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ABSTRACT

Bunting, Gregory B. PhD, Purdue University, August 2016. Parallel Real-Time
Hybrid Simulation of Structures Using Multi-Scale Models . Major Professor: Arun
Prakash.

Real Time Hybrid Simulation (RTHS) is used to study the behavior of structures by

partitioning the structure into two substructures, one that is constructed physically and

the other that models the remainder of the structure numerically. These substructures

are coupled physically using transfer devices such as hydraulic actuators and the

simulation is performed in real time (usually using a time-step corresponding to

1024-Hz). The constraints imposed by the real-time nature of these simulations have

historically precluded all but small and relatively simple numerical models that can be

run deterministically in a fraction of a second. In this study we advance state of the

art RTHS through the use of realistic multi-level finite element models that model the

behavior of the structure accurately while still meeting the constraints of real-time

computation.

The multi-time-step (MTS) time integration method enables one to use a refined

model with a small time-step in the immediate vicinity of the physical substructure

to match its fast time-scale, while a relatively coarser model with a large time-step is

used for other parts of the structure. A systematic approach for traversing the space

of possible MTS decompositions and characterizing the nature of how solution errors

and computational costs vary for different decompositions is presented. Based on this

approach, optimal decompositions that maximize the benefit of the MTS methods

are identified. It is also shown that MTS methods can be used effectively to lower

computational cost while maintaining accuracy of the solution by distributing errors

evenly across the problem domain.
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The MTS time integration method is adapted to RTHS, called MTS+RTHS.

Specifically, a predictor is used for the MTS coupling to reduce errors incurred by

applying asynchronous updates to the physical substructure. An in-depth study is

conducted investigating a series of choices of the predictor, and the effect of predictor

choice on the error in both the physical and numerical substructures. It is demonstrated

that MTS+RTHS is not only viable, but essential when using high-fidelity models. It

is shown that the synchronization error for a problem with high time step ratios is

the same order of magnitude as experimental error for a benchmark problem.

Parallel multi-scale RTHS is used to allow high fidelity numerical models in RTHS.

Large numerical models that are multi scale in both space and time use a finer spatial

discretization are used in RTHS. The coupling of linear beam elements with nonlinear

continuum elements is used to create models that capture nonlinear behavior at

structural joints, but are still capable of being solved in real time. The Cybermech

platform is used to conduct these parallel experiments, and demonstrate the benefits

of high fidelity models.

Perfectly Matched Layers (PML) is used as an absorbing boundary for the

Helmholtz problem. A parallel, ellipsoidal formulation for PML is presented for

acoustic elements, minimizing the need for large numbers of elements in the exterior

of the domain. Such a tool could be used a RTHS experiment involving soil structure

interaction, reducing the size and number of elements in the soil domain. A comparison

between the PML formulation and ellipsoidal infinite elements is conducted, focusing

on iteration counts of the parallel linear solver. Perfectly Matched layers are shown

to outperform infinite elements on large parallel problems, where the poor matrix

conditioning of higher order infinite elements results in increased computational cost.
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1. INTRODUCTION

In 1994, the Northridge earthquake in the San Fernando Valley region of Los Angeles,

California killed 57 people and caused estimated property damage of more than

$20 billion. This earthquake and others like it have driven research to understand

why and when earthquakes occur, and what can be done to reduce casualties and

damage. Numerous changes have been made to structural design codes, but it is often

unclear how these changes perform. Earthquakes come in a variety of types, sizes, and

locations, and years can pass between major earthquakes even at the most earthquake

susceptible locations. Older buildings that were designed before changes in the code

further muddy the water. Figure 1.1 shows a building collapse from the 1964 Niigata

earthquake.

Figure 1.1.: Structural Collapse during 1964 Niigata Earthquake [1]

The 1994 Northridge earthquake is one of many events where large structures were

subjected to extreme dynamic loading. Other events include earthquakes, tsunamis,

hurricanes, and tornadoes. Some of these events have resulted in large scale property

damage and building collapse, while others have not. Even within a single event, some
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buildings have significantly more damage than others. Civil engineering structures

are designed over a range of time periods, built from different material types, and

designed to match local building styles and design codes. Additionally, factors such as

type of earthquake, soil properties, and foundation design also affect the structure.

Each large scale structure is unique, so it difficult to understand why one building

collapsed but another did not.

Research in Structural Engineering usually involves either physical testing or

numerical modeling of structures / components under a set of load and boundary

conditions to evaluate their performance in the real-world. These tests are done at

various scales, ranging from small-scale tests on material samples, structural parts

and connections up to full-scale tests on complete structures. Naturally, the results of

these tests and simulations are better when the structure / component is modeled as

closely as possible to its state in the full structure.

As physical testing of large structures such as buildings and bridges at full scale

is prohibitively expensive, researchers have developed a hybrid simulation approach

that augments physical specimens of structural parts with numerical models of the

remainder of the structure. This helps to simulate the response of the small structural

component within the system-level dynamics of the entire structure. An example of a

hybrid simulation would be a single story physical shear frame structure, with the

remainder of the structure simulated numerically.

Dynamically loaded structures exhibit nonlinear, rate-dependent behavior, so it

is important to run hybrid tests at real time to capture and understand the rate-

dependent response. RTHS is a hybrid test where the response of the numerical model

is computed at run time, and must be completed within each time step of the physical

system [2]. The focus of these tests is to capture the structural dynamics and failure

modes of these structures, so the testing frequency must be sufficiently high to capture

the response of the natural frequencies of interest. Frequencies of up to 1024Hz are

commonly used and that limits the size of the numerical model that can be solved

in real-time. Typically the size and complexity of numerical models used in RTHS
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are limited by the computational resources available to solve these models in a single

time-step. Limiting the size of the numerical model can restrict the applicability of the

results from a hybrid simulation [3]. There has been extensive research conducted [4–7]

for developing numerical models that are able to run within the real time constraints

and still be able to replicate the physical system of interest adequately. Castaneda

et al. [8] supplied a RT tool for building computational models. There is a need for

higher fidelity models in RTHS that currently exists in the literature. These models

are generally too large to run within the real-time constraints.

A multi-scale model is one that can capture behavior of a structure at multiple

scales. In this work, concurrent multi-scale models are utilized. In large parts of

the model, beam elements are used to describe the behavior, and in critical regions,

such as connections undergoing high stresses or strains, refined nonlinear continuum

elements are used. The continuum elements are able to represent the behavior better,

but come with an additional computational cost. This cost is non-trivial, so it is

important balance the need for accuracy with the computational cost.

Figure 1.2 shows a system-level RTHS experiment that uses multi-time-step (MTS)

methods and multi-scale techniques to capture the behavior of a structure. In practice,

it may not be possible to run such a RTHS in real time. A large numerical model,

detailed connections, soil-structure interaction, and the surrounding soil domain must

all be computed in real-time to perform a successful test. One approach is to reduce

the scope of the model by eliminating the soil and foundation, linearizing the nonlinear

behavior, and simplifying the building model to one degree of freedom on each floor. In

this work, we present an alternative approach, where different multi-scale techniques

are used to reduce computations in some regions of the model while maintaining a high

fidelity test. A method for truncating an acoustic domain, called Perfectly Matched

Layers (PML), is also presented, though not implemented in vRTHS and RTHS.

In practice, the entire RTHS experiment is simulated on a computer before the

actual RTHS experiment is run. This is called virtual Real Time Hybrid Simulation

(vRTHS). Virtual RTHS includes the effect of control, compensation, delay, and
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Numerical Substructure

Physical Substructure
Control DeviceMTS Boundary

System-Level Behavior

Figure 1.2.: Multi-scale RTHS for interacting soil-structure systems

experimental noise, but these are simulated with models that represent the dynamics

of the RTHS hardware. vRTHS is useful for testing new numerical methods and

models before coupling with a physical experiment, to minimize the physical danger to

both people and equipment. Each experiment in this work is performed as a vRTHS,

with the extension to RTHS planned one the models and methods are finalized. To

achieve these goals, the Cybermech [9] [10] platform was developed to allow complex

multi-rate parallel C++ code to run with a real-time scheduler, replacing the existing

Matlab/xPC/Simulink programming environment for RTHS.

1.1 Objectives

The types of numerical models that model a building realistically are too large to

be run within real time parameters. Multi-scale techniques are necessary to conduct

an RTHS experiment that accurately captures the important characteristics of the

structure while still meeting real time constraints. The overall goal of this research is

to advance the state-of-the-art in RTHS by using multi-time-step (MTS) methods and

multi-scale techniques to capture the behavior of a structure. This work focuses on

computational methods that allow high fidelity models to be run in real time, using

multi-scale approaches that refine the model at specific spatial locations determined

to be of high interest. Extensive analysis of these multi-scale models is conducted,
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and the benefits of such models are demonstrated. The following specific objectives

are needed to achieve this goal:

1. Characterize MTS error and cost

2. Temporal multi-scale models in RTHS

3. Parallel nonlinear spatial multi-scale models in RTHS

4. Perfectly Matched Layers with an ellipsoidal boundary

1.1.1 Characterize MTS Error and Performance

Multi-time-step (MTS) methods are a type of temporal discretization where

different subdomains within the problem domain are solved with different temporal

discretizations. While some problems can be solved efficiently at a single time step,

there are several problems that are well suited for multi-time-step methods. These are

problems that exhibit multi-scale behavior in time. In particular, wave propagation

problems show this behavior, as they tend to create reflections and transients in sub

regions of the problem domain.

Inherent problem properties, such as geometry, loading, and boundary conditions

also affect the quality of the solution. For some problems, the problem characteristics

can lead to regions with high error. In the past such regions, or features, have been dealt

with by refining the mesh in the area around the feature. However, location specific

temporal discretization is not possible with uniform time-stepping schemes (UTS).

Using MTS, the temporal discretization can be set for each element or subdomain.

Choosing an appropriate time-step for each can eliminate these peaks in local error

and consequently reduce global error in the problem.

MTS integration schemes have been developed by Belytschko et al. [11], Smolinski

[12], Daniel [13], Gravouil and Combescure [14] [15], and Prakash and Hjelmstad

[16] [17]. Each of these works provides an integration scheme for solving subdomains

with different time-step, but does not discuss how to best decompose a problem into
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subdomains. An approach for finding optimal decompositions for MTS problems

is developed. A method for decomposing problems and selecting a time-step ratio

in a way that minimizes local and global error while meeting computational cost

requirements is established.

1.1.2 Temporal multi-scale models in RTHS

There is a clear benefit in applying Multi-Time-Step to Real Time Hybrid Simula-

tion, called MTS+RTHS, as it decreases the total computational cost of the model,

while a portion of the model is still solved at the same rate as the physical substructure.

When the MTS decomposition is selected such that all numerical-physical interaction

points are solved at the small time step, the control system and physical substructure

can run at the small time step. However, MTS requires an asynchronous update,

where information from the current time step is used to update the numerical solu-

tion at previous times. To use Multi-Time-Step with Real Time Hybrid Simulation

(MTS+RTHS), an approach is developed to predict these updates, and apply the

predicted terms to the physical substructure at the appropriate time.

1.1.3 Parallel nonlinear spatial multi-scale models in RTHS

Often, nonlinear behavior occurs only in a small region, or several small regions, of

the structure. If the model is well understood, nonlinear elements are only necessary

in particular locations, which can be selected a priori. For high-fidelity models, it is

essential to capture this nonlinear behavior, but for RTHS, it is essential to minimize

computational cost. A small displacement version of the beam-continuum coupling

method developed by Pitandi [18] is used to transition between Euler Bernoulli beam

elements and nonlinear continuum elements. OpenMP and openBLAS are used to

solve such models in parallel, as a single processor core cannot solve such a problem

in real-time. The Cybermech platform was modified to support these capabilities.
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1.1.4 Perfectly Matched Layers with an Ellipsoidal Boundary

When an earthquake load acts on a building, the response of the soil influences the

dynamic response of the building. Additionally, the motion of the structure influences

the response of the soil. Soil-structure interaction (SSI) is the two way influence

between the structure and the soil during a dynamic loading event. Conventional

structural design methods neglect SSI effects [19]. To model SSI in an RTHS, some

external boundary must be placed on the soil to absorb outgoing waves. Perfectly

Matched Layers (PML) is one such boundary, originally [20] were developed in 1994

for simulating electromagnetic waves on exterior domains. PML provides an elegant

and effective means of terminating a finite element mesh without reflections [21–23].

Conceptually, a layer of elements is added to the boundary of the domain of interest for

providing absorbing of all incoming energy, independent of incident angle. The PML

method can be applied on any exterior boundary surface, including non-convex surfaces,

flat surfaces, and surfaces with corners. This is in contrast to infinite elements [24],

and many types of absorbing boundary conditions [25], which are restricted to surfaces

corresponding to separable coordinate systems. PML is used for a variety of problem

types, including unbounded acoustic domains and SSI problems. In the future, PML

can be used in an RTHS experiment that captures SSI.

This work presents an implementation of PML in an ellipsoidal coordinate system.

Perfectly matched layers are created as a structured mesh on an ellipsoidal boundary

surface of an unstructured mesh. In order to facilitate the implementation in a finite

element code that is based on Cartesian coordinates, a mapped PML method is

presented in which the weak formulation is mapped back to Cartesian coordinates.

This allows the PML parameters such as thickness and number of elements to be

changed without the need to re-mesh the entire model, which can be computationally

intensive in large models. PML is implemented in Sierra SD [26, 27], a parallel

structural dynamics code owned by Sandia National Labs. The PML is compared with
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the absorbing boundary condition and the infinite element solution for both accuracy

and Krylov convergence rates.

Chapter 2 presents a detailed analysis of the costs and benefits associated with

various MTS decompositions. Chapter 3 presents the use of models that are multi-scale

in time within virtual RTHS, and presents a detailed analysis of predictor schemes

for asynchronous updates. Chapter 4 presents the use of models that are multi-scale

in space and time within RTHS, and demonstrates the benefits of these methods.

Chapter 5 presents an ellipsoidal PML formulation, and a detailed comparison to

infinite elements when used in a massively parallel environment. Chapter 6 summarizes

the work presented in Chapters 2-5, and the impact to the field of RTHS.
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2. CHARACTERIZING ERRORS AND EVALUATING

PERFORMANCE OF TRANSIENT SIMULATIONS USING

MULTI-TIME-STEP INTEGRATION

The multi-time-step method of time integration for problems in structural dynamics

allows one to decompose the problem domain into small subdomains and use different

time-steps within each subdomain to reduce the computational cost of solving such

problems. However, the number of possible decompositions and their associated

time-steps for a given model is huge and grows exponentially with the number of

elements. Finding an optimal decomposition that minimizes error in the solution

while maintaining a bound on the computational cost is challenging. In this work, we

utilize existing multi-time-step methods and, for the first time, devise a systematic

approach for traversing the space of possible decompositions to characterize the nature

of how solution errors and computational costs vary for different decompositions.

Through numerical examples for three different types of structures, trusses, frames,

and continuum solid bodies, it is shown that the characteristics of these error and

cost functions is similar across problem types. Based on these functions, optimal

decompositions that maximize the benefits of multi-time-step methods are identified.

2.1 Introduction

Structural dynamics is the study of the behavior of structures under time varying

loads. To study such behavior, structures are modeled using different theories of

mechanics that lead to different types of idealized models. Such idealizations require

a series of assumptions about the behavior of the structure and contribute to error in

the resulting solution. A common way of studying idealized models of structures is
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to discretize them in space using numerical methods such as finite elements and to

use a time-stepping scheme to integrate the governing differential equations of motion

in time. This approach results in a time history response of the structure subject to

different loading scenarios, based on which one may interpret the results in order to

gain insight into the dynamic properties of the structure. An important aspect in the

numerical modeling of structures is the choice of an appropriate spatial mesh and a

corresponding time-step for time integration. Error in the numerical solution can be

reduced by using a finer spatial mesh and/or by reducing the time-step [28, 29], albeit

at a greater computational cost.

