
Global Sensitivity Analysis



• Consider a numerical model of  a structure

Motivation

2

Inputs Model Output

midspan
displacement

…

…

𝐴

𝐸

𝑓𝑦

𝑃2

• Will all the input parameters contribute to the response?

• Which input factors are more influential than others?

Failure index (0,1)



• To gain insights

• How different parameters and their interactions affect a system

Applications of  GSA
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The parameters related to the local site diminution effect (…) 
can be in general neglected; (…) temporal envelope function

parameters have a considerable contribution towards the total 
risk only for lower moment magnitudes, especially (…)

(Vetter & Taflanidis, 2011)



• To gain insights

• How different parameters and their interactions affect a system

Applications of  GSA

4

• Dimensionality reduction 

• By identifying uninfluential (redundant) factors 

• Informed decision making

• To find parameters for which new data acquisition reduces target 
uncertainty the most

• To identify most effective decision options

• Model diagnostics

• After developing a model, one may compare GSA results 
with expert knowledge



• Rate of  change (slope)

• Studies the impact of  small perturbations on the model outputs

• Evaluated at a reference point 𝑿

• One-factor-at-a-time evaluation

• Used in reliability analysis / optimization

Local Sensitivity Analysis
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𝑆𝑖
𝐷 𝑿 =

𝜕𝑔(𝑿)

𝜕𝑋𝑖

𝜕𝑔(𝑿)

𝜕𝑥𝑖

𝑥∗

e.g. structural reliability analysis

optimization



• How to explore entire variability space?

Local Sensitivity Analysis
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𝜕𝑔(𝑿)

𝜕𝑥𝑖

𝑥∗

Is the average of  gradients 
a good measure?

𝑌 = 𝑔(𝑋1, 𝑋2) = 2𝑋1 + 𝑋2

𝑋1~𝑁 0,0.52 ,𝑋2~𝑁 0,52

Among 𝑋1 and 𝑋2, which variable is more “important”? 

• Consider an example



Local Sensitivity Analysis
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𝑌 = 𝑔(𝑋1, 𝑋2) = 2𝑋1 + 𝑋2

𝑋1~𝑁 0,0.52 , 𝑋2~𝑁 0,52

𝑋2 seem to dominate 

the response

𝑌 vs. 𝑋1 𝑌 vs. 𝑋2

• But if  we inspect the scatter plots,

• If  we decide the importance by ‘partial derivative’ measure, 
𝑋1 is important 



• Sigma-normalized derivative

Local Sensitivity Analysis
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𝑆𝑖
𝑆𝐷 𝑿 =

𝜎𝑋𝑖
𝜎𝑌

𝜕𝑔(𝑿)

𝜕𝑋𝑖

𝑌 vs. 𝑋1 𝑌 vs. 𝑋2

𝑋2 is five times more important than 𝑋1



• ‘Partial derivative’ in the standard random variable domain

• When the random variables are independent, each variable can be 
transformed to the standard normal variable, 𝑍𝑖 = 𝑇(𝑋𝑖).

Local Sensitivity Analysis
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Importance vector: 

normalized gradient

𝜶 = −
∇𝐺 𝒛∗

∇𝐺 𝒛∗

Note

𝜶 = −
𝒛∗

𝛽

• Example: FORM analysis

For dependent 

variables



• Intuition behind the Sobol indices

Variance-based Sensitivity
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𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 is almost constant 

throughout different 𝑥𝑖 values
𝔼𝐱ത𝑗 Y|𝑥𝑗 depends on 𝑥𝑗

𝕍ar𝑥i 𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 is almost zero 𝕍ar𝑥𝑗 𝔼𝐱ത𝑗 Y|𝑥𝑗 is larger

Low sensitivity High sensitivity



• 𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 is a measure of  sensitivity

• The Law of  Total Variance

Variance Decomposition
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𝕍ar Y = 𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 + 𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖

Y|𝑥𝑖

Explained by 𝒙𝒊 Not explained by 𝒙𝒊

i.e. the expected reduction in 

variance that would be obtained if  

𝑥𝑖 could be fixed

𝑥𝑖

𝑌



• 𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 is a measure of  sensitivity

