
NHERI SIMCENTER PROGRAMMING
BOOTCAMP

JULY 30 THROUGH AUGUST 3, 2018, AT UC BERKELEY’S RICHMOND
FIELD STATION

GUI Development

OUTLINE

¢ GUI Design Fundamentals

¢ The Qt Framework

¢ Common Data Types/Classes

¢ Building the UI

¢ Layout Management

¢ Signals and Slots

¢ Model –View – Controller Concept

¢ Helper Widgets

¢ Quite a few Exercise Sessions

GUI FUNDAMENTALS

¢ What is a WINDOW?

GUI FUNDAMENTALS

¢ What is a WINDOW?

¢ �A rectangular area on your screen�

¢ �Any rectangular area on your screen�

} Arbitrary sequence of execution

} May change shape/size

} May be (partially) covered

} Can be active or inactive

GUI FUNDAMENTALS

Characteristics of an Application with a GUI

DESIGNING AN APPLICATION

1. CLOSE YOUR LAPTOP/WALK AWAY FROM YOUR COMPUTER !

2. Define target requirements – write them down !
¢ Basic functionality

¢ Available/required input

¢ Desired outcome/output

3. Develop User Interface (UI)
1. Sketch on paper/whiteboard/napkin/BART ticket/etc.

2. Redo a few times till you like it; Draw a large sketch of the final version

3. Identify all objects by type and functionality

4. Play use-scenarios on paper

5. Update your design as needed

DESIGNING AN APPLICATION

¢ On the way to
Version 0.1 of the PileGroupTool

¢ First idea

¢ Rough sketch of elements and layout

DESIGNING AN APPLICATION

¢ Version 0.1 of PileGroupTool

¢ Layout of groups / Widgets

¢ Initial definitions

DESIGNING AN APPLICATION

¢ Version 0.1 of
PileGroupTool

¢ Identifying
individual
elements

¢ Define type

¢ Define
functionality /
actions if
clicked/changed/
…

DESIGNING AN APPLICATION

EXERCISE #1: GUI DESIGN

¢ Design a UI for an application that collects a person’s information

¢ First and last name

¢ Address, city, state, ZIP

¢ Date of birth

¢ Create a table listing each element

¢ Share with neighbor, discuss options, revise your design as appears useful

ID Type Action Widget notes

1 Text input none ??? Check for
valid name?

2

QT FRAMEWORK

What is Qt?
¢ A framework to

¢ Create platform-independent applications

¢ Desktop: Windows, Mac, Linux

¢ Mobile devices: iOS, Android

¢ Cars, Medical devices, …

¢ Provide a large number of very useful data representation classes

¢ IT IS NOT FREE !!!!

¢ Free for OpenSource

¢ Free for personal use

¢ QString

#include <Qstring.h>

QString mString;

¢ A smart string object

¢ No worries about ‘\0’ (which is a pain even for experienced C-programmers, honestly)

¢ Has formatting tools

mString = “this is process {} of {}”;

mString.arg(proc).arg(numProcs);

¢ Has Unicode support (Asian fonts, European fonts)

COMMON DATA CLASSES

COMMON DATA CLASSES

¢ QVector<TYPE>

¢ QVector<double> array1;

¢ QVector<double> *array2 = new QVector<double>();

¢ QVector<QVector<double> *> array3;

¢ array1.append(42.0);

¢ int n = array2->size();

¢ double x = array1[2]; array1[1] = array1[2]; array1[1] = x;

¢ array3[2] = new QVector<double>();

COMMON DATA CLASSES

#include <iostream.h>
#include <Qstring.h>
#include <QStringList.h>

foreach (QString s, stringList1) {
// do something with string s
std::cout << s << std::endl;

}

¢ QList<TYPE>

¢ QList<QString> stringList1;

¢ QStringList stringList2;

¢ Looping made simple:

BUILDING THE GUI

¢ Option #1:

¢ Directly in code

¢ Check out http://zetcode.com/gui/qt5/ (THESE GUYS ROCK !)

¢ Option #2:

¢ Using Qt Designer (built into Qt Creator)

¢ Let’s switch and build your app together (Live Demo)

http://zetcode.com/gui/qt5/

DEVELOPER TOOL FOR QT

¢ Qt Creator

STARTING A NEW PROJECT

STARTING A NEW PROJECT

STARTING A NEW PROJECT

STARTING A NEW PROJECT

STARTING A NEW PROJECT

STARTING A NEW PROJECT

STARTING A NEW PROJECT

STARTING A NEW PROJECT

Step #1 Step #2

Step #1: only needed if UI
changed

STARTING A NEW PROJECT

¢ RUN !

EXERCISE #2: CREATING YOUR GUI

¢ Let’s return to your GUI design from Exercise #1

1. Create a new Qt Widget Application project using Qt Creator

2. Open Forms => MainWindow.ui

3. Create your GUI as close to your design as possible

4. Go through all the objects and assign them a more descriptive name like:

v TB_firstName

v CB_theState

v Etc.