Subdomain A

Subdomain B

Interface I

Figure 2.1.: Structure subject to impact/blast loading

Conventional numerical methods for solving problems in structural dynamics

employ a uniform time-step (UTS) for the entire structural problem domain. However,

this approach is not suitable for problems where the structural response may span

across multiple time scales. For instance, as shown in Figure 2.1, a structure subject

to an impact/blast load may exhibit steep spatial and temporal gradients and/or

damage in the vicinity of the event, whereas the rest of the structure may respond

more moderately as the wave dissipates propagating away from the region. For such
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problems, one usually employs a finer spatial discretization in parts of the structure

that are directly affected by the event, but using a UTS integration for the entire

structure is not appropriate because using a small time-step would lead to high

computational cost, while even using a moderately large time-step would cause large

local errors in the solution.

As an alternative to UTS integration, domain decomposition (DD) methods [30–32]

can be used to divide the structural problem domain into smaller subdomains in order

to enable the use of different types of models and/or different time-steps in different

subdomains. The use of different time-steps in different subdomains is facilitated

by multi-time-step (MTS) methods [11–17]. MTS methods, when used with an

appropriate decomposition of subdomains and associated time-steps, have been shown

to reduce errors and computational cost for problems with multiple temporal scales.

While several techniques have been reported in the literature to allow different

spatial and temporal discretizations across the model, there is limited knowledge on

how to best divide a structure into subdomains and how to choose the time-step size for

each subdomain in the resulting decomposed model. Depending upon the application,

the trade-off between computational cost and numerical error can be a significant

factor in determining how to construct a spatial and temporal decomposition for a

given numerical model. For instance, when studying the effect of different design

parameters on the response of a structure under various types of dynamic loads, a

structural engineer may need to conduct numerous simulations of the same structure

while being constrained by the amount of permissible errors in these simulations.

In such situations, one may be able to find a set of decompositions that satisfy a

pre-determined error criterion and pick the particular decomposition that is associated

with the minimum computational cost to speed up their design process. On the

other hand, applications such as active control of tall structures, real-time structural

health monitoring, and real-time hybrid simulation, require one to be able to compute

the solution of their numerical models within a specified interval of time due to the

real-time nature of these applications. Once again, there may be a set of possible
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decompositions of a numerical model which meet the real-time constraints and one

may choose a decomposition that is associated with the minimum error in order to

obtain accurate solutions.

In this work, the variation of solution error and computational cost for different

decompositions is characterized. The space of possible decompositions is explored,

and a systematic approach for identifying an optimal decomposition that minimizes

these performance metrics is presented. Due to the extremely large number of possible

decompositions and the complexity of choosing appropriate time-steps for them, this

study is restricted to investigating only two-subdomain decompositions and their

associated time-steps. Three types of problems, trusses, frames and continuum solid

bodies are studied to investigate the effect of choosing different decomposition and

time-step combinations on solution error and computational cost. Insights from these

problems are used to identify close to optimal decompositions.

2.2 Overview of time integration methods

The governing system of ordinary differential equations for structural dynamics of

a structure can be written in their semi-discrete form as:

Mü+Cu̇+Ku = p (2.1)

where M , C, and K, denote the mass, damping and stiffness matrices respectively.

The vector u represents the displacements at all the degrees of freedom in the model

Ω and and p represents time varying loads on the structure. Each superimposed dot

(˙) represents a time-derivative. Initial and boundary conditions for the problem are

specified as:

u(0) = d0 u̇(0) = v0 (2.2)

u(t) = d̄(t) (2.3)
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where d0 and v0 are the given displacement and velocity respectively, at time t = 0

and d̄(t) denotes the displacement time history of a subset of the degrees of freedom

ΓD that have specified boundary conditions imposed on them.

The second order system of ordinary differential equations (2.1), is most commonly

solved by time stepping schemes that enforce the equation at discrete instants of time

tn where 0 < n < N in the time duration of interest, say [t0, tN ]. A known state of

the system at tn is advanced by a time-step ∆t = tn+1 − tn to obtain an approximate

solution for the state at tn+1. This process is repeated to advance from one instant of

time to the next successively to obtain a time-history of the response from t0 to tN
and is called time-stepping.

A number of finite-difference-based time-stepping schemes exist in the literature

including the Newmark method [33], Wilson-θ method [34], the HHT-α method [35],

the WBZ-α method [36], and various Runge-Kutta schemes [37]. Denoting the state

of the system at time tn with zn = [an, vn, dn]T where an, vn, and dn denote the

acceleration, velocity and displacement vectors respectively, the Newmark method [33]

can be expressed compactly as:

M zn+1 = pn+1 − N zn (2.4)

where pn+1 = [pn+1, 0, 0]T denotes the block external load vector consisting of the

discrete load vector pn+1 for each degree of freedom, and the block matrices M and N

are defined as:

M =


M C K

−γ∆tI I 0

−β∆t2I 0 I

 and N =


0 0 0

−∆t(1− γ)I −I 0

−∆t2(1
2 − β)I −∆tI −I

 (2.5)

where γ and β denote algorithmic parameters that allow the choice between implicit

and explicit time integration schemes. η denotes the number of degrees of freedom in

the system, and I denotes the identity matrix of size η. The state vector zn describes
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the entire state of the system at a specific instant of time tn and solving the system of

equations (2.4) to find zn+1 amounts to advancing this state to tn+1.

When running a large problem, choosing an appropriate ∆t is critical in determining

the quality of the solution and the computational cost it takes to obtain it. Choosing a

large ∆t may result in unacceptably large numerical errors, while a small ∆t may result

in an unacceptably large computational cost. This trade-off between the computational

cost and solution error is also affected by the order of accuracy of the time integration

scheme. The Newmark scheme [33] has been shown to be second-order accurate

(O(∆t2)) for γ = 1
2 i.e. halving the time-step reduces the error by a factor of four.

However, halving the time-step also doubles the computational cost, and so an optimal

∆t must be chosen that meets both criteria. Chopra [29] recommends picking a

time-step of ∆t < 0.1Tj, where Tj is the period corresponding to the highest natural

frequency of the undamped structure. Finally, the time-step must also be sufficiently

small to be able to capture the load history with sufficient resolution.

In addition to computational cost, the choice of ∆t also affects the stability of the

solution. A time-stepping scheme is said to be stable if the solution remains bounded

at all times. For conditionally stable methods, the critical time-step ∆tcr provides

an upper-bound for ∆t is governed by the Courant limit [29]. A basic estimate of

the critical time-step (assuming a lumped mass matrix) can be obtained as time it

takes the wave to traverse the smallest element: ∆tcr ≈ le/c where the le denotes the

smallest dimension of the smallest element in the mesh and the material wave speed c

is given in term of the elastic modulus (E) and mass density (ρ) as c =
√
E/ρ. For

consistent mass matrices, the critical time-step limit is even smaller. For problems such

as crack propagation, where the crack-tip may be meshed with very small elements,

stability requirements can force one to use extremely small time steps.

For some transient problems, the temporal characteristics of the solution change

with time and this often requires one to adaptively modify the time-step during the

simulation. Bergan and Mollestad [38] examine an algorithm that changes the time-

step dynamically. Park and Underwood [39] also investigated the critical time-step
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for explicit problems, and how it might change during the simulation for nonlinear

problems. Hilber et al. [35] show that changing the time-step during computation can

lead to changes in algorithmic damping, which itself is dependent on the magnitude

of the time-step. Sanchez-Gasca et al. [40] discuss an algorithm where the time-step

for the entire problem is adapted during integration to capture transients. Even

though such methods allow the use different time-steps during different periods of

the simulation, they still employ the same uniform time-step for the entire model for

time-stepping. For problems containing multiple spatial and temporal scales in their

solutions, using a uniform time-step is computationally very inefficient.

2.3 Multi-time-step methods

Multi-time-step (MTS) methods utilize domain decomposition (DD) techniques to

split a large problem into several smaller subdomains and enable different subdomains

to be solved with different time-steps and time integration schemes. This allows one

to tailor the time-steps for individual subdomains, not only improving accuracy, but

also reducing computational costs. Furthermore, by virtue of DD, the computation

can be parallelized for solving very large problems more efficiently.

There are several approaches available in the literature for DD and MTS. Asyn-

chronous variational integrators (AVI) are a family of time integration techniques

where elements are are solved at different time-steps. Used for explicit integration

methods, different time-step can be selected for each element. This removes the

requirement that every element in the mesh be solved at the same time-step as the

smallest element, reducing total computation time [41]. Fong et al. [42] perform a

detailed analysis of the stability of the method, and shown that the method can

absorb weak instabilities. Kael et al. [43] implement a scalable parallel AVI, and show

that examples exist where the parallel AVI greatly reduces computational time when

compared to uniform time-stepping algorithms.
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Belytscho and Mullen [44] presented explicit-implicit mesh partitions where the

same time-step is used for both partitions and demonstrated stability for this method.

Smolinski and co authors [45] and [12] demonstrated stability for an explicit multi-

time-step integration of first and second order differential equations. Farhat and

Roux [46] extend this approach to finite element tearing and interconnecting (FETI),

that allows subdomains to be solved independently (possibly in parallel) and using

Lagrange multipliers to couple the individual solutions. Different types of sub-cycling

algorithms that also enable a finer resolution of specific areas of interest in a problem

were developed [13], [47], [48]. Felippa et al. [49] use domain decomposition to split

a large problem into several subdomains, allowing for an implicit algorithm in one

part of the system, and an explicit algorithm in another part of the system. Gravouil,

Combescure, and others [14, 50, 51] describe a stable coupling algorithm to solve

multiple subdomains at different time-steps using the Newmark family of integrators

and later extended the method to heterogeneous asynchronous time integrators [52].

Prakash and co-workers [16,17,53] developed a MTS method that is unconditionally

stable and preserves the energy-norm of the underlying time integration schemes and

is computationally very efficient. Park and Felippa [54] perform a detailed analysis

on the accuracy of partitioned integrators, and provide a method for estimating the

frequency distortion introduced by such partitioned analyses. An brief overview of

this MTS method is presented next to facilitate the analysis of computational cost

and quantification of errors.

2.3.1 Governing equations for the multi-time-step method

Problems in structural dynamics that span multiple temporal scales need to be

treated with different time-steps in different subdomains (see Figure 2.1). For the

discussion here, the problem is split into two subdomains, A and B that are allowed to

run at different time-steps ∆T and ∆t respectively, where ∆T = m∆t for some integer

time-step ratio m as shown in Figure 2.2. The two subdomains may also have different
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Subdomain A

Subdomain B
t0 tj t0 +m∆t

t0 t0 + ∆T

Figure 2.2.: Representation of subdomain time steps for the MTS method

Newmark time-integration parameters γ and β corresponding to different implicit or

explicit schemes. Given the state of subdomains A and B at t0, multi-time-stepping is

used to solve the state at tm = t0 +m∆t by advancing subdomain A through one big

time-step ∆T and advancing subdomain B through m small time-steps ∆t.

The equation of motion for subdomain A is solved using the large time-step ∆T :

MA zAm +CAλm = pAm − NA zA0 (2.6)

where λ denotes the Lagrange multipliers on the interface and the matrix CA represents

a mapping between the degrees of freedom on the interface to the degrees of freedom

for subdomain A (see [16] for details). The equation of motion for subdomain B is

solved m times using small time-step ∆t:

MB zBj +CBλj = pBj − NB zBj−1 ∀j ∈ [1,m] (2.7)

where the matrix CB represents a similar mapping between the degrees of freedom

on the interface to the degrees of freedom for subdomain B. In order to compute

Lagrange multipliers λj at the intermediate time-steps tj, a balance of tractions at

the interface is enforced:

CAT
[
MA zAj − pAj +CAλj

]
= 0 ∀j ∈ [1,m] (2.8)

where the states zAj for subdomain A are obtained by linear interpolation:

zAj =
(

1− j

m

)
zA0 +

(
j

m

)
zAm (2.9)

Finally, continuity of velocities across the interface between subdomains A and B is

enforced at the large time-step:

BAzAm −BBzBm = 0 (2.10)
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where the block matrices BA and BB represent a reverse mapping from degrees of

freedom for subdomains A and B to the interface degrees of freedom and are used

to maintain continuity of velocity between the subdomains. It has been shown

that continuity of velocities leads to a stable coupled formulation for a range of

different coupling parameters rather than the more intuitive continuity of displacements

(see [14], [16]), or continuity of accelerations.

2.3.2 Solution procedure

On each subdomain, the solution is split into two parts, z̄ and z′ as follows:

zA = z̄A + z′A ; zB = z̄B + z′B (2.11)

where z̄ that satisfies the uncoupled set of governing equations (in the absence of λ),

and z′ which accounts for the effect of the coupling Lagrange multipliers. Using this

approach the solution of the coupled subdomains A and B can be achieved in three

steps: (i) the uncoupled subdomain solve (ii) interface solve (iii) subdomain updates.

These three steps are outlined below.

Uncoupled Subdomain Solution

First, the uncoupled solutions for subdomains A and B are obtained as:

z̄Am =
[
MA

]−1 [
pAm − NAzA0

]
and (2.12)

z̄Bj =
[
MB

]−1 [
pBj − NBz̄Bj−1 − CBsj

]
∀j ∈ [1,m] (2.13)

where z̄B0 = zB0 and sj represents a predicted value of the coupling Lagrange multipliers

given by:

sj = (1− j

m
)λ0 (2.14)
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Interface Solve

Once the uncoupled solutions have been obtained, the coupling Lagrange multipliers

are solved using the equation:

λm = H−1f (2.15)

where the interface matrix H is defined as:

H = BAYA
m +BBYB

m (2.16)

and the right hand side vector f is given by the expression:

f = BAz̄Am +BBz̄Bm (2.17)

In the above equations, the matrices YA
m and YB

m are obtained from the following

expressions:

YA
m =

[
MA

]−1
CAT and (2.18)

YB
j =

[
MB

]−1
[(

j

m
CBT

)
−NBYB

j−1

]
∀j ∈ [1,m] (2.19)

respectively, where YB
0 = 0. Note that the Y matrices remain constant (for linear

problems) for all time-steps and therefore they can computed prior to beginning the

time-stepping loop. Consequently, the interface matrix H also remains constant for

the duration of the time-stepping and it too can be computed, factorized and stored

ahead of time for greater computational efficiency.

Subdomain Updates

Finally, having computed the coupling Lagrange multipliers, the subdomain solu-

tions can be updated using following contributions:

z′
A
m = −YA

mλm (2.20)

z′
B
j = −YB

j λm ∀j ∈ [1,m] (2.21)
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Note that the total solution for each subdomain is obtained using equation (2.11)

by simply summing up the contributions from the uncoupled solution in equations

(2.12)-(2.13) and the updates from equations (2.20)-(2.21).

2.3.3 Computational cost of the multi-time-step method

The computational cost of the multi-time-step method can be estimated by mea-

suring the computational cost of each of the three steps above. The cost associated

with each set of operations is related to the size of the subdomains A and B and the

size of the interface between them. Let ηA and ηB denote the number of degrees of

freedom in Subdomains A and B respectively and ηI be the number of degrees of

freedom on the interface.

For the three steps in the MTS solution algorithm, a basic estimate of the compu-

tational cost of each step can be obtained as:

1. Uncoupled subdomain solve: Solving against pre-factorized M matrices, the cost

of obtained the uncoupled solutions from equations (2.12)-(2.13) will be: O(η2
A)

+ O(mη2
B).

2. Interface solve: Again, solving for λ against a pre-factorized H matrix in

equation (2.15) involves O(ηI)2 operations.

3. Subdomain updates: Finally, the subdomain updates in equations (2.20)-(2.21)

result in a cost of O(ηAηI +mηBηI).

For a given problem and a specific hardware platform, the computational cost, in

terms of run-time R can be estimated as:

R(ηA, ηB, ηI ,m) ≥ c1(η2
A +mη2

B) + c2η
2
I + c3(ηAηI +mηBηI) (2.22)

where each of the constant coefficients above can be calibrated to a particular computer

by solving a set of problems multiple times and recording the actual run-times for

each of the three steps above. Note that the cost model above assumes that one is
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using implicit methods. However, it can be readily modified to account for cases when

one or both subdomains may be solved using explicit time integration methods.
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Figure 2.3.: Actual vs. predicted run times based on a
basic cost model for the MTS method

A sample of such calibration is shown in Figure 2.3 which compares actual run-times

to their predicted values obtained from the equation above for 500 different simulation

runs with varying model parameters (ηA, ηB, ηI , and m). It is observed that for large

problems, the cost of the MTS method is dominated by Step 1 (subdomain solves):

c1(η2
A) + O(mη2

B) where the value of c1 is found to be 2.25× 10−8 for problems with

the number degrees of freedom ranging from a few hundred to a few thousand. All

the problems were run in MATLAB on a Dell T7600 Precision workstation with dual

8-core 2.4 GHz Xeon processors, 64 GB RAM, and 4.5 TB disk space, running Red

Hat Enterprise Linux (RHEL 6).