• The Law of  Total Variance

• Derivation

Variance Decomposition
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𝕍ar Y = 𝔼 𝑌2 − 𝔼 𝑌 2

= 𝔼𝑥𝑖 𝔼𝐱 ҧ𝑖
𝑌2|𝑥𝑖 − 𝔼𝑥𝑖 𝔼𝐱 ҧ𝑖

𝑌|𝑥𝑖
2

= 𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖
Y|𝑥𝑖 + 𝔼𝑥𝑖 𝔼𝐱 ҧ𝑖

𝑌 𝑥𝑖
2 − 𝔼𝑥𝑖 𝔼𝐱 ҧ𝑖

𝑌|𝑥𝑖
2

𝕍ar Y = 𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 + 𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖

Y|𝑥𝑖

= 𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖
Y|𝑥𝑖 + 𝔼𝐱 ҧ𝑖

𝑌 𝑥𝑖
2 − 𝔼𝑥𝑖 𝔼𝐱 ҧ𝑖

Y|𝑥𝑖
2

= 𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖
Y|𝑥𝑖 + 𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖

Y|𝑥𝑖



• 𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 is a measure of  sensitivity

• The Law of  Total Variance

Variance Decomposition
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𝕍ar Y = 𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
Y|𝑥𝑖 + 𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖

Y|𝑥𝑖

1 =
𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖

Y|𝑥𝑖

𝕍ar Y
+
𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖

Y|𝑥𝑖

𝕍ar Y

Always greater than 0

Sensitivity index
In range of  [0,1]



• The Law of  Total Variance

• Sobol Sensitivity Index

• Main-effect index, First-order index

Variance Decomposition
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1 =
𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖

Y|𝑥𝑖

𝕍ar Y
+
𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖

Y|𝑥𝑖

𝕍ar Y

𝑆𝑖 =
𝕍ar 𝔼 Y|𝑥𝑖

𝕍ar Y

𝑆𝑖 = 1 −
𝔼 𝕍ar Y|𝑥𝑖

𝕍ar Y



Second-order Sensitivity Measures
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𝑆𝑖𝑗 =
𝕍ar𝑥𝑖𝑥𝑗 𝔼𝐱 ഥ𝑖𝑗 𝑌|𝑋𝑖 , 𝑋𝑗

𝕍ar 𝑌
− 𝑆𝑖 − 𝑆𝑗

contribution 

of  𝑋𝑖

contribution 

of  𝑋𝑗

𝑆𝑖𝑗 captures the pure interaction effect

𝑆𝑖 𝑆𝑗𝑆𝑖𝑗

𝑋𝑖
𝑋𝑗

joint contribution 

of  𝑋𝑖 and 𝑋𝑗



Interaction Effect

• Interaction effect: 𝑋𝑖 vs. 𝑌 is affected by 𝑋𝑗
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𝑋𝑗
(1)

𝑋𝑗
(2)

𝑋𝑖

𝑌

𝑋𝑗
(1)

𝑋𝑗
(2)

𝑋𝑖

𝑌

𝑋𝑗
(1)

𝑋𝑗
(2)

𝑋𝑖

𝑌

No interaction Interaction between 𝑋𝑖 and 𝑋𝑗

𝑔𝐴 𝑋1, 𝑋2 = 3𝑋1
3 + log 𝑋2

𝑔𝐵 𝑋1, 𝑋2 = 3𝑋1
3 + log 𝑋2 + 𝑋1𝑋2

No interaction 

Interaction between 𝑋1 and 𝑋2

𝑆𝑖𝑗 = 0

𝑆12 = 0

𝑆𝑖𝑗 > 0

𝑆12 > 0

• Nonadditive terms create the interaction



Higher-order Sensitivity Indices

When random variables are independent below holds

Consider an example
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𝑌 = 𝑔(𝑋1, 𝑋2, 𝑋3)