5. Run qmake, build the app, and run it

This one should be surprisingly easy J

OBJECTS
Q

Fr
am

e
*f

ra
m

e
=

ne
w

 Q
fr

am
e(

);

Q
w

id
ge

t(
fr

am
e)

Q
fr

am
e

*f
ra

m
e2

=
ne

w
 Q

fr
am

e(
fr

am
e)

;

pos=(x,y), size=(dx,dy)

pos=(x,y), size=(dx,dy)

pos=(x,y),
size=(dx,dy)

A SIMPLE APPLICATION

LAYOUT MANAGEMENT
Q

Fr
am

e
*f

ra
m

e
=

ne
w

 Q
fr

am
e(

);

Q
w

id
ge

t(
fr

am
e)

Q
fr

am
e

*f
ra

m
e2

=
ne

w
 Q

fr
am

e(
fr

am
e)

;

pos=(x,y), size=(dx,dy)

pos=(x,y), size=(dx,dy)

pos=(x,y),
size=(dx,dy)

1

1

2

:

A SIMPLE APPLICATION USING LAYOUTS

LAYOUT MANAGEMENT
Q

Fr
am

e
*f

ra
m

e
=

ne
w

 Q
fr

am
e(

);

Q
w

id
ge

t(
fr

am
e)

Q
fr

am
e

*f
ra

m
e2

=
ne

w
 Q

fr
am

e(
fr

am
e)

;

pos=(x,y), size=(dx,dy)

pos=(x,y), size=(dx,dy)

pos=(x,y),
size=(dx,dy)

1

1

2

:
1

1

A SIMPLE APPLICATION USING MULTIPLE
LAYOUT OBJECTS

EXERCISE #3A: LAYOUTS

frame1

frame3

frame2

frame4

2

1

1

4

53

EXERCISE #3B: IN CASE THE ORIGINAL PROBLEM WAS TOO SIMPLE

panel1

panel3

panel2 panel4

panel5 panel6

2

1

2 33

33

EXERCISE #4: CREATING YOUR GUI

¢ Let’s return to your GUI design from Exercise #2

1. BEFORE doing anything, think about layout for your app.

Ø How do you want each field to line up?

Ø How shall each field grow relative to each other?

Ø How can you achieve that with the least of layouts?

2. Move on and implement your layout

1. Select container object

2. Right-click and select layout

3. Choose the desired layout

This one is usually harder but VERY IMPORTANT

¢ Create the graphics
¢ Instance of QMainWindow
¢ Add child widgets

¢ QFrame
¢ QPushButton
¢ etc.

¢ Emit signals for events
¢ Connect signals to slots
¢ Run the Event loop

SIGNALS AND SLOTS

How does a GUI work?

SIGNALS AND SLOTS

QObject2

QObject6

QObject5

QObject4

QObject3

QObject2

QObject4

QObject1QObject1

OPTION 1: OVERLOADING DEFAULT SLOTS

¢ Each Widget emits signals on specific
events

¢ Each widget has a unique name

¢ Example:

Ø Widget name: run_button

¢ Event clicked connects to default
slot:

Ø on_run_button_clicked()

Ø You can overload that slot in your
application

¢ Implementation made easy:

Ø Qt Creator

o Right click => go to slot => clicked

OPTION 2: CREATING YOUR OWN SLOTS

// app.h: definition
…
class MyClass {
…
private slots:

void react_to_button_clicked();
}

// app.cpp: constructor

void MyApp::MyApp(Qobject *parent = 0) {
….
// connect signal to slot
connect(ui->myButton, SIGNAL(on_myButton_clicked()),

this, SLOT(react_to_button_clicked()));
}

// app.cpp: implementation

void MyApp::react_to_button_clicked() {
// your response to button clicked

}

pointer to source

slot/callback function

Signal function

pointer to receipient

OPTION 2: CREATING YOUR OWN SLOTS

DEBUGGING WITH SIGNALS AND SLOTS

¢ Clean way

1. Set breakpoints at entries to slot implementation(s)

2. Start (“run”) application

3. Don’t stop at first occurrence but continue till app accepts new user input.

¢ Brute-force method:

¢ Write debug output at start of slot implementation(s)

#include <QDebug.h>

void MyClass::MySlot(int arg1) {
qDebug() << “Entering MySlot”;
// your code here

}

EXERCISE #5: ADDING CALLBACK FUNCTIONS

¢ Let’s add some functionality to your GUI

1. Create a class method (function) that collects the information from the UI and
stores it in a private structure like this one:

2. Create a slot that writes out a formatted address label

3. Create a button (if you don’t have one yet) labeled “Print Address Label”

4. Connect this button’s clicked signal to your slot

5. Qmake => build => run

typedef struct {
QString firstName;
QString lastName;
…

} DATA;

DESIGN CONSIDERATIONS

¢ VIEW – CONTROLLER – DATA model

¢ VIEW

¢ Visual parts, display classes

¢ CONTROLLER

¢ Registers user requests

¢ Manages actions in analysis models

¢ Controls flow of data

¢ DATA

¢ All kinds: text, floats, arrays, class objects, …

This is the image of your app

This represents the smarts of
your app

This is what only Excel users
care to look at

MODEL –VIEW CONCEPT

¢ QAbstractItemView

¢ QTreeView

¢ QTableView

¢ QListView

¢ QAbstractItemModel

¢ QAbstractItem

¢ Connecting data and view:

The Display Widget

The data to be displayed

QTreeView mView;

QAbstractItemModel *model = new QAbstractItemModel();

mView.setModel(model); Note: this is just a pointer
to the model, NOT a copy.

USEFUL HELPER WIDGETS

¢ QDialog

¢ QFileDialog

¢ QMessageDialog

¢ QColorDialog

¢ QFontDialog

¢ …

¢ QDir … all the help you need dealing with paths across different platforms

¢ QDateTime … dealing with time formats, date formats, calculating number of
days, elapsed time, time zones

EXERCISE #6: CREATE A NICE ADDRESS LABEL

1. Update your slot for create_label_button_clicked() (or add another one) such
that is

¢ Pops open a dialog showing a nicely formatted address label in a QTextBrowser widget