The appeal of MTS methods is immediately evident from the preceding discussion.

In comparison to the cost of solving a problem with the UTS method, which requires

O(mη)2 operations for advancing the solution m times using a small time-step ∆t for

the entire problem domain, (where η = ηA + ηB − ηI), the cost of solving the same
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problem with the MTS method for a similar level of accuracy within subdomain B, is

O(η2
A) + O(mη2

B), which in general will be much smaller compared to O(mη2).

2.3.4 Exact and reference solutions for computing errors

For most practical problems in structural dynamics, it is usually not possible to

obtain exact solutions. However, when solving these problems numerically, it is useful

to quantify the error in the solution by comparing it directly to an exact solution,

when one is available. For small, linear, MDOF systems, modal analysis can be used

to decompose the problem into a set of SDOF systems, and weighted response of each

mode can be summed to get the response for the overall system. For larger problems,

when modal analysis is not always feasible, a reference solution may be obtained by

using a very small time-step for numerical time integration. In this work, both exact

and reference solutions (with a time-step of ∆t/20) are obtained for the purpose of

measuring errors in different MTS solutions.

For situations where an exact or a reference solution is not available, an error

estimator may be used. Most error estimators in the literature are based on comparing

the numerical solution at an instant tn to a truncated Taylor series approximation [55].

Zienkiewicz and Xie [56] suggest to intuitively estimate average error in the solution

at a node as the sum of the instantaneous error estimates, while Wiberg and Li [57]

demonstrate that the sum of instantaneous error estimates in the energy norm provides

a bound for average error estimates. Choi and Chung [58] state that the error in the

energy norm is an adequate criterion on which to judge the validity of a solution.

Adaptive methods, where the time-step is adjusted during integration, seek to have

an instantaneous error that is uniformly distributed throughout the time history [58].
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2.3.5 Error measures

Assuming that an exact or reference solution is available, or that a sufficiently

accurate error estimator is available, one can define certain measures of error to

evaluate the quality of the solution obtained by using different MTS decompositions.

The instantaneous local error is defined by the following expression:

εin = |xin − xi∗(tn)|
(MAXn(xi∗)−MINn(xi∗))

(2.23)

where xin and xi∗(tn) are the numerical and the exact solutions at a degree of freedom

i at time tn respectively. To normalize this measure, the difference between the

numerical and the exact solutions is divided by the range, expressed as the difference

between the maximum and minimum of the exact solution over the entire time history.

The average local error (average in time) is defined as:

εi = 1
N

N∑
n=0

εin =
∑N
n=0 |xin − xi∗(tn)|

(MAXn(xi∗)−MINn(xi∗)) ∗N
(2.24)

where N is the total number of time-steps in the simulation. Finally, the average

global (L∞) error for a problem is defined as:

ε = MAXi(εi) (2.25)

where the maximum is taken over all of the degrees of freedom i in the model. This

error metric was chosen to measure the error more precisely for problems where

capturing the peak response immediately after an event (see Figure 2.1) may be more

critical rather than its long-term dynamic response.

2.4 Characterization of Errors

In this section, numerical simulations using the multi-time-step method are con-

ducted for three types of structures, a truss, a frame, and a continuum solid body,

to investigate how different MTS decompositions affect errors and computational

cost. For all problems, different MTS decomposition parameters, such as the sizes

of subdomains A and B, the time-step ratio m = ∆T/∆t, and the topology of the
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interface are varied to construct and evaluate multiple different MTS solutions against

an exact or a reference solution.

2.4.1 MTS decomposition for a truss problem

Truss problems are particularly well-suited for studying errors in different MTS

decompositions as they demonstrate the advantages of advanced numerical time

integration techniques while maintaining a relatively simple spatial discretization.

Figure 2.4 shows the truss chosen for error characterization in this study. The truss is

pinned on its entire left edge with a rectangular pulse load of magnitude P = 1000

lbsf (4448 N) applied as shown for a duration of 0.1 seconds. The truss properties are

chosen so as to model a stiff, light-weight truss with high natural frequencies. Each

truss member is assumed to be made of standard W-12x16 (height = 30 centimeters,

weight = 233.5 Newtons per linear meter) rolled shape using A992 steel, with Young’s

modulus E = 29, 000 ksi (200 GPa) and density ρ = 0.28 lbf/in3 (7748 kg/m3). The

model is assumed to have Rayleigh damping with mass proportionality factor α = 0

and stiffness proportionality factor β = 0.01. The total length of the cantilever truss

L is 85 feet (25.9 meters), with a total height H of 10 feet (3.05 meters).

Subdomain A Subdomain BInterface I

P = 1000 lbs

L

Point A Point I Point B

H

Figure 2.4.: A sample MTS decomposition of a truss problem into two subdomains
with different time steps. Point A lies in Subdomain A, Point B lies in Subdomain B,
and Point I lies on the coupling interface.

The problem was solved with three different approaches: (i) UTS method with a

small time-step ∆t = 2.5× 10−4 seconds, (ii) UTS method with a big time-step ∆T

= 10−3 seconds, and (iii) MTS method with the decomposition shown in Figure 2.4
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using ∆T in subdomain A and ∆t in subdomain B. For all these cases, the Newmark

implicit integration method with parameters γ = 1
2 and β = 1

4 is used. Sample time

histories of displacements, velocities and accelerations at points A, B and I as marked

in Figure 2.4 are shown in Figure 2.5 for these three approaches. Detailed response

within the marked boxes on these plots are shown in Figure 2.6 for each case.

For this problem, the rectangular pulse load P causes local transients in subdomain

B that need to be captured with a small time-step ∆t, whereas away from the point of

application of this load, the time histories are smoother and can be simulated with a

big time-step ∆T without incurring big errors. For the coupling node I, Figure 2.6(a)

shows that the response of the multi-time-step method, in general, tracks between the

responses obtained by the UTS method with a small ∆t and the UTS method with a

large ∆T . Note that consistent with Equation (2.10), the velocities of subdomains

A and B match exactly on the interface node at every ∆T interval for the MTS

method. Similarly, inspecting Figure 2.6(b), for a node within Subdomain B, the

multi-time-step solution is very close to the UTS ∆t solution. This suggests that,

despite the presence of the numerical interface that introduces errors into the solution

for Subdomain B, the MTS method is able to capture the response of subdomain

B very well. For node A within subdomain A, Figure 2.6(c) shows that the MTS

solution is much closer to the solution of the UTS ∆t solution, even though the MTS

method actually uses the big time step ∆T in subdomain A. This suggests that the

MTS method not only matches the solution in Subdomain B well, but it also improves

the solution for subdomain A in comparison to UTS ∆T , thereby reducing both local

and global errors throughout the problem domain.

While Figures 2.5 and 2.6 provide valuable information, they show results only at

specific degrees of freedom. Based on this information alone, it is difficult to judge how

to decompose the truss problem into subdomains A and B, how big these subdomains

need to be, what the time-step ratio between them should be and what effect does a

particular choice of decomposition have on the computational cost and errors. In order

to understand the effect of decomposition choices on errors, one needs to visualize the
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Figure 2.5.: Global time history response of nodes A, B, and I for the truss problem.
The location of these points is shown in Figure 2.4.
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UTS ∆T : ε = 2.80e−4

UTS ∆t: ε = 6.28e−5

MTS: ε = 7.17e−5

0 2e−4 4e−4 6e−4 8e−4 1e−3

Figure 2.7.: Distribution of average local errors in nodal velocity at each degree of
freedom for the truss problem. Average global error ε for each case is also mentioned.
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state of errors over the entire problem domain. For this purpose, error color maps

are constructed by computing the average local errors from Equation (2.24) at each

degree of freedom in the model, and its distribution over the entire problem domain is

plotted as shown in Figure 2.7. Average global errors computed from Equation (2.25)

corresponding to each case is also mentioned, clearly showing high errors for the UTS

∆T method, whereas the local and global errors for the MTS method are similar to

the errors for the UTS ∆t method, but at a much lower computational cost (0.257

seconds for the MTS method compared to 0.936 seconds for the UTS ∆t method and

0.234 seconds for the UTS ∆T method). While only the average local error in nodal

velocity (averaged for both x and y directions) is shown here,the same procedure can

be used to obtain errors in displacements, accelerations, internal forces etc. Plots

of error distribution in displacements and accelerations show similar trends as those

observed in Figure 2.7.

2.4.2 MTS decomposition for a frame problem

A nine-story frame structure described by [59] is used to repeat a similar analysis

as that of the truss structure in the preceding section. The structure is shown in Figure

2.8 and is modeled with one frame element for each beam and column. Properties

of steel (E = 29, 000 ksi (200 GPa), ρ = 0.28 lbf/in3 (7748 kg/m3)) are used for the

material. The structure has a total height H = 122 ft (37.2 m) and total length

L = 150 ft (45.7 m). Rayleigh damping is used, with mass proportionality factor

α = 1.2 and stiffness proportionality factor β = 0.001, which is close to a modal

damping of around 5% for each of the first ten modes. A high frequency harmonic

loading is applied to the structure as shown in Figure 2.8. The function P (t) is given

by:

P (t) = P0 × sin(ωt) (2.26)
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where the magnitude of the load P0 is 1010 lbs (4.448 × 1010 N) and the frequency

ω is 1000Hz. The frame was decomposed into two parts, subdomain A solved with

a large time-step ∆T = 10−5 seconds and subdomain B solved with a time step of

∆t = 2.5 × 10−6. Time histories and errors were computed as before and the error

distribution graphs for this problem are shown in Figure 2.9.

P (t)
L

H

Figure 2.8.: Nine-story frame structure from ( [59]). Subdomain A is represented with
light lines, and Subdomain B represented with dark lines. Pinned boundary conditions
in the basement are represented by triangles, and lateral boundary conditions at the
ground level are represented by white circles.

UTS ∆T UTS ∆t MTS

Figure 2.9.: Distribution of average local error in nodal velocity for the frame problem.

Figure 2.9 further corroborates the observations made in the preceding section for

characterization of errors in MTS decompositions for truss problems. One may note

that, once again, the error is concentrated around the point of loading and that the
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UTS ∆T error is much bigger than the UTS ∆t error and the MTS solution error,

both of which are in a similar range.

2.4.3 MTS decomposition for wave propagation in a solid domain

In this section, continuum elements are used to model the Lamb problem ( [60], [61],

[62], and [63]), which is a well studied benchmark problem in continuum mechanics.

The problem is shown in Figure 2.10 along with a snapshot of the response after the

P-wave has propagated to about half the domain length. The symmetric-half of a

rectangular solid domain of dimensions 2L×H (L = H = 2 m) is fixed on the right

and bottom edges, has vertical rollers for the symmetric boundary condition on the left

edge, and is unconstrained on the top edge. A downward load of magnitude P = 1000

N is applied as a rectangular pulse starting at t = 0 and ending at t = 1× 10−5 s on

the top-left corner of the domain. The material properties chosen for this problem

are, Young’s Modulus E = 20 GPa, Poisson’s ratio ν = 0.25, and the material density

was ρ = 2000 kg/m3, resulting in a P-wave speed of 3162 m/s.

••
••
••
••
••
••
••
••
••
•

P = 1000 N

L

H

Stress σxy

Figure 2.10.: Wave propagation in a plane-strain solid domain

The domain is meshed with 1700 3-noded constant-strain triangular (T3) continuum

elements and the mesh is heavily refined near the loading point. For the UTS and MTS
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simulations, time-steps of ∆t = 5× 10−7 s and ∆T = 2× 10−6 s are used. For MTS,

elements with all three nodes in the top-left quadrant (shaded blue in Figure 2.10) are

treated as subdomain B, integrated with ∆t = 5×10−7 using explicit central difference

and the rest of the domain is treated as subdomain A, integrated with ∆T = 2× 10−6

with the Newmark constant average acceleration method. The simulation is run for

1×10−4 seconds, which allows the P-wave to propagate a distance of about 0.3 m from

the loading point towards the right and bottom edges of the domain, still remaining

within the top-left quadrant of the problem domain. Ideally, for such dynamic wave

propagation problems, subdomain B should be adaptively repositioned during the

simulation to track the wave, a topic for future studies. For the current study, it is

sufficient to ensure that the wave remains within subdomain B.

Figure 2.11 shows the distribution of average local errors for the three simulations

described above. Errors are higher near the loading point and at the wave front, with

the errors in the MTS solution similar in range to the errors in the UTS ∆t solution,

both of which are much smaller compared to the errors in the UTS in ∆T solution. It

is clear that this continuum problem also follows similar patterns of error distribution

within the problem domain that were observed for the truss and frame problems.

UTS ∆T UTS ∆t MTS

Figure 2.11.: Distribution of average local error in nodal displacement for the Lamb
Problem

Having characterized the errors and the computational costs for MTS decomposi-

tions, it is now possible to map and explore the space of possible MTS decompositions

by comparing their computational costs using the cost model developed in the pre-
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vious section to find an almost optimal MTS decomposition for a given problem. A

framework for finding such optimal decompositions is presented in the next section.

2.5 Space of Possible MTS Decompositions

In this section, the space of possible MTS decompositions is explored in terms of

the number of ways a given problem domain can be decomposed into subdomains A

and B and the number of possible different time-step combinations that can be used

for these subdomains. Note that for a model with N elements, there are 2N possible

decompositions. For example, for the small truss problem shown in Figure 2.4 with

121 elements, there are approximately 2.6× 1036 possible decompositions. Further,

since the time-steps for each subdomain may be chosen on a continuous scale, as long

as they satisfy any stability criteria, there will be infinitely many possible time-step

combinations for each of the 2.6× 1036 decompositions. Clearly, the space of possible

decompositions and associated time-steps is huge and even characterizing solution

errors and computational costs is a monumental task, let alone finding an optimal

decomposition in this space.

While all of the possible decompositions and time-step combinations chosen in

the manner described above are valid choices corresponding to a particular numerical

model, not all of them are computationally appealing. In order to traverse the space

of possible decompositions within a reasonable range of parameters, we constrain

the search space by making two key assumptions and characterize how the solution

errors and computational costs vary for decompositions within this subset of the space.

First, to limit the choices in terms of time-step sizes that can be used, it is assumed

that the smallest time-step ∆t that one may choose for a given problem would be

determined by the highest modal frequency to be captured in the response. Similarly,

the largest big time step ∆T is constrained by the smallest natural frequency of the

structure and this will determine the range of possible time-step ratios m in the search

space. Second, for a particular MTS decomposition, each element is associated with
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its average local error (computed from the average local errors of its nodes) and it

is postulated that this MTS decomposition will be viable only if every element in

subdomain A (with ∆T ) is associated with a lower error than the maximum of the

errors associated with all of the elements in subdomain B (with ∆t). This assumption

ensures that subdomain B, which is likely to be the critical region of interest for most

problems, controls the global error for the problem.

With the two assumptions above, one can traverse the space of potentially useful

MTS decompositions in the following manner:

1. Solve the problem with the UTS method with time-steps ranging between ∆t

to ∆T in integer multiples of ∆t and record the global solution errors and

computational costs for each case.

2. Solve the problem with different MTS decompositions, initially assigning all

the elements to subdomain B and none to subdomain A (which is a valid

decomposition, and is the same as the UTS method).

3. LOOP until all the elements are moved from subdomain B to subdomain A

• Sort all the elements in the model by their average local errors.

• Identify the element with the lowest error in subdomain B and assign it to

subdomain A.

• LOOP over values of m such that m∆t ≤ ∆T starting with m = 2

Solve the problem using the particular MTS decomposition and time-

steps m∆t and ∆t for subdomains A and B respectively and record the

global solution error and computational cost.