𝑆1

𝑆2

𝑆3𝑆12

𝑆13

𝑆23

𝑆123

1 =

𝑖

𝑆𝑖 +

𝑖<𝑗

𝑆𝑖𝑗 + …+ 𝑆1,2,…,𝑑

𝑋1

𝑋2

𝑋3

=1



Total-effect Index
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𝑆𝑖
𝑇 = 1 −

𝕍ar𝑿 ҧ𝑖
𝔼𝑥𝑖 𝑌|𝑿 ҧ𝑖

𝕍ar 𝑌

Conditioning on all 

variables but 𝑋𝑖

𝑆𝑖
𝑇 accounts for all the interaction 

effects associated with a variable 𝑋𝑖



Total-effect Index

• For example, consider a function
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𝑌 = 𝑔(𝑋1, 𝑋2, 𝑋3)

𝑆1
𝑇 = 1 − 𝑆23 − 𝑆2 − 𝑆3

𝑆1

𝑆2

𝑆3𝑆12

𝑆13

𝑆23

𝑆123

𝑋1

𝑋2

𝑋3
𝑆1
𝑇 = 𝑆1 + 𝑆12 + 𝑆13 + 𝑆123

When the variables are independent

Total index

Main index

Total-effect index for 𝑋1 is 



Analysis of  Variance (ANOVA) Decomposition

Consider uncorrelated 𝑿 distributed within a unit hyper-cube
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𝑌 = 𝑔(𝑿)

The function can be expanded as

𝑌 = 𝑔0 +

𝑖

𝑔𝑖 𝑋𝑖 +

𝑖<𝑗

𝑔𝑖𝑗 𝑋𝑖 , 𝑋𝑗 + 𝑔12,..,𝑑 𝑋1,𝑋2,… ,𝑋𝑑

This formula is called ANOVA representation if

න
0

1

𝑔𝒖 𝑿𝒖 𝑑𝑥𝑘 = 0, 𝑘 ∈ 𝒖

for any 𝒖 ⊆ {1,2,… , 𝑑}. 

න
0

1

𝑔𝑖𝑗 𝑋𝑖 , 𝑋𝑗 𝑑𝑋𝑖 = 0 න
0

1

𝑔𝑖𝑗 𝑋𝑖 , 𝑋𝑗 𝑑𝑋𝑗 = 0and

For example, 









Analysis of  Variance (ANOVA) Decomposition
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𝑌 = 𝑔0 +

𝑖

𝑔𝑖 𝑋𝑖 +

𝑖<𝑗

𝑔𝑖𝑗 𝑋𝑖 , 𝑋𝑗 + 𝑔12,..,𝑑 𝑋1,𝑋2,… ,𝑋𝑑

Taking 𝑉𝑎𝑟[∙] on both sides

𝕍ar 𝑌 = 𝑉 =

𝑖

𝑉𝑖 +

𝑖<𝑗

𝑉𝑖𝑗 + …+ 𝑉12..𝑑

The proportion of  variance attributed to 𝑋𝑖

1 =

𝑖

𝑉𝑖
𝑉
+

𝑖<𝑗

𝑉𝑖𝑗
𝑉
+ …+

𝑉12..𝑑
𝑉

why?Equivalent to Sobol index



Analysis of  Variance (ANOVA) Decomposition
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𝑌 = 𝑔0 +

𝑖

𝑔𝑖 𝑋𝑖 +

𝑖<𝑗

𝑔𝑖𝑗 𝑋𝑖 , 𝑋𝑗 + 𝑔12,..,𝑑 𝑋1,𝑋2,… ,𝑋𝑑

𝔼[∙] on both sides , i.e. integrate over 𝑿

=0

𝔼 𝑌 = 𝑔0

𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖 = 𝑔0 + 𝑔𝑖 𝑋𝑖

𝔼[∙ |𝑿𝒖] on both sides, i.e. integrate over all but 𝒖 ⊆ 1,2,… , 𝑑

𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖 , 𝑋𝑗 = 𝑔0 + 𝑔𝑖 𝑋𝑖 +𝑔𝑗 𝑋𝑗 + 𝑔𝑖𝑗 𝑋𝑖 , 𝑋𝑗

… .



