Mac/ Win/ Lin Python -
PELICUN BSD Mac/ Win/ Lin Python -
1 HAZUS MH only
2 Regional level
3 Regional analysis

https://adcirc.org/
https://www.ansys.com/products/fluids/ansys-fluent
https://github.com/NHERI-SimCenter/CFD-Notebooks
https://www.comsol.com
http://www.clawpack.org/geoclaw
https://engys.com/products/helyx
https://github.com/NHERI-SimCenter/HydroUQ
https://ihfoam.ihcantabria.com/
https://openfoam.org
https://mdx.plm.automation.siemens.com/star-ccm-plus
https://su2code.github.io/
olaflow.github.io
https://ecapra.org/
http://mae.cee.illinois.edu/software/software_maeviz.html
https://www.globalquakemodel.org/openquake
https://github.com/openslat/SLAT
https://femap58.atcouncil.org/pact
https://simcenter.designsafe-ci.org/research-tools/pbe-application/
https://nheri-simcenter.github.io/pelicun/
https://nheri-simcenter.github.io/R2D-Documentation/
https://www.hbrisk.com/
https://www.globalquakemodel.org/openquake
https://nheri-simcenter.github.io/pelicun/
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Table A.17 Performance: Water, Sewer, and Gas Pipelines

Name License Platforms Prog. Lang. DesignSafe
EPANET 1 Public Domain - - -
GIRAFFE 1 - Win - -
PELICUN BSD Mac/ Win/ Lin Python -
WNTR 1 BSD Mac/ Win/ Lin Python -
1 Potable water network

Table A.18 Performance: Electrical Transmission Substations and Lines

Name License Platforms Prog. Lang. DesignSafe
Hazus 4.2 1,2 - - - -
MatPower BSD - Matlab -
OpenDSS 3 BSD Win/ Lin C++/ Delphi/Kylix -
1 HAZUS MH only
2 Regional level
3 Electrical networks

Table A.19 Recovery: Communities

Name License Platforms Prog. Lang. DesignSafe
DESaster GPLv3 Mac/ Win/ Lin Python -
IN-CORE MPL 2.0 - - -

https://www.epa.gov/water-research/epanet
https://nheri-simcenter.github.io/pelicun/
https://wntr.readthedocs.io/en/stable/
https://matpower.org/
https://sourceforge.net/p/electricdss/wiki/Home/
https://github.com/milessb/DESaster
http://resilience.colostate.edu/in_core.shtml


Table A.20 Recovery: Housing

Name License Platforms Prog. Lang. DesignSafe
DESaster GPLv3 Mac/ Win/ Lin Python -

Table A.21 Cross-Cutting: Uncertainty Quantification

Name License Platforms Prog. Lang. DesignSafe
COSSAN-X - - - -
Dakota LGPL Mac/ Win/ Lin -
FilterPy MIT - Python -
MIT Uncertainty Quan-
tification Library

- - - -

OpenCOSSAN LGPLv3 Mac/ Win/ Lin Matlab -
SMT BSD Mac/ Win/ Lin Python -
UQ-Pyl GPL Mac/ Win/ Lin Python -
UQLab Free For Educational Use Mac/ Win/ Lin Matlab -
UQpy MIT Mac/ Win/ Lin Python -
quoFEM BSD Mac/ Win/ Lin C++

Table A.22 Cross-Cutting: Artificial Intelligence and Machine Learning

Name License Platforms Prog. Lang. DesignSafe
CAFFE BSD Mac/ Win/ Lin C++/ Python -
CNTK MIT - C++ -
Keras Apache Software Mac/ Win/ Lin Python -
NHERI-
SimCenter/BIM2SAM.AI

- - - -

PyTorch BSD Mac/ Win/ Lin Python -
SWIM 1 BSD Mac/ Win C++ -
Scikit-Learn BSD Mac/ Win/ Lin Python -
TensorFlow Apache Software Mac/ Win/ Lin C++/ Python -
Theano BSD - Python -
1 Educational Tool

https://github.com/milessb/DESaster
http://www.cossan.co.uk/software/cossan-x.php
https://dakota.sandia.gov/
https://github.com/rlabbe/filterpy
http://muq.mit.edu/
http://muq.mit.edu/
http://www.cossan.co.uk/software/open-cossan-engine.php
https://github.com/SMTorg/smt
http://www.uq-pyl.com/
https://www.uqlab.com/
https://github.com/SURGroup/UQpy
https://nheri-simcenter.github.io/quoFEM-Documentation
https://caffe.berkeleyvision.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://keras.io/
https://doi.org/10.5281/zenodo.3509957.
https://doi.org/10.5281/zenodo.3509957.
https://pytorch.org/
https://github.com/NHERI-SimCenter/SWIM
https://scikit-learn.org
https://www.tensorflow.org/
https://github.com/Theano/Theano
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