4. Plot the variation of global solution errors and computational costs with respect

to number of elements in subdomain B and the time-step ratio used.

The steps above allow one to generate plots of average global errors and compu-

tational cost as shown in Figure 2.12(a) for the Truss problem described in Figure
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2.4. Note that since different MTS decompositions advance the solution by different

amounts of time in one big time-step ∆T , the computational cost in Figure 2.12(b) has

been normalized to express it as the amount of time needed to advance the solution

by a small time-step ∆t. This is computed by dividing the average run-time per

∆T time-step for a given MTS decomposition by the time-step ratio m between its

subdomains.

Starting from the bottom right corner (with all the elements in subdomain B)

and at the smallest ∆t i.e. time-step ratio m = 1, the steps above map out the

performance of different MTS decompositions by moving from bottom to top and

right to left. Figure 2.12 shows the average global errors and computational cost for

the truss problem described in the previous section. It is clear that errors are smallest

for MTS decompositions with most (or all) elements in subdomain B and run at ∆t

with a time-step ratio m = 1. On the other hand computational costs are lowest for

decompositions with most (or all) elements in subdomain A and run at ∆T with the

maximum time step permissible. Here time step ratios up to 32 are explored but one

may explore even higher time step ratios if needed.
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Figure 2.12.: Average global errors and computational cost for different MTS decom-
positions of the Truss Problem
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2.5.1 Optimal MTS decomposition

Using the plots of average global errors and computational cost, one can easily

determine a close to optimal decomposition for a specific problem and given criteria.

For instance, if one needs to find the decomposition with the lowest computational cost

for particular error threshold, then one can follow the contour of the specified level

of error looking at the corresponding computational costs to find the optimal MTS

decomposition. This optimal decomposition clearly defines which elements to choose

for subdomains A and B and what time-step ratio to use between them. For instance,

if one chooses to restrict global errors to ε ≤ 1×10−5, then following that error contour

in Figure 2.12(a), and noting the computational cost of the corresponding point in

Figure 2.12(b), it is possible to determine the particular MTS decomposition with

the minimum computational cost for the given level of error, as denoted by the red

circle on each sub-figure. In this case, the optimal decomposition is shown in Figure

2.13, which has 23 elements in subdomain B and has a computational cost of about

1× 10−4 s per ∆t time-step.

Subdomain A Subdomain B

P = 1000 lbs

Figure 2.13.: Optimal decomposition of the truss problem.

While it can be very computationally intensive to generate such plots, the insight

gained into the behavior of errors and cost by using such plots is invaluable. This

insight can be used to design a method for finding optimal MTS decompositions

without actually constructing these plots for the entire subset of the space of possible

MTS decompositions. A possible way to find an optimal MTS decomposition is to

start with all elements in subdomain B (UTS ∆t method) and to use a gradient-based
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or heuristics-based optimization algorithm to iteratively improve the decomposition

during the simulation.

2.6 Numerical Examples

In this section, additional examples of how global solution errors and computational

costs vary for different MTS decompositions are presented for the Frame problem (see

Figure 2.8) and the Lamb wave propagation problem (see Figure 2.10).

2.6.1 Frame Problem

The nine-story frame problem (from Figure 2.8) is explored to investigate how

errors and computational cost change with changing MTS decompositions. Figure

2.14 shows the global error and computational cost corresponding to the nine-story

frame with the sinusoidal load as described in Figure 2.8, solved with implicit-implicit

MTS decompositions. As a separate test problem, a second sinusoidal load is added to

the nine-story frame on the right-top node, and the space of possible decompositions

is regenerated. Note that elements are added to Subdomain A in a different orders,

when loading conditions change. However, the overall trends in the space of MTS

decompositions remain similar further validating this approach for finding optimal

decompositions. Figure 2.15 shows that even for different load combinations, the

behavior of errors and cost follows similar trends. Optimal decompositions for the two

cases that restrict global solution error to ε < 1× 10−5 are also denoted by red-circles

and shown in Figure 2.16.

2.6.2 Lamb Problem

Finally, the Lamb problem (from Figure 2.10) is explored. Figure 2.17 shows the

space of decompositions available for this problem. Note that the contour lines for the

Lamb problem are considerably smoother than that of the truss and frame problems
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Figure 2.14.: Average global errors and computational cost for different MTS decom-
positions of the frame problem with one sinusoidal load

10 20 30 40 50 60 70 80 90
Number of Elements in Subdomain B

24
8

12
16

24

32

Ti
m

es
te

pr
at

io

-5
-4.5
-4
-3.5
-3
-2.5

Lo
g

Sc
al

e

◦
(a) Average Global Error

10 20 30 40 50 60 70 80 90
Number of Elements in Subdomain B

24
8

12
16

24

32
Ti

m
es

te
pr

at
io

-4.2
-4
-3.8
-3.6
-3.4
-3.2
-3

Lo
g

Sc
al

e

◦
(b) Computational Cost

Figure 2.15.: Average global errors and computational cost for different MTS decom-
positions of the frame problem with two sinusoidal loads

since there are a large number of possible decompositions and, unlike the truss and

frame problems, moving one element between subdomains A and B is less likely to

cause significant changes to the computational cost or error in the problem.

An optimal decomposition for the Lamb problem that restricts global solution

error to ε < 1× 10−4.2 is denoted by the red-circles in Figure 2.17 and also depicted

in Figure 2.18. Even though the maximum time-step ratio is limited to 12 for this

problem, the contour plots of error and cost indicate that it may be possible to achieve

even higher time-step ratios and lower computational cost for the same global error.
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P = P (t) P = P (t) P = P (t)

Figure 2.16.: Optimal Decompositions for the nine-story frame structure with one and
two load points. Subdomain A (large time step ∆T ) is shown with light lines, and
Subdomain B (small time step ∆t) is shown with dark lines.

The optimal decomposition for this problem concentrates the subdomain B in a small

region around the load point and allows the use of big time-steps for a majority of the

domain. This behavior is expected and explained by the fact that the maximum errors

in the solution occur during the application of the sharp rectangular pulse load. Once

the wave starts propagating, it disperses and the wave front blunts leading to a less

steeper wave and consequently lesser local errors. Thus even though some elements

of subdomain A near the interface with subdomain B may encounter the wave, the

error associated with them even for ∆T is smaller than the error associated with the

elements near the load point being solved at ∆t.

2.6.3 Discussion and insights

It is interesting to compare the MTS decompositions of the truss, frame and

continuum solid problems from the previous section on ’Characterizing Errors’ to the

optimal decompositions obtained in the results of this section. It can be observed that,

while the specific MTS decompositions from the previous section seemed intuitive and

also helped reduce computational cost in comparison to UTS ∆t solution and improve
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Figure 2.17.: Average global errors and computational cost for different MTS decom-
positions of the Lamb wave propagation problem

Figure 2.18.: Optimal Decomposition for Lamb Problem. Subdomain A (large time
step ∆T ) is shown with light coloring, and Subdomain B (small time step ∆t) is
shown with dark coloring.

accuracy in comparison to UTS ∆T solution, the optimal decompositions obtained

here are better.

Further, from the topology of the contour plots of error and cost, it can also

be observed that there are locations with steep gradients (where contour lines are

closely spaced), indicating that the trade-off between cost and error does not vary

uniformly and can change very suddenly for appropriately chosen decompositions.

This fact suggests that, even if an informed user may pick an intuitively appealing
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MTS decomposition for a specific problem, the likelihood of that decomposition being

close to optimal is remote and there may be significant additional gains in accuracy

and cost achievable by finding and using an optimal decomposition.

Overall, in all the problems studied, the space of MTS decompositions has a similar

topology and exhibits similar patterns in terms of the variation of computational

costs and errors. The variation is smoother for larger continuum solid problems than

smaller discrete truss and frame problems but the trends are similar. This behavior

is typical of problems containing one or two regions of interest with a temporally

distinct feature that needs to be captured. With these insights it is possible to devise

a method to find optimal decompositions without actually traversing the space of

possible decompositions and to potentially modify these optimal decompositions during

the simulation for problems with rapidly changing spatio-temporal characteristics.

These will be topics for future research.

2.7 Conclusions

For problems that exhibit multiple scales of response in their dynamic behavior,

the multi-time-step (MTS) method provides great computational efficiency without

loss of accuracy. In this study, three different types of problems, a truss, a frame

and a continuum solid body, are solved to demonstrate how local and global errors

vary with different problem characteristics and solution methods. It has also been

demonstrated that solutions obtained by using uniform time step (UTS) methods,

irrespective of their time-steps tend to concentrate errors in specific regions of the

problem, typically those with high temporal gradients. A novel aspect of this work is

showing that MTS methods can be used effectively to lower computational cost while

maintaining accuracy of the solution by distributing the errors more evenly across the

problem domain. Another new insight gained from this study is that MTS not only

helps in reducing the errors in regions of high interest or fast-rate dynamics, but also

helps to reduce errors in regions where large time steps are used.
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A challenging problem associated with the MTS approach is determining the

decomposition that leads to an optimal solution in terms of computational costs

and errors. In this work, for the first time, a systematic approach to traverse a

subset of the infinitely vast space of possible decompositions has been developed

to demonstrate how the computational cost and error depend upon the choice of

the MTS decomposition. This approach allows one to characterize the errors and

costs of a range of computationally viable decompositions and then easily identify

an optimal decomposition that satisfies given error or cost criteria. The methods

presented here can be used on different models and methods, though the contents of

the plots themselves might change. Specifically, different problem sizes or multi-scale

behavior may produce substantial differences in the error and cost curves. As a future

extension of this work, it may be possible to develop a method to find an optimal

MTS decomposition for a given problem during the simulation itself, without having

to explore the subspace of decompositions as described above. While that is not the

focus of this study, the insight gained from characterizing errors and costs for different

MTS decompositions in identifying an optimal decomposition is crucial for designing

such a method.
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3. ASYNCHRONOUS MULTI-TIME-STEP COUPLING OF

NUMERICAL AND PHYSICAL MODELS FOR HIGH-FIDELITY

REAL-TIME HYBRID SIMULATION

Real-Time Hybrid Simulations (RTHS) in structural engineering are coupled numerical-

physical experiments, where a structure is divided into numerical and physical sub-

structures interacts in real-time. Numerical substructures are generally chosen as the

subsections of the structure that are relatively well understood but too large to test

in a lab, while physical substructures are less predictable, and can be tested in the

lab. Real-time coupling of numerical and physical substructures allows evaluation of

the structural dynamics of the full system, utilizing the advantages of both numerical

and physical testing.

To preserve nonlinear rate-dependent behavior and dynamic properties in the

physical substructure, the numerical substructure is evaluated in real-time. Conducting

the coupled experiment necessitates that the numerical substructure also be solved

in real-time, limiting the size of the numerical substructure. The goal of this work is

to adapt a multi-time-step integration technique with asynchronous updates to allow

for execution of larger numerical models in real-time hybrid simulation. A predictor

is added to the multi-time-step integration scheme to minimize synchronization

errors that arise in the real-time hybrid simulation implementation. The approach is

demonstrated through a virtual RTHS experiment where the numerical substructure

is a nine-story building and the physical substructure is a 200-kN magneto-rheological

damper.
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3.1 Introduction

Structural dynamics is studied using either physical testing or numerical modeling

of structures and components under a set of load and boundary conditions to simulate

and evaluate their performance in the real world. Testing can be conducted at various

scales, ranging from small-scale tests on material samples, structural components and

connections up to full-scale tests on complete structures. The results of these tests

and simulations improve when the structural component is exposed to conditions that,

as closely as possible, represent those when in the full structure.

Physical testing of large structures such as buildings and bridges at full scale is

prohibitively expensive. Researchers have developed a hybrid simulation approach

that augments physical specimens of structural components with numerical models

of the remainder of the structure to simulate the response of the physical structural

component within the system-level dynamics of the entire structure [64]. Figure 3.1

shows such an experiment. Here a damping device on the first floor of a building is

modeled physically, while the remainder of the structure is modeled numerically. An

actuation device is used to impose the proper numerical boundary on the physical

substructure, and measure the response for the numerical substructure. For this

example, a magneto-rheological (MR) damper was placed on the first floor of the

building. During a dynamic loading condition, such as an earthquake, the damper

exhibits nonlinear, rate-dependent behavior. Thus, the physical experiment must be

run at real time to capture and understand the rate-dependent response, while the

remainder of the structure is modeled numerically.

In Real-Time Hybrid Simulation (RTHS), the response of the numerical model is

computed at run time, and must be completed before the physical system advances one

numerical time-step [65]. Interaction between the numerical and physical substructures

eliminates the possibility of computing all of the load steps before the test begins.

These tests are intended to capture the structural dynamics and failure modes of the

entire structure, so the testing frequency must be sufficiently large (and time step
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Cybermech Platform

Physical MR Damper

Physical Substructure

Numerical Substructure

Figure 3.1.: An example of a Real-Time Hybrid Simulation Experiment

sufficiently small) to capture the response of the natural frequencies of interest and

control the testing devices in a stable manner. Frequencies of up to 1024Hz (time step

∆T = 0.977 ms) are commonly used, limiting the size of the numerical model that

can be solved in real-time. Typically the size and complexity of the numerical models

used in RTHS are limited by the ability of the computer to solve these models within

each time-step. Unfortunately, limiting the size of the numerical model can restrict

the fidelity of the simulation [3].

A numerical technique that can be used to reduce computational cost in a numerical

model, and thereby increase fidelity of RTHS, is multi-time-stepping (MTS). In MTS,

the numerical domain is decomposed into sub-models which are allowed to run at

different time scales [17]. Multi-time-stepping has been used to focus a numerical

analysis on regions of interest structurally, such as connections or flaws in a structure.

Solving only these critical regions at small time-steps, and the rest of the structural

model with relatively large time-steps, reduces the computation cost of the analysis

while still maintaining accuracy.

There are several methods for multi-time-stepping available in the literature.

Gravouil and Combescure [66] show that various methods of the Newmark family can

be coupled with different time steps in each subdomain. MTS integration schemes

have been developed by Belytschko et al. [11], Smolinski [12], Daniel [13], Gravouil

and Combescure [14,15], and Prakash and Hjelmstad [16,17]. Each of these papers

provides an integration scheme for solving subdomains with different time-step. Bursi
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Subdomain A

Small Time Step ∆t
Subdomain B

Figure 3.2.: Multi-time-step Decomposition of a Numerical Model

and co-workers [67, 68] use a multi-rate approach for a 2-DOF pseudo dynamics tests

where the numerical substructure is solved at one rate, and the physical substructure

is solved at another, and show a detailed convergence analysis. Bursi’s approach solves

the entire numerical substructure at the same time step, but allows it to be slower

than the physical substructure.

This work focuses on applying MTS to RTHS, which we call (MTS+RTHS).

Specifically, using a predictor for the MTS coupling to reduce the errors incurred by

applying asynchronous updates in the physical portion of the model. An in-depth

study is conducted investigating a series of choices of the predictor, and the effect of

predictor choice on the error in both the physical and numerical substructures. It

is demonstrated that MTS+RTHS is not only viable, but also essential when using

high-fidelity models in RTHS.

3.2 Real Time Hybrid Simulation (RTHS)

RTHS has been demonstrated successfully in a number of studies, for example

[65, 69–71]. The goal of RTHS is to provide the most realistic conditions possible,

and thus one must consider the influence of both the physical test procedures and

computational limitations. To examine the fidelity of RTHS, one must thus consider

possible sources of error to minimize those. Errors in RTHS can come from various

sources, including the numerical model, the numerical integration method, the testing

control and compensation system, and noise in the sensors [71]. These errors can
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propagate through a RTHS because the response of each time step is computed from

the previous time step, and can lead to instability of the system [72]. Numerical errors

can be reduced by increasing the complexity of the numerical substructure, but this

will incur a cost of computational time. The available computational time must be

shared between all aspects of the test to minimize the total error of the system and

prevent instability.