Analysis of  Variance (ANOVA) Decomposition
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𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖 = 𝑔0 + 𝑔𝑖 𝑋𝑖

𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖 , 𝑋𝑗 = 𝑔0 + 𝑔𝑖 𝑋𝑖 +𝑔𝑗 𝑋𝑗 + 𝑔𝑖𝑗 𝑋𝑖 , 𝑋𝑗

… .

𝕍ar𝑥𝑖[𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖 ] = 𝑉𝑖

… .

𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖 , 𝑋𝑗 = 𝑉𝑖 + 𝑉𝑗 + 𝑉𝑖𝑗

𝑆𝑖 𝑆𝑗𝑆𝑖𝑗

𝑋𝑖
𝑋𝑗

𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖

𝕍ar[𝑌]
=

𝑉𝑖

𝑉
= 𝑆𝑖

… .

𝕍ar𝑥𝑖 𝔼𝐱 ҧ𝑖
𝑌 𝑋𝑖 , 𝑋𝑗

𝕍ar[𝑌]
=

𝑉𝑖

𝑉
+

𝑉𝑗

𝑉
+

𝑉𝑖𝑗

𝑉
= 𝑆𝑖 + 𝑆𝑗 + 𝑆𝑖𝑗



ANOVA vs. The Law of  Total Variance
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𝕍ar 𝑌 = 𝑉1 +

𝑖=2

𝑑

𝑉𝑖 +

𝑖<𝑗

𝑉𝑖𝑗 + …+ 𝑉12..𝑑

ANOVA

Consider 𝑋1,

= 𝕍ar𝑥i 𝔼𝐱 ҧ𝑖
Y|𝑋1

The Law of  Total Variance

𝕍ar Y = 𝕍ar𝑥i 𝔼𝐱 ҧ𝑖
Y|𝑋1 + 𝔼𝑥𝑖 𝕍ar𝐱 ҧ𝑖

Y|𝑋1



Remarks

• When variables are correlated
• The Law of  Total Variance does not require the assumption of  independence

• Intuitive interpretation still holds

• ANOVA requires the assumption of  independence
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1 >

𝑖

𝑆𝑖 +

𝑖<𝑗

𝑆𝑖𝑗 + …+ 𝑆1,2,…,𝑑



Remarks

• When 𝑿 are independent random variables, the sensitivity indices are 
invariant to any one-on-one transformation of  input 𝑍𝑖 = 𝑇𝑖(𝑋𝑖)
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𝑋1

𝑋2

𝑋3

𝑋4

𝑍1
𝑍2

𝑍3

𝑍4

𝑍𝑖 = 𝑇𝑖(𝑋𝑖)

One-on-one 

transform

𝑌 = 𝑔(𝑋) 𝑌 ෨𝑌 = 𝑎𝑌 + 𝑏

Linear 

transform

• The sensitivity indices are invariant to the linear transform of  output
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Special case – Linear model 𝑔(𝒙)

• For a linear model, below are equivalent
• Sigma-normalized derivative

• Linear regression coefficients

• Variance-based sensitivity indices

• Example – FORM limit state surface
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𝐺𝐹𝑂𝑅𝑀 𝒛 = ∇𝐺 𝒛∗ 𝒛 − 𝒛∗

𝕍ar[𝑌𝐹𝑂𝑅𝑀] = ∇𝐺 𝒛∗ 2

𝔼 𝑌𝐹𝑂𝑅𝑀 𝑧𝑖] =
𝜕𝐺 𝒛∗

𝜕𝑧𝑖
𝑧𝑖

=
𝜕𝐺 𝒛∗

𝜕𝑧1
𝑧1 − 𝑧1

∗ +⋯+
𝜕𝐺 𝒛∗

𝜕𝑧𝑑
𝑧𝑑 − 𝑧𝑑

∗

𝕍ar[𝔼 𝑌𝐹𝑂𝑅𝑀 𝑧𝑖]] =
𝜕𝐺 𝒛∗

𝜕𝑧𝑖

2

𝑆𝑖 =
𝕍ar[𝔼 𝑌𝐹𝑂𝑅𝑀 𝑧𝑖]]

𝕍ar 𝑌𝐹𝑂𝑅𝑀
= 𝛼2
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Algorithms: (1) Monte Carlo Estimation

Requires two-fold integration for “variance” and “mean” operation

𝑆𝑖 =
𝕍ar𝑥𝑖 𝔼𝒙 ҧ𝑖

Y|𝑥𝑖

𝕍ar Y
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For n=1:N

end

sample 𝑥𝑖
(𝑛)

𝐸 𝑛 = 𝔼𝒙 ҧ𝑖
Y|𝑥𝑖

(𝑛)
≃
1

𝑁


𝑚=1

𝑁

𝑦 𝑚,𝑛

𝕍ar𝑥𝑖 𝔼𝒙 ҧ𝑖
Y|𝑥𝑖 ≃ sample variance of 𝐸 𝑛

For m=1:N

end

sample 𝒙 ҧ𝑖
(𝑚)

simulate 𝑦 𝑚,𝑛 = 𝑔 𝑥𝑖
(𝑛)
, 𝒙 ҧ𝑖

(𝑚)



Algorithms: (2) Smart Monte Carlo

• Start with two random N sample set
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𝐴 𝒙 𝟏

𝒙(𝟐)

𝒙(𝑵) 𝑦 N

…

𝑦(1)

𝑦(2)

… …

𝒙(𝟏)

𝒙(𝟐)

𝒙(𝑵) 𝑦 N

𝑦(1)

𝑦(2)

…

𝐵

𝐴𝐵1 𝑥1
1

…

𝑥2
1

𝑥𝐷
1…

…

ො𝑦 1

…

• Designed sample set to estimate Sobol indices of  𝑋1

xi

Y

Case 1

Designed resampling

to evaluate Si

xj

Y

Case 2

Designed resampling 

to evaluate Sj

Sampling



Algorithms: (2) Smart Monte Carlo
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Saltelli, 2009



•N-MCS samples are required - existing samples can be used!

Algorithms: (3) Probability model-based GSA
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𝑁 𝑥1 𝑥2 𝑥𝐷 𝑦… 𝑥𝑖 …

• Estimate 𝔼[Y|𝑋𝑖] from GMM 𝑓 X𝑖 , 𝑌

• Repeat for different 𝑋𝑖
(𝑛)

samples to get 
sample variance

𝕍ar𝑥𝑖 𝔼 𝒙𝑖 ҧ
Y|𝑋𝑖

(𝑛)

• Approximate joint distribution of  𝑓 𝑋𝑖, 𝑌
using a Gaussian mixture model (GMM)

Estimation algorithm



For Thursday class (4/21)

• quoFEM: https://simcenter.designsafe-ci.org/research-tools/quofem-application/

• DesignSafe: https://www.designsafe-ci.org/account/register/
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Bring laptop
Download 

quoFEM

Register for a 

DesignSafe Account



Variance-based Reliability Sensitivity Analysis

• Reliability-oriented sensitivity analysis

• Quantity of  interest:

• 𝐸 𝑞 = 𝐸 𝟙 𝐺 𝑿 = 𝑃𝑓

• 𝑉𝑎𝑟 𝑞 = 𝑉𝑎𝑟 𝟙 𝐺 𝑿 = 𝑃𝑓 1 − 𝑃𝑓
38

𝑞 = 𝟙 𝐺 𝑿 = ቊ
1 𝐺 𝑿 ≤ 0
0 𝐺 𝑿 > 0

Bernoulli



Reformulation of  Sobol index

• Main Sobol index
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𝑆𝑖 =
𝕍ar𝑋𝑖 𝔼𝑿 ҧ𝑖