The finite element method is the preferred method for the numerical modeling of

physical systems. In the field of RTHS, however, using full-scale finite element models

has been challenging because of the large associated computational costs [3]. Many

numerical models in past RTHS involve single-degree-of-freedom (SDOF) models of

structures [73], simple shear models [74], or other reduced-order models so that the

real-time constraints can be met and transfer system controllers can be designed that

are stable when implemented on the physical system [75, 76]. Large finite element

models that fail to meet real-time constraints can contribute to instabilities in the

system if not properly dealt with.

Literature in the field of RTHS covers a variety of approaches for meeting the

real-time constraints. Some researchers choose to focus on compensation and control

schemes, and do not address the use of large numerical models in their experiments

[77–82]. Others focus on the numerical integration algorithms, but still do not

include numerical substructures with more than 100 degrees of freedom [83–85]. Some

researchers do use large numerical models in RTHS. Maghareh et al. [4] provide a

detailed analysis of how increasing the number of degrees of freedom in the model can

reduce error in an RTHS experiment. Chen and Ricles [86] use modal decomposition,

and focus on the low frequency modes of the system. Alternatively, multi-rate

approaches can be used, which solve the numerical model at a larger time-step, and

interpolates and/or extrapolates displacement signals to send to the control loop.

Nakashima and Masayoshi [87] explore this technique, but with a model limited to

10-12 degrees of freedom (DOFs). Other variations of these multi-rate approaches

include [5, 75, 88–90]. Alternatively, Saouma and Haussman [3, 7] implement a parallel
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finite element code, and increase the number of processors and available computing

power to solve models as large as 400 DOFs. Maghareh et al. [75] developed an

adaptive multi-rate interface to enable rate-transition between two models executed

at different computational rates. While available computing resources have increased

according to Moore’s law with time, the challenge of increasing the size of the numerical

models still remains. Real-time constraints limit the size of the numerical system, and

numerical techniques that decrease computation become more valuable as available

computing power increases.

Multi-time-stepping provides unique advantages when used in conjunction with

RTHS. In addition to the direct computational cost savings provided by the technique,

MTS can be used to relax the timing constraints. Specifically, the regions of the

numerical substructure that interact with the physical substructure directly, such as

the boundary regions, can be solved at the same rate as the physical substructure, and

the remainder of the numerical substructure can be solved at a lower rate of execution.

This approach allows for more complex numerical substructures to be modeled with

high fidelity while still meeting real-time constraints at the boundary points. Figure

3.3 shows an experiment that utilizes both RTHS and MTS, where everything within

the fast (∆t) subdomain is solved at the same rate as the physical substructure.

Low Rate Execution (∆T )

Physical Substructure (∆t)
Actuator (∆t)

Executed at
Physical Rate

(∆t)

Figure 3.3.: Multi Time Step Decomposition in RTHS

As with any integration scheme or experimental technique, it is important to

understand how error propagates through the system. This is particularly important

in RTHS as large errors during the execution of the experiment can produce unexpected

results, with the possibility of damaging the test specimen or testing equipment. This

work investigates the potential for using MTS+RTHS, looking directly at the cost and
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the error associated with RTHS modeling choices and MTS decomposition decisions.

Additionally, this work addresses algorithmic changes to multi-time-step methods

which are needed to maintain computational stability and reduce error when used

with RTHS.

3.3 Asynchronous multi-time-step (MTS) coupling of numerical and phys-

ical models

3.3.1 Conventional RTHS

RTHS is performed in a real-time computing environment, which allows the

computer to devote all of its computational power to the problem at hand. A

commonly used real-time environment is Matlab’s xPC [91], that runs within the

Matlab Simulink toolbox. Another environment is the Cybermech [10] platform, which

allows support for parallel computations.

NS C A PS
DD CS MD

MF

MD

Figure 3.4.: RTHS Control Flow Schematic

A typical RTHS control loop is shown in Figure 3.4. Here NS and PS denote

the numerical and physical substructures respectively, C denotes the compensation

and control loop, and A denotes the actuator. DD and MD denote the desired and

measured displacements, respectively, CS represents the command signal sent to the

actuator, and MF denotes the measured force from the physical substructure. Figure

3.5 shows an idealized version of how the system advances through time, omitting

the compensation and control steps. Here EOM represents solving the equations of

motion for the numerical substructure once.
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NS NS NS

PS PS PS

DD DD DDMF MF

EOM EOM

Figure 3.5.: RTHS order of computations and physical execution

The equations of motion for the numerical substructure can be expressed compactly

as:

M zn+1 = pPn+1 + pNn+1 − N zn (3.1)

where zn denote the states of the system (displacement, velocity, and acceleration at

each numerical DOF) at time tn, pNn+1 denotes the numerical block external load vector

consisting of the discrete load vector at time tn+1, and pPn+1 denotes the block external

load vector coming directly from the physical substructure. The block matrices

M and N contain the finite element matrices of the structure and the Newmark

integration parameters. The full formulation for this notation is available in [16,92].

These equations can be advanced one step forward in time from tn to tn+1 by solving

Equation 3.1 once.

The physical substructure is advanced forward in time by sending the command

signal to an actuator, which drives the virtual physical portion of the experiment. The

desired displacement is enforced at each control point on the physical substructure,

and the force in the actuator to generate this displacement is measured and applied to

the numerical substructure [69]. Typically an actuator is controlled by a voltage signal,

which controls a valve opening to a source of pressurized hydraulic oil. The actual (or

measured) displacement is compared to the desired displacement, and a feedback loop

is used to correct any differences [93]. Compensation and control techniques convert

the desired displacement of the actuator to a command voltage signal. Outer loop
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actuator controllers (compensators) are often included to deal with actuator dynamics

and enforce the boundary conditions [2, 69,74,77,94].

3.3.2 MTS method for numerical substructure

MTS Equations of Motion

Usually it is unnecessary to solve the entire numerical substructure at the smallest

time step (∆t) associated with the problem. Specifically, the numerical domain N ,

can be decomposed into two subdomains NA and NB, that are allowed to run at

time-steps ∆T and ∆t respectively, where ∆T = m∆t for some integer time-step ratio

m as shown in Figure 3.6. The two subdomains may also have different Newmark

time-integration parameters γ and β corresponding to different implicit or explicit

schemes.

Given the state of subdomains A and B at t0, multi-time-stepping is used to solve

the state at tm = t0 +m∆t by advancing subdomain A through one big time-step ∆T

and advancing subdomain B through m small time-steps ∆t. Lagrange multipliers, λ

are then used to compute coupling forces between the subdomains, ensuring that the

governing equations are satisfied. Figure 3.6 shows the flow of information for MTS.

NB NB NB NB NB NB NB NB NB

NA NA NA

Figure 3.6.: MTS Information Flow Schematic

The equation of motion for subdomain A is solved using the large time-step ∆T :

MA zAm +CAλm = pAm − NA zA0 (3.2)
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where λ denotes the Lagrange multipliers on the interface and the matrix CA represents

a mapping between the degrees of freedom on the interface to the degrees of freedom

for subdomain A (see [16] for details). The equation of motion for subdomain B is

solved m times using small time-step ∆t:

MB zBj +CBλj = pBj − NB zBj−1 ∀j ∈ [1,m] (3.3)

where the matrix CB represents a similar mapping between the degrees of freedom

on the interface to the degrees of freedom for subdomain B. The load vector pBj is

composed of both the numerical pB[N ]
j and physical pB[P ]

j contributions. In order

to compute Lagrange multipliers λj at the intermediate time-steps tj, a balance of

tractions at the interface is enforced:

CAT
[
MA zAj − pAj +CAλj

]
= 0 ∀j ∈ [1,m] (3.4)

Computational Solution Steps

Here, an overview of the solution procedure presented in [92] is given. On each

subdomain, the solution is split into two parts, z̄ and z′ as follows:

zA = z̄A + z′A ; zB = z̄B + z′B (3.5)

where z̄ that satisfies the uncoupled set of governing equations (in the absence of λ),

and z′ which accounts for the effect of the coupling Lagrange multipliers. Using this

approach the solution of the coupled subdomains A and B must be achieved in three

steps: (i) uncoupled subdomain solve, (ii) interface solve, (iii) subdomain updates.

These three steps are outlined below.
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Uncoupled Subdomain Solution First, the uncoupled solutions for subdomains

A and B are obtained as:

z̄Am =
[
MA

]−1 [
pAm − NAzA0

]
and (3.6)

z̄Bj =
[
MB

]−1 [
pBj − NBz̄Bj−1 − CBsj

]
∀j ∈ [1,m] (3.7)

where z̄B0 = zB0 and sj represents a predicted value of the coupling Lagrange multipliers.

sj = (1− j/m)λ0 (3.8)

Interface Solve Once the uncoupled solutions have been obtained, the coupling

Lagrange multipliers are solved using the equation:

λm = H−1f (3.9)

where the interface matrix H is defined as:

H = BAYA
m +BBYB

m (3.10)

and the right hand side vector f is given by the expression:

f = BAz̄Am +BBz̄Bm (3.11)

In the above equations, the matrices YA
m and YB

m are obtained from the following

expressions:

YA
m =

[
MA

]−1
CAT and (3.12)

YB
j =

[
MB

]−1
[(

j

m
CBT

)
−NBYB

j−1

]
∀j ∈ [1,m] (3.13)

respectively, where YB
0 = 0. Note that the Y matrices remain constant (for linear

problems) for all time-steps and therefore they can computed prior to beginning the

time-stepping loop. Consequently, the interface matrix H also remains constant for

the duration of the time-stepping and it too can be computed, factorized and stored

ahead of time for greater computational efficiency.
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Subdomain Updates Finally, having computed the coupling Lagrange multipliers,

the subdomain solutions can be updated using following contributions:

z′
A
m = −YA

mλm (3.14)

z′
B
j = −YB

j λm ∀j ∈ [1,m] (3.15)

Figure 3.7 shows a schematic of the MTS+RTHS scheme, and highlights an

inconsistency in the method. Arrows that go from right to left are going backwards in

time, and cannot be implemented in MTS+RTHS. While updating the past solutions

for subdomain B is not a concern in a pure numerical simulation, this presents a

problem in MTS+RTHS, as the physical substructure has already progressed to the

next time step, and cannot be updated retroactively. Without the correct value of

the coupling terms, solving the free form of Subdomain B will introduce error into

the physical substructure. This work introduces a predictor for λ0 to minimize the

error caused by synchronization updates. The predictor is only applied to the desired

displacement, maintaining all of the stability and convergence properties of the MTS

method, while still producing an accurate desired displacement for the actuator.

NB NB NB NB NB NB NB NB NB

NA NA NA

PS PS PS PS PS PS PS PS PS

Figure 3.7.: RTHS Control Flow Schematic with no prediction scheme
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3.3.3 Asynchronous predictor for MTS coupling of numerical and physical models

To overcome the inconsistency of MTS+RTHS, a general form of the predictor

used for λm is:

λPn+m = α0λn − α1∆T λ̇n + α2∆T 2λ̈n (3.16)

where λn is is known at the current step, λ̇n is approximated as

λ̇n = λn − λn−m
∆T (3.17)

and λ̈n is approximated as

λ̈n = λ̇n − λ̇n−m
∆T . (3.18)

Here λn represents a zeroth order, λ̇n represents a first order, and λ̈n represents

a second order approximation of the coupling forces. Four prediction schemes are

explored in Section 3.5.4 of this work. The prediction schemes differ in the choices of

α0, α1, and α2, and are shown in Table 3.1.

Table 3.1: List of MTS+RTHS Prediction Schemes

Scheme α0 α1 α2
No Prediction (Scheme #1) 0 0 0

Zeroth Order Prediction (Scheme #2) 1 0 0
First Order Prediction (Scheme #3) 1 0.5 0
Second Order Prediction (Scheme #4) 1 0.5 0.25

An idealized version, of the implementation of MTS+RTHS with predictors is

shown in Figure 3.8. Compensation and control is implemented between the numerical

and physical substructures, though not shown in Figure 3.8. Note that no corrector is

used, as the numerical substructures are still synchronized at each large time step, or

at every m small time steps. The predictor is only used when communicating with
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the physical experiment. Each update is applied as predicted, so information now

always flows forward in time.

NB NB NB NB NB NB NB NB NB

NA NA NA

PS PS PS PS PS PS PS PS PS

Predicted Predicted

Figure 3.8.: Idealized RTHS Control Flow Schematic with prediction scheme

3.3.4 Computational cost of MTS+RTHS

The design and implementation of a successful RTHS experiment requires accurate

knowledge of how the model will perform, both physical and numerically. Computa-

tional time is shared between numerical computations and control algorithms, and

numerical solve time affects the time delay during the test. A large numerical model

that cannot be solved within the real-time limits is not helpful. It is important to

understand the computational limitations of the testing apparatus, and to design

adequately scaled numerical models to match the capabilities of the test platform.

A cost model for the numerical substructure allows the engineer to correlate

numerical model size, and time step ratio to real computational time, which can then

be assessed from a control/time delay standpoint. Using this information, an engineer

can subdivide the numerical model appropriately, and select an ideal time-step ratio,

balancing computational time against error in the numerical integration.

The computational cost of the multi-time-step method was developed in [92]. For

the three steps in the MTS solution algorithm, a basic estimate of the computational

cost of each step can be obtained as:
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1. Uncoupled subdomain solve: O(η2
A) + O(mη2

B).

2. Interface solve are: O(ηI)2 operations.

3. Applying the subdomain updates are: O(ηAηI +mηBηI).

where (ηA) denotes the number of DOFs in subdomain A, ηB denotes the number of

DOFs in subdomain B, and ηI denotes the number of DOFs on the MTS interface.

Note that the most critical components of the cost is the size of each subdomain, i.e.

the number of degrees of freedom in both subdomain A and subdomain B.

For this section, we will assume that a RTHS experiment can be run at 1024-Hz

(0.977 sec) on a particular computer with at most D degrees of freedom. For parallel

machines with N cores, each computational core has the capability to solve D/N

degrees of freedom. If a larger uniform time-step is selected ∆T = m ∗ 0.977 sec,

each core can solve alternatively solve m ∗ D/N DOFs. Thus, for MTS+RTHS, if

the numerical substructure degrees of freedom are decomposed into DA + DB, then

m ∗ DA + DB DOFs can still be computed in 0.977 sec, effectively increasing the

size of the model by about (m− 1) ∗DA DOFs. While this is a simplification of the

computational cost of the system, Bunting et al. [92] show a detailed analysis of the

computational cost for the MTS method, and demonstrates the cost savings provided

by the method. The higher the value of m and the higher the number of degrees of

freedom in A, the larger is the size of the finite element model that can be in a RTHS

experiment. It is still important to select a large time step ∆T (and thereby m) that

solves subdomain A to within an acceptable amount of error.

3.4 Implementation of asynchronous MTS coupling on CyberMech - a

novel RTHS platform

CyberMech is a RTHS software platform based on a federated scheduling model

that allows parallelization to meet real-time constraints [9, 10]. Parallel execution
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allows larger, more realistic numerical models, as well as advanced computational

techniques to meet real-time constraints.

3.4.1 Taskset

This experiment executes two parallel tasks concurrently. The slow task is executed

every m time steps, and has ∆T seconds to complete. The fast task is executed every

time step, and has ∆t seconds to complete. These tasks are separate Linux processes,

and data is shared between them with a shared memory model.

3.4.2 Shared Memory Model

The shared memory model creates an array in memory that is accessible by

either task via Linux’s shared memory inter-process communication. To prevent race

conditions, only one task is allowed to read or write to the shared memory space at any

given time. Two such shared memory spaces are employed. The first facilitates passing

data from the slow process to the fast process. For this shared memory space, the

slow task is only allowed to write to the memory, and the fast process is only allowed

to read from the memory, and only after the slow process has finished updating. The

second facilitates passing data from the fast process to the slow process. For the

second shared memory space, the fast task is only allowed to write to the memory,

and the slow task is only allowed to read from the memory, and only after the fast

process has finished updating.

3.5 Results

In this section, a virtual RTHS experiment is performed on a nine-story frame

structure, described in [59]. The performance of two numerical models are evaluated,

a 184-DOF finite element model and a 9-DOF shear model, under an earthquake
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loading condition. A 200 kN magneto-rheological (MR) damper is placed on the first

floor of the building.