𝑞|𝑋𝑖

𝕍ar 𝑞
=
𝕍ar𝑋𝑖 𝔼𝑿 ҧ𝑖

𝑞|𝑋𝑖

𝑃𝑓 1 − 𝑃𝑓

𝔼𝒙 ҧ𝑖
𝑞|𝑋𝑖 = 𝑃𝑓|𝑋𝑖

𝕍ar𝑋𝑖 𝔼𝒙 ҧ𝑖
𝑞|𝑋𝑖 = 𝕍ar𝑋𝑖 𝑃𝑓|𝑋𝑖

= 𝔼𝑋𝑖 𝑃𝑓|𝑋𝑖
2 − 𝔼𝑋𝑖 𝔼𝑿 ҧ𝑖

𝑃𝑓|𝑋𝑖
2

= 𝔼𝑋𝑖 𝑃𝑓|𝑋𝑖
2 − 𝑃𝑓

2

𝑆𝑖 =
𝕍ar𝑋𝑖 𝔼𝑿 ҧ𝑖

𝑞|𝑋𝑖

𝑃𝑓 1 − 𝑃𝑓
=
𝔼𝑋𝑖 𝑃𝑓|𝑋𝑖

2 − 𝑃𝑓
2

𝑃𝑓 1 − 𝑃𝑓

• Similarly,



Reformulation of  Sobol index
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𝑆𝑖 =
𝔼𝑋𝑖 𝑃𝑓|𝑋𝑖

2 − 𝑃𝑓
2

𝑃𝑓 1 − 𝑃𝑓

- 𝑃𝑓 is the solution of  reliability analysis

- How about 𝑃𝑓|𝑋𝑖?

1. Sobol indices as “by-product” of  reliability analysis

• After FORM reliability analysis

• After sampling-based reliability analysis

2. Get Sobol indices “before” running reliability analysis

• Probability model-based GSA

Two different combination of Reliability Analysis and Variance 
Based Sensitivity analysis:



Review of  FORM - 𝛽 and 𝜶



FORM and Variance-based Sensitivity Analysis
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• FORM limit state

𝐺𝐹𝑂𝑅𝑀 𝒛 = ∇𝐺 𝒛∗ 𝒛 − 𝒛∗

𝐺𝐹𝑂𝑅𝑀 𝒛 = 𝛽 − 𝜶𝒛

𝑃𝑓 = ℙ 𝜶𝒁 ≥ 𝛽 = ℙ 𝛼1𝑍1 + 𝛼2𝑍2 +⋯+ 𝛼𝑑𝑍𝑑 ≥ 𝛽 = ℙ ෨𝑍 ≥ 𝛽 = Φ −𝛽

Goal: to derive 𝑺𝒊 in terms of  𝜶𝒊 and 𝜷

or

Standard normal



FORM and Variance-based Sensitivity Analysis
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𝑃𝑓|𝑍𝑖 = ℙ 𝜶 ǁ𝑖𝒁 ǁ𝑖 ≥ 𝛽 − 𝛼𝑖𝑧𝑖 = ℙ ෨𝑍 ≥
𝛽 − 𝛼𝑖𝑧𝑖

𝜶 ҧ𝑖
= Φ −

𝛽 − 𝛼𝑖𝑧𝑖
𝜶 ҧ𝑖

Goal: to derive 𝑺𝒊 in terms of  𝜶 and 𝜷

𝑃𝑓 = ℙ 𝜶𝒁 ≥ 𝛽 = ℙ 𝛼1𝑍1 + 𝛼2𝑍2 +⋯+ 𝛼𝑑𝑍𝑑 ≥ 𝛽 = ℙ ෨𝑍 ≥ 𝛽 = Φ −𝛽



FORM and Variance-based Sensitivity Analysis
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𝔼𝑧𝑖 𝑃𝑓|𝑍𝑖
2 = 𝔼𝑧𝑖 𝑃𝑓|𝑧𝑖𝑃𝑓|𝑧𝑖

= 𝔼𝑧𝑖 ℙ𝒛
෨𝑍1 ≤

𝛼𝑖𝑧𝑖 − 𝛽

𝜶 ҧ𝑖
ℙ𝒛

෨𝑍2 ≤
𝛼𝑖𝑧𝑖 − 𝛽

𝜶 ҧ𝑖

= 𝔼𝑧𝑖 ℙ𝒛
෨𝑍1 ≤

𝛼𝑖𝑧𝑖 − 𝛽

𝜶 ҧ𝑖
∩ ෨𝑍2 ≤

𝛼𝑖𝑧𝑖 − 𝛽

𝜶 ҧ𝑖

= ℙ𝑧𝑖,𝒛
෨𝑍1 ≤

𝛼𝑖𝑍𝑖 − 𝛽

𝜶 ҧ𝑖
∩ ෨𝑍2 ≤

𝛼𝑖𝑍𝑖 − 𝛽

𝜶 ҧ𝑖

෨𝑌1 = ෨𝑍1 𝜶 ҧ𝑖 − 𝛼𝑖𝑍𝑖

෨𝑌2 = ෨𝑍2 𝜶 ҧ𝑖 − 𝛼𝑖𝑍𝑖

෨𝑌1~𝑁 0,1 2

෨𝑌2~𝑁 0,1 2 corr ෨𝑌1, ෨𝑌2 = 𝛼𝑖
2

= ℙ ෨𝑌1 ≤ −𝛽 ∩ ෨𝑌2 ≤ −𝛽 = Φ2 −𝛽,−𝛽; 𝛼𝑖
2

= 𝔼𝑧𝑖 Φ
𝛼𝑖𝑧𝑖 − 𝛽

𝜶 ҧ𝑖
Φ

𝛼𝑖𝑧𝑖 − 𝛽

𝜶 ҧ𝑖



FORM and Variance-based Sensitivity Analysis
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𝑆𝑖 =
𝔼𝑍𝑖 𝑃𝑓|𝑍𝑖

2 − 𝑃𝑓
2

𝑃𝑓 1 − 𝑃𝑓
=
Φ2 −𝛽,−𝛽; 𝛼𝑖

2 − 𝑃𝑓
2

𝑃𝑓 1 − 𝑃𝑓
=

1

𝑃𝑓 1 − 𝑃𝑓
න
0

𝛼𝑖
2

𝜑2 −𝛽,−𝛽; 𝑟 𝑑𝑟

𝑆𝑖
𝑇 = 1 −

𝔼𝒁 ҧ𝑖
𝑃𝑓|𝒁 ҧ𝑖

2 − 𝑃𝑓
2

𝑃𝑓 1 − 𝑃𝑓
= 1 −

Φ2 −𝛽,−𝛽; 𝜶 ҧ𝑖
2 − 𝑃𝑓

2

𝑃𝑓 1 − 𝑃𝑓

=
1

𝑃𝑓 1 − 𝑃𝑓
න
1−𝛼𝑖

2

1

𝜑2 −𝛽,−𝛽; 𝑟 𝑑𝑟

• Main-effect Sobol index

• Total-effect Sobol index
Eq. (32) in here

https://www.sciencedirect.com/science/article/pii/S0951832021000612


Example with two Random Variables
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FORM and Variance-based Sensitivity Analysis
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(Papaioannou and Straub, 2021)



Sampling-based Reliability Analysis and 𝑆𝑖

48



Sampling-based Reliability Analysis and 𝑆𝑖
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• Again, reformulation of  Sobol index

𝑃𝑓|𝑋𝑖 = ℙ ℱ 𝑋𝑖

=
ℙ 𝑋𝑖 ℱ ℙ ℱ

ℙ 𝑋𝑖

=
𝑓𝑋𝑖|ℱ 𝑋𝑖 𝑑𝑋𝑖𝑃𝑓

𝑓 𝑋𝑖 𝑑𝑋𝑖

=
𝑓𝑋𝑖|ℱ 𝑋𝑖 𝑃𝑓

𝑓 𝑋𝑖

Optimal Density

Choi and Song 2017

Near-optimal Density



Sampling-based Reliability Analysis and 𝑆𝑖
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• Approximation of  𝑓𝑋𝑖|ℱ 𝑋𝑖 using kernel density estimation or 

cross entropy-based distribution fitting

Kernel density estimation

Mixture distribution fitting

• Estimation of  total-effect index is more challenging



Sensitivity Analysis before Reliability Analysis

• Probability model-based approach

51

𝑁 𝑥1 𝑥2 𝑥𝐷 𝑦… 𝑥𝑖 … • Approximate joint distribution of  𝑓 𝑋𝑖, 𝑌
using a Gaussian mixture model (GMM)