3.5.1 Virtual Real-time hybrid simulation of a nine-story frame

Numerical Substructure

L

H

(a) 184 DOF - Subdomain A is shown with light
red coloring, and Subdomain B is shown with
dark blue coloring. The physical substructure
is the MR Damper.

(b) 9 DOF Shear Model. Each floor has one
DOF in the lateral direction, and is constrained
both vertically and rotationally.

Figure 3.9.: Nine-story frame structure from [59]. Pinned boundary conditions in the
basement are represented by triangles, and lateral boundary conditions at the ground
level are represented by white circles.

The reference structure is a nine story frame with a 200 kN MR damper on the

first floor, shown in Figure 3.9. The numerical substructure is the nine-story frame

structure described in [59]. The structure is modeled with one frame element for each

beam and column. Properties of steel (E = 29, 000 ksi, ρ = 0.28 lbf/in3) are used for

the material. The structure has a total height H = 122 ft and total length L = 150 ft.

Rayleigh damping is used [29], with mass proportionality factor α = 1.2 and stiffness

proportionality factor β = 0.001. These values provide damping of approximately

modal damping of 5% for each of the first ten modes. Inertial loading of the 1940 El

Centro earthquake record at a magnitude of 10% is applied to the structure.
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As shown in Figure 3.9(a), the 184 DOF frame is decomposed into two parts.

Subdomain B, which communicates with the physical substructure, is solved at 1024-

Hz. Subdomain A is solved at a range of frequencies: 1024-Hz (m = 1), 512-Hz

(m = 2), 256-Hz (m = 4), 128-Hz (m = 8), 64-Hz (m = 16), 32-Hz (m = 32), and

16-Hz (m = 64). The error distribution for each frequency is presented.

As an alternative, Figure 3.9(b) shows a shear model of the frame structure. The

model is a reduced version of the 184-DOF model, and only allows for translation

in the lateral direction at each floor. The model was constructed using the same

column elements as the 184-DOF model, but limiting the degrees of freedom to only

the translational DOFs in the lateral direction. Both the basement and ground floor of

the model were completely constrained as was the rotations and vertical displacements

at each floor in the model. In the 184-DOF model, only the outer columns of the first

floor are constrained in the lateral direction. Raleigh damping on the mass was used,

with α = 1.2 and β = 0.001. This ensured that both models, which had the same

total mass, also had the same total damping. The β value was selected to ensure that

the rotational DOFs on the 184-DOF model were damped. Figure 3.10 shows the

roof displacements of each model for the first ten seconds of the simulation. While

both models capture the overall behavior of the structure, there are clearly differences

between the two responses.

The mass matrix of the shear model is given as:

M =



1.01e6 0 0 0 0 0 0 0 0

0 9.89e5 0 0 0 0 0 0 0

0 0 9.89e5 0 0 0 0 0 0

0 0 0 9.89e5 0 0 0 0 0

0 0 0 0 9.89e5 0 0 0 0

0 0 0 0 0 9.89e5 0 0 0

0 0 0 0 0 0 9.89e5 0 0

0 0 0 0 0 0 0 9.89e5 0

0 0 0 0 0 0 0 0 1.07e6


kg (3.19)
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Figure 3.10.: Comparison of Roof Displacement for the 184-DOF FEA model vs the
9-DOF Shear Model

And the stiffness matrix is given as:

K =



5.19e8 −3.70e8 0 0 0 0 0 0 0

−3.70e8 7.07e8 −3.38e8 0 0 0 0 0 0

0 −3.38e8 6.53e8 −3.16e8 0 0 0 0 0

0 0 −3.156e8 5.71e8 −2.56e8 0 0 0 0

0 0 0 −2.56e8 4.87e8 −2.32e8 0 0 0

0 0 0 0 −2.32e8 4.12e8 −1.80e8 0 0

0 0 0 0 0 −1.80e8 3.49e8 −1.69e8 0

0 0 0 0 0 0 −1.69e8 3.41e8 −1.72e8

0 0 0 0 0 0 0 −1.72e8 1.72e8


N/m (3.20)

Control System

To realistically account for the computational time required, a controller is included

in the vRTHS. Figure 3.11 shows the control schematic for the experiment. The

control loop is solved numerically on the Cybermech platform using discrete state

space integration. The resulting displacement and velocity are sent to the damper

model using a National Instruments NI-6259 data acquisition card. The damper model

is implemented on a separate computer as the virtual physical substructure.
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Control System

To realistically account for the computational time required, a controller is included

in the vRTHS. Figure 3.11 shows the control schematic for the experiment. The

control loop is solved numerically on the Cybermech platform using discrete state

space integration. The resulting displacement and velocity are sent to the damper

model using a National Instruments NI-6259 data acquisition card. The damper model

is implemented on a separate computer as the virtual physical substructure.

DD Transfer System Gain +/- C A MD

Unit Delay

Figure 3.11.: Control System Included for Realistic Computation Times

Physical Substructure

Cybermech Platform

Analog Communication

Emulated MR Damper

Figure 3.12.: virtual Real-Time Hybrid Simulation (vRTHS)

Figure 3.12 shows the setup for a ‘virtual’ RTHS experiment (vRTHS), where

the physical substructure is modeled on a separate computational platform from the

numerical substructure. The Cybermech platform sends and receives signals as if it was

communicating with a physical substructure in an actual RTHS although no actuator

is present as the transfer system. Analog data transfer is used, which introduces some
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experimental noise. The virtual physical substructure is a 200 kN magneto-rheological

(MR) damper emulated with a Bouc-Wen model [95] using xPC target and placed

on the first story of the structure, as shown in Figure 3.9. The MR damper is in a

passive-on mode, with a constant DC voltage signal of 2V. The displacement applied

to the damper is the numerical difference in displacement between the 1st and 2nd

floors of the structure. The force from the damper is then returned to the Cybermech

computer and applied to the corresponding nodes on the numerical substructure.

For comparison of solutions from MTS+RTHS, a reference solution is generated

using the 184-DOF model and a time step ratio of one, with the physical-numerical

communication after synchronization, which is numerically equivalent to using a

uniform time-step method. The structure is excited with the 1940 El Centro earthquake

history, with an earthquake magnitude of 10%. Figure 3.13 shows the response of the

roof both with and without the damper for the first ten seconds of the simulation.

The damper has an effect of reducing the peak roof displacement from 2.217 cm to

1.997 cm, a reduction of 9.93%. The error in the solution is given as
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Figure 3.13.: Effect of Bouc-Wen Damper. The maximum roof displacement is reduced
by 9.93 %
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ε =

√√√√ 1
N

N∑
n=0

1
I

I∑
i=0

(
xin − xi∗(tn)
MAX(x∗)

)2

(3.21)

where N is the number of small time steps taken, and I is the number of degrees of

freedom in the system.

3.5.2 Error Distribution with Shear Model

While this model has substantially a lower computational cost than the 184-DOF

shear model, it fails to capture rotations, vertical response, and the behavior of the

structure within each floor of the system. In this work, four main sources of error

are evaluated: modeling error, time discretization error, experimental error, and

synchronization error. Maghareh et al. [4] gives a detailed analysis for the modeling

error in this structure, and finds that reducing the degrees of freedom in the model

from the 184-DOF model (presented here) to a 9-DOF shear model added about 4

percent error in the displacement.

Modeling error is generated by the series of assumptions made when the structure is

modeled as a numerical substructure. Some of the modeling error can be alleviated by

increasing fidelity, and consequently the size of the numerical model. Figure 3.14 and

3.15 compare the damper force and damper displacement respectively for 184-DOF

model and the 9-DOF shear model. The damper force error in the shear model, using

the 184-DOF model as a reference, is 16.32%. The displacement error in the shear

model, using the 184-DOF model as a reference, is 3.73%. Maghareh et al [4] gives

a detailed analysis for the modeling error in this structure, and finds that reducing

the degrees of freedom in the model from the 184-DOF model (presented here) to a

9-DOF shear model added about 4% error in the displacement, which is consistent

with the findings presented here.

Time discretization error is the error generated by the choice of ∆T , choosing a

larger time step will result in higher error in numerical integration for any integration

technique. The time discretization error is computed by solving the different MTS
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cases in a pure numerical system, without the MR damper, and comparing to a

reference solution (m = 1).

Experimental error refers to the random errors resulting from the experimental

setup. This is dominated by analog data transfer between the numerical model and

the physical substructure, which adds some communication noise. Experimental error

can be defined as the expected differences between different experimental runs. To

quantify this error here, a reference solution is generated by running each of the cases

(m = 1,2,4,8,16,32,64) ten times, and taking the mean response at each degree of

freedom and time-step over the ten runs. Experimental error is then quantified as the

average RMS error between each of those ten runs and the reference solution.

Finally, synchronization error is introduced by the asynchronous updates in the

MTS+RTHS algorithm, specifically due to missing the synchronization step between

subdomains A and B in the MTS method. For the case when the time step ratio

is equal to one, the synchronization error is zero if the updates are applied before

communication with the physical control system. This case is used as a reference

solution. The synchronization error for each choice of time step ratio is then obtained

by computing the RMS error between the average solution and the reference solution,

and subtracting the known time discretization error.

3.5.3 Error Distribution with No Predictor

The total error is determined by summing the time discretization error, experimen-

tal error, and synchronization error. The error associated with each choice of time

step ratio m in the finite element model is shown in Figure 3.16 (a), and the error in

the MR damper force is shown in Figure 3.16 (b). The contribution of each type of

error to the total error is shown as a normalized percentage in Figure 3.16 (c) and

3.16 (d).

Figure 3.17 shows a portion of the time history response from t = 7s to t = 7.5s of

the MR damper force at a selected number of time step ratios. Here, the inconsistencies
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Figure 3.14.: Measured MR damper force for FEA model vs Shear Model (passive-on)
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Figure 3.15.: Damper Displacement for FEA model vs Shear Model

due to the MTS method are clear. The damper force takes a sudden jump once every

large time step, or once every m small time steps. Note that this jump is present

but not visible for m = 4, but is very visible for larger choices of m. In addition to

the numerical inconsistencies caused by this jump, note that large changes in desired
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(c) Normalized FEM
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Figure 3.16.: Error with No Predictor (Scheme # 1)

displacement can result in poor performance of the control system. Additionally, these

jumps can potentially introduce chattering or instabilities in the physical system, as

well as damage physical components. The goal of each predictor scheme is to minimize

this jump, and subsequently synchronization error throughout the entire finite element

model.
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Figure 3.17.: Peak measured MR Damper force with differing time step ratios

3.5.4 Analysis of selected predictor schemes

Recall the list of predictor schemes chosen in Table 3.1, and that Scheme # 1

represents no prediction for reference. Figure 3.18 shows the time discretization,

experimental, and synchronization error associated with each prediction scheme when

m = 4. Even for this small value of m, the prediction schemes are able to reduce the

synchronization error in the system. It is interesting to note that for Scheme # 4, the

poor prediction results introduced instabilities (Figure 3.17) which increase both the

variability between experiments and the experimental error. It is hypothesized, but

not explored here that these jumps result from the piecewise continuous nature of the

earthquake time record, where large jumps in loading can negate the benefits of higher

order prediction schemes that rely on smoothness in the higher order derivatives of the

solution. While the true earthquake loading is continuous and smooth, the recorded

history at a discrete number of points shows sudden changes in loading values. Figure

3.19 shows the MR damper force with each prediction scheme for m = 4.

Figure 3.20 shows the time discretization, experimental, and synchronization error

associated with each prediction scheme when m = 16. It is shown here that the
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Figure 3.18.: Predictor Error with m = 4
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Figure 3.19.: Measured MR Damper Force with m = 4

synchronization error in the physical substructure is of the order of the experimental

error, and in the finite element model, the synchronization error is dwarfed by the time

discretization error. It is interesting to note that reducing the synchronization error
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also reduced chattering in the system (caused by discontinuities in desired damper

displacement), which decreased the average experimental error.
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Figure 3.20.: Predictor Error with m = 16

Figure 3.21 shows the MR damper force with each prediction scheme. Note that

vRTHS using MTS with Schemes #1 and #4 results in an offset with the reference

force, but with schemes #2 and #3, MTS is able to match the reference force very

well.

Figure 3.22 shows the error distribution with m = 64. For this case, the time

discretization error is an order of magnitude larger than the other types of error. The

synchronization is shown to be larger than the experimental error for this choice of

m. This outcome is not surprising, as Figure 3.23 shows that the predictors have

largely failed to match the reference damper force. Though the magnitude of the

discontinuities is greatly decreased, the physical substructure is clearly not receiving

a smooth signal, and the algorithm is introducing higher order dynamics into the

system.
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Figure 3.21.: Measured MR Damper Force with m = 16
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Figure 3.22.: Predictor Error with m = 64

3.6 Discussion

In this work, it is shown that the 9-DOF shear model results in a large error

relative to the 184-DOF frame model. For high fidelity RTHS, even larger models may

be needed, and MTS+RTHS can be used to run these large models within real time
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Figure 3.23.: Measured MR Damper Force with m = 64

constraints. The choices made in MTS+RTHS parameters clearly have a significant

impact on the behavior of both the numerical substructure (the finite element model),

and the simulated physical substructure (the MR damper). It is observed that, while

the asynchronous updates do introduce some synchronization error into the RTHS

system, it is relatively small when compared to the error generated simply by the

choice of ∆T (shown in Figure 3.18, 3.20, 3.22).

The reduction in error is much lower for the m = 4 case. This result is attributed

to the low error in the system. The synchronization error is on the same order

of magnitude as the sensor noise, being under 1% total RMS error in the physical

substructure and under 0.1% total RMS error in the numerical substructure.

For the case of m = 16, the synchronization error is nearly eliminated, and is

an order of magnitude smaller than the experimental error. This demonstrates that

we can use large time step ratios to solve larger models of numerical models using

MTS+RTHS.

The time step ratio choice of m = 64 pushes the limits of the method, but the

synchronization error still comprises less than 20% of the total error in the finite
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element model. Applying the predictor reduced that percentage down to about 10%.

However, the 4% error in the MR damper force, along with the additional dynamics

added by the MTS method, indicate that m = 64 is too large a choice for this problem.

The 1940 El-Centro earthquake acceleration history used in this experiment was only

sampled every 0.02, resulting in a piecewise continuous loading that changes values

very suddenly. A choice of ∆T of 16-Hz (0.0625 sec) is already exceeds this sampling

frequency, and may be too large for the prediction schemes.

With these observations, it is clear that MTS+RTHS can be used to solve large

numerical substructures coupled with physical substructures to improve the fidelity

of RTHS. However, it is important to understand errors created by the choice of ∆T

and ∆t, and to make sure that discontinuities and chattering is not introduced by the

coupling method.

3.7 Conclusions

MTS+RTHS can be used to solve large numerical substructures while still meet-

ing real-time constraints to improve the fidelity of RTHS. In this study, the MTS

synchronization error is studied, and several predictors are presented to mitigate

this error. The effects of each predictor at several time step ratios are provided and

discussed for a benchmark nine-story frame structure. Furthermore, it is shown that

the synchronization error for time step ratios as high as m = 16 is of the same order

of magnitude as experimental error for the benchmark problem. This work presents

an MTS+RTHS method that enables large finite element models to be used in RTHS,

greatly increasing the current RTHS capabilities.
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4. HIERARHICAL MULTI-SCALE MODELS FOR PARALLEL

REAL-TIME HYBRID SIMULATION

Real-Time Hybrid Simulations (RTHS) are experiments where physical and numerical

substructures are coupled in real-time. RTHS is used when a physical model is too large

or too expensive to construct, and a numerical model is unable to accurately capture

the dynamics of the system. Historically, these simulations have been limited to small,

linear numerical models, as the computational limitations of RTHS have prevented the

use of larger models. In addition to the steady increase in available computing power,

new computational algorithms have emerged that allow for larger numerical models.

In this work, a hierarchical structure of numerical models is constructed, ranging from

small linear models to large nonlinear models. Large nonlinear numerical models that

utilizes multi-time-step (MTS) and beam-continuum coupling are used in an RTHS

experiment of a five-story scaled model building, and the results are compared to

both simple linear models and full physical tests. The use of these models in RTHS is

analyzed, and the results demonstrate that such multi-scale models can be effectively

used to improve the fidelity of RTHS.