𝑃𝑓|𝑋𝑖 = P Y ≤ 0 𝑋𝑖 =
𝑓 𝑋𝑖 , 𝑌 ≤ 0

𝑓(𝑋𝑖)

𝑓 𝑋𝑖 , 𝑌 ≤ 0 = න
−∞

0

𝑓𝑋𝑖,𝑌 𝑋𝑖 , 𝑌 𝑑𝑌

𝑓 𝑋𝑖 = න
−∞

∞

𝑓𝑋𝑖,𝑌 𝑋𝑖 , 𝑌 𝑑𝑌

• Let us define

𝑌 = 𝐺 𝐗

• The mixture model “extrapolates” the samples
→ Not accurate for rare events



Toy Example
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N=500

N=2000



Truss Model
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𝒙 − 𝒔𝒑𝒂𝒄𝒆

𝒖 − 𝒔𝒑𝒂𝒄𝒆

𝑥1, 𝑥2: load1 (𝑃1) and load2 (𝑃1) with (correlation 0.6)

𝑥3~𝑥27: strength of  each member, lognormal

𝑔 𝑥 = min
𝑘=1,… ,25

𝜎𝑘
thr − 𝜎𝑘 𝑃1, 𝑃2

Output variable: limit state function

Input variables



Examples 

• Structural model: Shear building (Opensees)
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2

3

4

5

6

7wR

w

w

w

w

w Steel 02 Material

Name Mean C.O.V

w 100 0.1

wR 50 0.1

k 326 0.1

Fy 50 0.1

alpha 0.2 0.1

factor (PGA) 0.1 0.1

• Input parameters

Rinaldi

near-field

• Excitation



Nonlinear behavior

• Hysteresis curves for Rinaldi UQ
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2

3

4

5

6

7w
R

w

w

w

w

w



Examples
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node2 disp

node2 acc

node7 disp

node7 acc



Examples: Parameter selection in FE model updating

57

“(…) Parameters 3, 6, 7, 8, 
13, and 14 should be 
excluded from the 
parameter candidates 
because they have little 
influence over the 
objective function.”

Wan, H.P. and Ren, W.X., 2015. Parameter selection in finite-element-model updating by global sensitivity analysis using Gaussian 

process metamodel. Journal of  Structural Engineering, 141(6), p.04014164.

GSA is performed for 15 parameters



Examples: 
Reducing the complexity of  multi-objective optimization

Multi-objective Water Distribution System Optimization

58

Fu, G., Kapelan, Z. and Reed, P., 2012. Reducing the complexity of  multiobjective water distribution system optimization 

through global sensitivity analysis. Journal of  Water Resources Planning and Management, 138(3), pp.196-207.

• 21 pipes in a system

• 16 Retrofitting options of  each pipe :

- 15 available diameters ranging 0.914 - 5.182 m 

- Do nothing

• Conflicting objectives:

- Cost: capital cost (pipes, tanks, and pumps) + 
operating cost during a design period

- Performance: 
eg. surplus power energy per unit weight

New York Tunnels 

Rehabilitation

(21 components)

Goal: Maximize the performance, minimize the cost



Examples: Multi-objective Water Distribution 
System Optimization

59

Best Pareto fronts

Simplified 

Problem 

Preconditioned 

optimization

Fu, G., Kapelan, Z. and Reed, P., 2012. Reducing the complexity of  multiobjective water distribution system optimization 

through global sensitivity analysis. Journal of  Water Resources Planning and Management, 138(3), pp.196-207.

Convergence rate

0

First-order and total-order indices

Critical 

componen

ts