4.1 Introduction

In the field of structural analysis, engineering structures are modeled and tested to

see how they might perform under various conditions, such as impact or earthquake

loading. These models can be physical, typically built at a small scale and tested in

an experimental laboratory. These models can also be numerical, modeled in a finite

element program, and tested by solving the equations of motion with respect to given

loading conditions. Both types of experiments have limitations: full-scale physical

experiments are typically prohibitively expensive, small-scale physical experiments
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often fail to capture the response of the structure, and numerical experiments may

fail to capture non-linearities in the structure. Real-Time Hybrid Simulations (RTHS)

are coupled experiments, where a portion of the structure is modeled numerically, and

a portion of the experiment is performed physically [65]. RTHS are performed when

a substructure of the building is well understood and can be modeled numerically,

but a realistic model for another portion of the building is not available, and must be

simulated experimentally to get reliable results. An actuation device, often powered

by pneumatic pressure, is used to control the interaction between the numerical and

physical substructures. Figure 4.1 shows such a real-time hybrid simulation.

Numerical Substructure

Physical Substructure
Actuation Device

Figure 4.1.: Real-Time Hybrid Simulation Experiment

Many successful Real Time Hybrid Simulations are available in the literature [3, 7,

75,89,90]. Figure 4.2 shows the typical data flow between the numerical substructure(s)

(NS) and physical substructure(s) (PS) of a real-time hybrid simulation. The numerical

substructure (NS) sends a Desired Displacement (DD) to the controller. The controller,

with some knowledge of the actuation (A) device and physical substructure (PS),

sends a command signal (CS) to the actuator. The measured displacement (MD) is

sent to the controller, and applied to the physical substructure. The measured force

(MF) is returned to the numerical substructure.

A common type of RTHS experiment is displacement driven, where a hydraulic

actuator applies a displacement or series of displacements on the physical substructure.

These displacements are applied via actuator devices, which can be powered either

electronically or through a hydraulic system. The control of such devices is an active

area of research, but typically open or closed loop controllers are used to drive the
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devices [93]. Outer loop actuator controllers are often included to enforce the numerical

boundary conditions on the physical substructure(s) [2, 69,74,77,94].

NS C A PS
DD CS MD

MF

MD

Figure 4.2.: RTHS Control Flow Schematic

The dynamic nature of these experiments mandates that the numerical substruc-

tures be solved in real-time: to accurately capture the dynamics of the entire system,

the numerical substructure must advance at the same rate of execution as the physical

substructure. Typically, due to the dynamics of the actuation device, real-time is gen-

erally defined as 1024-Hz or faster. The computational cost and real-time constraints

limit the size of potential numerical substructures. While most purely numerical

simulations include non-linearities, the field of RTHS has historically been limited to

small, linear numerical models [77–82,96]. Some experiments are limited to one degree

of freedom (DOF) per building, while others use linear or nonlinear finite element

analysis [8, 83–85,96].

While linear finite element analysis can be used to model structures, these models

fail to capture building response in the non-linear range. If structures enter their

nonlinear regions, as often happens during earthquakes, nonlinear material models are

needed to compute their response. In the non-linear range, the stiffness of the material

is dependent on both current and prior displacements. One such material model is J2

plasticity, originally proposed by Von Mises [97]. Other types of non-linearity include

large deformations, where small angle assumptions may no longer hold. There are

some examples of nonlinear models in RTHS [8], where a specific on-linearities are

included to capture a specific type of behavior. However, RTHS experiments utilizing

large nonlinear finite elements models are largely absent from the literature.
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Numerical Substructure
composed largely of beam elements

Physical Substructure
Control Device

Detailed Component with
non-linear continuum elements

Figure 4.3.: System level RTHS with multi-scale models

In some cases, it is not possible to model the entire structure with a refined mesh

or a complex nonlinear model, but it may be possible to model parts of the structure.

If areas of the structure likely to go nonlinear can be determined a-priori, multi-scale

models that capture the nonlinear behavior in nonlinear regions can be used , but

use inexpensive models in the linear regions of the structure. Models with that span

multiple scales of space and/or time are known as multi-scale models. Models that

are multi-scale in time use techniques such as multi-time-stepping (MTS) to solve

a region of the model at a smaller time-step. Models that are multi-scale in space

may use a finer spatial discretization and complex multi-scale material models to

capture nonlinear behavior in select regions of the model. Multi-scale models have

been proposed to improve the fidelity of RTHS. The coupling of linear beam elements

with nonlinear continuum elements is an example of a model that is multi-scale in

space. When nonlinear continuum elements are solved at a finer time-scale to capture

multi-scale behavior, the model is both multi-scale in space and multi-scale in time.

Conducting parallel RTHS with such models, as shown in Figure 4.3 is the objective

of this work..
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4.2 Cybermech Computational Platform

Recent work by Ferry and colleagues [9, 10] has led to the development of Cyber-

mech, a real-time platform based on federated scheduling [98] designed specifically

to run large numerical models for RTHS. The work presented in Chapter 3 has

led to the development of real-time hybrid simulation with multi-time-step analysis

(RTHS+MTS), allowing portions of the numerical model to be solved at different time

steps. These developments, along with the availability of faster processors and large

parallel computers, have increased the potential size of numerical substructures that

can be run in RTHS. In this work, the Cybermech platform is used to run RTHS

with hierarchical models, which are multi-scale in both time and space. In this work,

the Cybermech platform is extended using a patched version of openBLAS [99] (a

parallel basic linear algebra library) that forces openBLAS to respect the processor

affinities specified in the Cybermech platform, as the out-of-the-box OpenBLAS

library tends to use every CPU on the host machine. In addition, modifications to

the shared memory object that allows passing of data between separate executables

running concurrently on Cybermech was also implemented to enable parallel RTHS

of nonlinear structures.

The Cybermech platform is a computational platform that allows for full, nonlinear

finite element models to be solved in real-time [9, 10]. Alternative computational

platforms for RTHS include Matlab’s xPC target [91], SpeedGoat xPC [100], and

dSPACE [101]. However, none of these allow for real-time parallelism. One advantage

of the CyberMech platform is that it allows for fully customizable C/C++ code to be

run in parallel using real-time priorities, ensuring that real-time constraints can be

met. It is this customizable C++ capability that allows for multi-scale RTHS.

The platform is able to run two parallel tasks concurrently, where data is transferred

between them via Linux’s shared memory model. For a MTS problem, which is multi-

scale in time, the slow task is computed each coarse time-step ∆T , and the fast task
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is computed each small time-step ∆t. The small time step is executed m = ∆T
∆t times

for each coarse time step.

4.3 Formulation of Multi-Scale Models for RTHS

4.3.1 Nonlinear Explicit MTS

Multi-time-step integration methods are a family of numerical integration algo-

rithms that allow one to solve dynamic structural analysis problems at different rates

in time [14, 16,17, 92, 102,103]. Prakash and coauthors [17] derive a nonlinear version

of the MTS coupling method. A brief overview of this method is given, focusing on

the changes to the algorithm necessary for adapting MTS and multi-scale models to

RTHS as shown in Figure 4.4. In this work, multi-scale models are built using beam

and continuum coupled elements.

Numerical Substructure

Physical Substructure
Control DeviceMTS Boundary

Component Level Behavior

Figure 4.4.: System Level RTHS with Multi-Scale Models

For MTS, a finite element mesh is split into two or more parts. Here, Subdomain A

represents the region of the structure solved at the large time step ∆T , and Subdomain

B represents the region of the structure solved at the small time step ∆t. Traditionally,

the coupling between two domains creates a constraint matrix that enforces continuity

of velocity between two subdomains at each corresponding degree of freedom. Here,

an alternative method is constructed, allowing beam nodes (with two translational

degrees of freedom and a rotational degree of freedom) to be coupled with continuum
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nodes (with only the two translational degrees of freedom). Constraints are added

between the rotational degree of freedom on the beam node to the translational degrees

of freedom on the continuum nodes, which ensure consistency of the cross-sectional

displacements of the beam and continuum elements at their interface. Here the

traditional MTS method is extended to encompass beam-continuum coupling.

4.3.2 Equations of Motion

On Subdomain A, a linear, implicit algorithm is used on beam elements. This

Subdomain can be advanced by solving its equation of motion

MAüA +DAu̇A +KAuA +CAT

λ = fA (4.1)

using traditional implicit Newmark parameters. On Subdomain B, the internal force

vector is denoted as fB
int. The equation of motion

MBüB +DBu̇B + fB
int +CBT

λ = fBext (4.2)

is solved using traditional explicit Newmark parameters. The internal force fint may

be a nonlinear function of displacement, so an implicit algorithm requires a Newton

loop to converge on the nonlinear solution. The real time nature of these experiments,

as discussed in Chapter 3 precludes such indefinite algorithmic loops over time, as the

physical experiment is moving continuously forward through time. At each large time

step, continuity is enforced between the two regions, using linear constraint matrices.

CAu̇A +CBu̇B = 0 (4.3)

Figure 4.5 shows the pseudo-code for the nonlinear solution.
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for t = 0 ; t < tF ; t = t+ ∆t do
while resid > tol do

Solve Linear Subdomain A - dlin = K−1
el fext

Solve Subdomain B
for n = 0; n < m; n+ + do

Obtain FB
int

residiEl = [Fext − Fint]
end for

Couple Subdomains A & B
Compute Updates (∆uA,∆uB, ∆λ, etc.)
Update Solution

end while
Exchange with Physical Substructure

end for

Figure 4.5.: Nonlinear Coupling Algorithm for MTS with Beam-Continuum Coupled
Models
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4.3.3 Coupling Matrices

The traditional method to build the coupling matrices CA and CB is given in [16],

and is adapted here, to highlight the differences between the traditional formulation

and the beam-coupling formulation. For multi-time-step methods that couple two

continuum regions, the coupling matrices at each node are given as:

CA
node =

X Y

Λ1

Λ2

 1 0

0 1

 (4.4)

and

CB
node =

X Y

Λ1

Λ2

 −1 0

0 −1

 (4.5)

For multi-time-step methods that couple two beam regions, the coupling matrices at

each node are given as:

CA
node =

X Y θ

Λ1

Λ2

Λ3


1 0 0

0 1 0

0 0 1


(4.6)

and

CB
node =

X Y θ

Λ1

Λ2

Λ3


−1 0 0

0 −1 0

0 0 −1


(4.7)

Each local matrix is assembled into a global coupling matrix for each subdomain,

which contains all of the constraints. These constraints are typically enforced on

velocities, however it is also possible to enforce them on displacements or accelerations.
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4.3.4 Beam-Continuum Coupling

Pitandi [18] developed a beam-continuum coupling model. Lagrange multipliers are

used to enforce geometric constraints between beam and continuum regions of a large

structural model. Figure 4.6 shows a sample mesh that demonstrates beam-continuum

coupling. Figure 4.7 shows the deformed shape of the beam-continuum sample mesh.

For beam-continuum coupling, a single beam node is connected to several continuum

finite element nodes. The kinematic hypothesis of beam theory is enforced at each

point in the continuum mesh. According to the beam kinematic hypothesis, the

location of point P in the continuum model after deformation can be written as

xp = Xb + uuwb
+ Λp (4.8)

where xp is the location of point P in the deformed configuration, Xb denotes the

location of the beam centroid in the undeformed configuration, and uuwb
denotes the

displacement vector of the beam node containing both the horizontal and vertical

components, p is the position vector of point P with respect to the centroid of the

cross-section, and Λ is the rotation matrix representing the rigid-body rotation of the

beam cross-section about is centroid. For planar (2D) problems, the rotation matrix

Λ can be simply expressed as

Λ =

 cos θ − sin θ

sin θ cos θ

 (4.9)

The position of a continuum node with respect to a beam node can be described

with the variables L and φ. The magnitude L represents the absolute distance from

the beam node to the coupling node, and φ represents the counter-clockwise angle from

the x-axis to the continuum node, as shown in Figure 4.6. The variable θ represents

the beam rotational DOF. If small angle theory is used for the rotational degree of

freedom at the beam node, sin(θ) = θ, the result system of linear constraints can be

used in place of the the traditional coupling matrices for the MTS method. For a large
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Figure 4.6.: Schematic of Beam-Continuum Coupling
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Figure 4.7.: Beam-Continuum Coupling Deformed Shape
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displacement nonlinear implementation, the value of φ is updated as the continuum

nodes move.

The displacement at a node with φ = 0 caused by a rotation θ are:

X Direction: L− L cos θ =⇒ 0 (4.10)

Y Direction: L sin θ =⇒ Lθ (4.11)

For other values of φ, the rotation matrix Λ is applied,

 cosφ − sinφ

sinφ cosφ


 0

Lθ

 =

 −Lθ sinφ

Lθ cosφ

 (4.12)

resulting in the linear constraint equations for each node:

0 = xBeam − L sin(θ) sin(φ)− xContinuum (4.13)

0 = yBeam + L sin(θ) cos(φ)− yContinuum (4.14)

These equations rigidly maintain the initial angle of the continuum elements. Note

that the continuum nodes along the interface are now also rigidly constrained to

each other. A line of continuum elements will remain a line, consistent with a beam

cross section. If the beam node and continuum node share the exact coordinates, the

distance L goes to zero, and the contribution from the rotational DOF drops out.

Adding the lateral and vertical constraints on the beam node, the local coupling

matrix for a single constraint for the beam subdomain can be derived as:

CA
beam−node =

X Y θ

Λ1

Λ2

 1 0 L sin(φ)

0 1 −L cos(φ)

 (4.15)
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while the local coupling matrix for a single constraint for the continuum subdomain

can be derived as:

CB
continuum−node =

X Y

Λ1

Λ2

 −1 0

0 −1

 (4.16)

These local coupling matrices are assembled into regional coupling matrices, which

contain all active DOFs in each region. One beam node can be coupled to multiple

continuum nodes. For the linear case, these constraint matrices do not change the

overall structure of the MTS algorithm. The only implementation difference for

beam-continuum coupling is the sparsity and values of the coupling matrices.

4.3.5 J2 Plasticity

In this work, a basic J2-plasticity model with isotropic and kinematic hardening is

employed [97]. Von Mises suggested that yielding occurred when J2 attains a critical

value, where J2 can be written in terms of the principal stresses σ1, σ2, σ3:

J2 = 1
6
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
(4.17)

The material is treated as elastic when the J2 is within the yield surface J2 < k2, and

is yielding when J2 = k2, where R =
√

2k describes the radius of the yield surface,

and k is a measurable material parameter [104].
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4.4 Verification

Verification of Beam-Continuum Coupling

The cantilever beam verification problem for the beam continuum coupling is shown

in Figure 4.8. Figure 4.8 shows the deformed shape and tress for the beam-continuum

mesh.

Compression

Tension

Figure 4.8.: Beam Continuum Deformed Shape and Stresses

The beam is constrained in the lateral direction on the left boundary, with a single

vertical constraint at the middle node. At the far right of the structure, a vertical

load is applied. The beam had a length of 3 m, a height of 0.5 m, and a depth of 1 m.

For the beam elements, the cross section area was 0.5 m2, and the moment of inertia

about the x-axis was I = dh3

12 = 0.01041666m4. For both the continuum elements and

the beam elements, Young’s Modulus E = 2.05 ∗ 108, and the density ρ = 7.8. For the

continuum elements, Poisson’s ratio ν = 0.0. A load of P = −1.0 ∗ 104 N was applied

at the end of the cantilever. The static solution to the cantilever beam problem is

given as:

δ = PL3

3EI = −0.0421463. (4.18)

The total mass of the beam is given as

m = Lhdρ. (4.19)
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where L, h, and d are the length, height, and depth of the beam respectively. The

dynamic response of the beam is shown for a period of 0.1 sec in Figure 4.10. There

is no damping on the beam for the verification problem. The analytical and finite

element static solutions are shown for each case in Table 4.1.

Table 4.1: Static Verification of Beam-Continuum Coupling

Analytical Beam Continuum Beam-Continuum
Vertical Displacement -0.0421463 -0.0421463 -0.0409868 -0.040898

Error 0 2.2 ∗ 10−11 0.0275 0.0296
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Figure 4.9.: Quasi Static Verification Beam Bending

4.4.1 Nonlinear Verification

The nonlinear Q4 elements were verified on same cantilever beam, composed

entirely of Q4 elements. The elastic material parameters consisted of a Young’s

modulus of 2e11N/m2, and a Poisson’s ratio of 0.0, and a density of 7800kg/m3. The

plastic material parameters consist en of a yield stress of 400 MPa and a plastic



89

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.01 0.02 0.03 0.04 0.05 0.06

Ve
rt

ica
lD

isp
la

ce
m

en
t(

m
)

Time (s)

Continuum Elements
Beam Elements

Continuum-Beam Coupling
Rotated Continuum-Beam

Figure 4.10.: Dynamic Verification Beam Bending

modulus of 2e10 N/m2. The displacement at center of the beam of the cantilevered

tip was measured.

Table 4.2 shows the nonlinear verification results.

Table 4.2: Static Verification of Nonlinear Q4 Elements

ABAQUS NLQ4
Vertical Displacement -0.03608 -0.034902

4.5 Experimental and Numerical Models

4.5.1 Physical Structure

The reference structure is a five story building shown in Figure 4.11. A detailed

drawing of a single story is shown in Figure 4.12. The experimental identification of

the model is presented in [105,106]. Each story as a center-to-center column height

of 7 in, and is connected by a rigid floor plate. The effective column height, not
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Figure 4.11.: Five Story Frame

constrained by the connection, is 6.5 in. Each column has an average thickness of

t = 0.125 in. Each column has an average width of w = 1 in. For beam element

models, the cross sectional area of each column A = wt = 0.125 in2. The moment of

inertia, I, about the weak axis is computed as I = wt3/12 = 1.7342∗10−4 in4. Young’s

Modulus of the columns was measured to be E = 192.3 GPa. A Poisson’s ratio of

ν = 0.287 was assumed. A density of ρ = 0.284 lbs
in3 is assumed. Each floor has a total

mass of 56.22 lbs. Rayleigh damping is used with a mass contribution of α = 1.2 and

a stiffness contribution of β = 0.01. Figure 4.13 shows the stress strain curve of the

material obtained from a uni-axial tension test.

4.5.2 Shear Model

The shear model contains 5 degrees of freedom, allowing only lateral movement

on each floor. With only 5 degrees of freedom, this is the computationally smallest

model to solve, and can be solved well within the real-time limit. There are a number

of real time hybrid experiments in the literature that only use shear models as their

experimental models. The shear model is shown in Figure 4.14(a).
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Figure 4.12.: Elevation View of Single Story, reproduced from [105]
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Figure 4.13.: Stress Strain Curve from Uni-axial Tension Test (reproduced from [106])

4.5.3 Simple Beam Model

The simple beam model uses one beam element per column. The two columns

are connected by a rigid floor beam element. The model is composed of 12 nodes

connected by 25 beam elements. The model contains 30 degrees of freedom: lateral,

vertical, and rotational degrees of freedom at each node, minus the four boundary

degrees of freedom. The simple beam model is shown in Figure 4.14(b).

4.5.4 Detailed Beam Model

The detailed beam model is made up of multiple Euler-Bernoulli elements with

lumped mass. Beam elements with higher cross sectional areas and moments of inertia

are used near the connections, in the 0.5 adjacent to the rigid floor. The model is

composed of 32 nodes, connected by 45 beam elements. The detailed beam model is

shown in Figure 4.14(c).
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(a) Shear Model (b) Simple Beam Model

(c) Detailed Beam Model (d) Beam-Continuum Model

(e) Hybrid Model

Figure 4.14.: Experimental Models

4.5.5 Linear Continuum Model

A linear continuum model, composed entirely of continuum elements, was consid-

ered, however it was not possible to solve such a model within the real-time constraints.
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Figure 4.15.: Beam Continuum Model Column-Floor Detail

As an alternative, beam-continuum models were constructed that contained linear

and nonlinear Q4 elements around the floor-column joints.

4.5.6 Linear Beam-Continuum Model

The Linear Beam-Continuum model uses beam elements for the majority of the

columns, but continuum elements around the connections. Similarly to the pure

continuum model, four continuum elements are meshed across the width of the beam.

For the rigid floors, a single beam element is used, rather than the large number of

continuum elements required in the pure continuum model. Figure 4.14(d) shows the

beam-continuum model, with the ends of the column modeled as continuum elements.

The model is composed of 490 nodes, 25 beam elements, and 320 continuum elements.

Figure 4.15 shows the mesh detail around the beam and column intersection. The

dark blue Q4 elements are solved at a small time step (Subdomain B), and the light

red beam elements are solved at the large time step. The beam-continuum coupling

interactions are shown with thick green lines.
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4.5.7 Nonlinear Beam-Continuum Model

The nonlinear beam-continuum model uses the same mesh as the linear beam-

continuum model, but with J2 plasticity activated. The model has a yield stress of

500 MPa, and a plastic modulus of 1.66 GPa. These values were chosen to match the

experimental data acquired in [105,106].

4.5.8 Hybrid Models

In addition to the aforementioned models, some hybrid models were constructed

as combinations of the aforementioned models. For example, if only the first two

floors are expected to go into the nonlinear range, the third, fourth and fifth floors

can be modeled with linear elements. If a detailed analysis of how these floors are

behaving is not essential, the upper floors can be modeled with the beam and shear

models. In the case of RTHS, a truly hierarchical approach can be applied – there is a

hard computational limit on the experiment, and the computational resources must

be distributed in a way that gives the best results. Figure 4.14(e) shows a hybrid

numerical substructure where the second floor is a beam-continuum nonlinear model,

and the third, fourth, and fifth floors are the detailed beam model. The model is

composed of 104 nodes, 32 beam elements, and 48 continuum elements.

4.6 Experimental Validation

Each numerical model was validated through a series of experimental tests. An

impact hammer tests was used to determine the natural frequencies of the system, a

nonlinear cyclic static test was used to determine hysteretic behavior, and shake table

tests were conducted for experimental validation.
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Figure 4.16.: Natural Frequencies of Numerical Models

4.6.1 Impact Hammer Test

The first test was a hammer test, used to determine the natural frequencies of the

system. Figure 4.16 shows the undamped natural frequencies of each model, along

with the experimental results. In the linear range, both the linear and nonlinear

beam-continuum models show the same results. From these results, it can be seen

that the experimental structure is slightly stiffer than each numerical models.

4.6.2 Nonlinear Cyclic Static Test

The second test was a static cyclic test, where a quasi static specified displacement

was placed on a one story frame, and loaded repeatedly in both directions. Figures 4.17

- 4.21 show the results from these experiments, along with the corresponding results

from each model. Figure 4.17 shows that each linear model is shown to matches the

slope of the initial loading curve. The nonlinear beam-continuum model replicates the

initial slope of the loading curve (elastic stiffness), as well as the initial slope of the the

"backbone" curve in the hysteresis, and the loading/unloading behavior of the structure.

The nonlinear beam-continuum model does diverge some from the experimental model

with a displacement of over 2.5 cm, however the dynamic experiments will fall short
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of that linear range. In the event that the experiment does reach such a displacement,

the structure will likely fail under the load conditions.
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Figure 4.17.: One Story Cyclic Static Test

Figure 4.18 highlights the early non-linearities in the static cyclic test. Note that

even though the structure is in the expected linear loading range, the slope of the

displacement load curve changes. Three sets of nonlinear cyclic static tests were

conducted. Experiment 1 was conducted on an undamaged frame, and Experiments

2 and 3 were conducted on the same frame immediately after the previous tests.

Experiments 2 and 3 both show evidence of being damaged by the prior experiments,

and both have initial asymmetry.
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Figure 4.18.: One Story Cyclic Static Test - Linear Range
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Figure 4.19 shows the reaction force at the top of the one story frame required to

achieve the specified displacement.
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Figure 4.19.: One Story Cyclic Static Test

Figure 4.20 shows a zoomed in version of Figure 4.19, and highlights some initial

nonlinear in the experimental models. Each of the first two peaks is well withing the

expected linear range of the structure, but the reaction force doesn’t increasing in a

linear behavior. This may be due to some "play" in the floor-column joints, were a

small amount of motion is allowed with minimal force.
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Figure 4.20.: One Story Cyclic Static Test

Figure 4.21 shows the absolute value of the reaction force at each load step, and

highlights asymmetry in the physical models. Both Experiment 1 and Experiment 3
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show distinct asymmetry in the reaction force, likely originating in the beam-column

joints.
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Figure 4.21.: One Story Cyclic Static Test

4.6.3 Five Story Shake Table Tests

For the final validation, the entire five story structure was constructed and placed

on a shake table, where is was loaded with scaled versions of the 19xx El-Centro

earthquake. Shake Table Test A applied the 58 second El-Centro earthquake loading

with a magnitude scaling factor of 0.2. Shake Table Test B applied the 58 second

El-Centro earthquake loading with a magnitude scaling factor of 0.5. The results from

each floor of Shake Table Test A are shown in figure 4.22. The results from each floor

of Shake Table Test B are shown in figure 4.23. The results from each floor of Shake

Table Test C are shown in figure 4.24. The results from each floor of Shake Table Test

D are shown in figure 4.25.

Shake Table Test C applied the 58 second El-Centro earthquake loading with a

magnitude scaling factor of 1.0. Shake Table Test D applied the 58 second El-Centro

earthquake loading with a magnitude scaling factor of 2.0. Each of these tests occurred

within the linear response range of the structure. Figures 4.26 - 4.28 show the roof

displacement from each physical experiment, with the results scaled inversely with the
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Figure 4.22.: Shake Table Test A Results
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Figure 4.23.: Shake Table Test B Results
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Figure 4.24.: Shake Table Test C Results
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Figure 4.25.: Shake Table Test D Results
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Figure 4.26.: Scaled Experiment Comparison (Roof Displacement)
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Figure 4.27.: Scaled Experiment Comparison (Roof Displacement)

original loading. It can be seen here that while the peak displacement and behavior at

the beginning of the earthquake scales linearly with magnitude, the damping does not.

The comparison between experiment A and the other experiments show that at small

displacements, the experimental structure moves in a nearly undamped behavior.
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Figure 4.28.: Scaled Experiment Comparison (Roof Displacement)
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Figure 4.29.: Scaled Experiment Comparison (First Floor Displacement)

Figure 4.29 shows the scaled first floor displacements of the experimental structure.

Figure 4.26 and 4.29 highlight the need for RTHS. While the natural frequencies of

the structure match well, and the nonlinear static response match well, the numerical

models are still unable to capture the dynamic response of the building. Specifically,
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the building seems to oscillate at low values of displacement, where these oscillations

are damped out in the numerical model. Any inclusion of physical results into the

simulation will capture this behavior, even if a full scale experiment is not possible.

4.6.4 Real Time Hybrid Experiment

The building was excited with the El-Centro earthquake with a magnitude to 10%

The Numerical substructure was the top four floor of the building, and the physical

substructure was the bottom floors, as shown in Figure 4.30. Displacement based

control was used for each experiment. In each experiment, the simulated physical

substructure is the nonlinear beam-continuum model, running in isolation as a physical

simulated substructure. The only communication between the numerical and physical

substructures is through the NIDAQ cards on two different computers, in the form of

desired displacement and reaction force. A desired displacement was sent from the

numerical substructure to the compensation and control loop, and the measured force

was returned from the physical substructure to the numerical substructure, as shown

in Figures 4.31 and 4.32.

4.7 Results

4.7.1 Pure Numerical Results

Figure 4.33 - 4.35 shows the results from the pure numerical experiments. Figure

4.33 shows the roof displacements for each numerical model. Figure 4.34 shows the first

floor displacement, at the interface, for each model. Figure 4.35 shows the interaction

force from the physical substructure to the numerical substructure.

4.7.2 RTHS Results

Figures 4.36 - 4.38 show the results from the RTHS experiments with a stiffness

member acting as the physical substructure. Figure 4.36 shows the roof displacement
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Physical Substructure

Numerical Substructure

Figure 4.30.: RTHS Setup for Five Story Frame
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Figure 4.31.: RTHS Control Flow Schematic
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Figure 4.32.: vRTHS Control Flow Schematic

of each model from the RTHS results. Figure 4.37 shows the first floor displacement

of the RTHS, at the interaction point. This is the desired displacement sent to the

physical substructure.

Figure 4.38 shows the interaction force between the first and second floors of the

RTHS experiment. This is the measured force sent from the physical substructure to

the numerical substructure.

4.7.3 Nonlinear Behavior

Figure 4.39 shows the results of the Hybrid model with an earthquake magnitude

1.0, and the scaled results of the Hybrid model with an earthquake magnitude 2.5,

demonstrating the nonlinear behavior of the model. The softening of the model at
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Figure 4.33.: Roof Displacement of Each Model (Numerical)
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Figure 4.34.: First Floor Displacement (Numerical)

high displacements can be seen as the difference between the peaks of the two curves.

If the model were operating in the linear range, the scaled results would match exactly.
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Figure 4.35.: Interaction Force (Numerical)
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Figure 4.36.: Roof Displacement of Each Model (RTHS)

4.8 Discussion

These results clearly demonstrate both the benefits of both RTHS and high fidelity

numerical substructures. Despite the seemingly simple structural design, it is extremely

difficult to match all of the experimental results. Even in the small displacement range,
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Figure 4.37.: First Floor Displacement (RTHS)

-600

-400

-200

0

200

400

600

0 2 4 6 8 10

Re
ac

tio
nF

or
ce

(N
)

Time (s)

Shear Model
Simple Beam Model

Detailed Model
Hybrid Linear

Hybrid Nonlinear

Figure 4.38.: Interaction Force (RTHS)

there is some nonlinear behavior in the connections. While this nonlinearity can be

understood in this case by building a physical model, in general this is expensive and

infeasible. In these cases, there is a clear benefit to having high fidelity models of the

numerical substructure. While no numerical model will match experimental results



110

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 2 4 6 8 10

Ro
of

D
isp

la
ce

m
en

t(
m

)

Time (s)

Hybrid Nonlinear 1.0
Hybrid Nonlinear 2.5

Figure 4.39.: Roof Displacement of Each Model (RTHS)

exactly, it is important to get as high fidelity a model as possible. Real Time Hybrid

Simulation allows the coupled numerical-physical experiment to provide better results

than a pure numerical experiment. The ability to capture nonlinear results is essential

to using high fidelity RTHS.

4.9 Conclusions

In conclusion, it has been demonstrated that advance numerical modeling tech-

niques such as the MTS method and beam-continuum coupling can be combined with

nonlinear material models in Real Time Hybrid Simulation. While these techniques

are computationally beyond the reach of traditional RTHS, careful modeling and

algorithm selection can allow for nonlinear behavior in the numerical substructure.

It has been demonstrated that these numerical models give better results than shear

models and other small linear models.
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5. PARALLEL ELLIPSOIDAL PERFECTLY MATCHED LAYERS

FOR ACOUSTIC HELMHOLTZ PROBLEMS ON EXTERIOR

DOMAINS

Exterior acoustic problems occur in a wide range of applications, making the finite

element analysis of such problems a common practice in the engineering community.

Various methods for truncating infinite exterior domains have been developed, including

absorbing boundary conditions, infinite elements, and more recently, perfectly matched

layers (PML). Perfectly matched layers are gaining popularity due to their generality,

ease of implementation, and effectiveness as an absorbing boundary condition. PML

formulations have been developed in Cartesian, cylindrical, and spherical geometries,

but not ellipsoidal. Some recent studies have demonstrated the solution of the

PML Helmholtz problem in parallel. In this study we examine the conditioning and

performance of the PML Helmholtz problem, and we compare with an infinite element

approach that is based on high order basis functions.

To enable a fair comparison between PML and infinite elements, we perform a We

show that, because of the poor conditioning related to the high order basis functions,

the number of Helmholtz solver iterations

In this paper we present a parallel, ellipsoidal PML formulation for acoustic

Helmholtz problems. performance To faciliate the meshing process, the ellipsoidal

PML layer is generated by a simple extrusion. Though the complex stretching is

defined along ellipsoidal contours, we modify the Jacobian to include an additional

mapping back to Cartesian coordinates in the weak formulation of the finite element

equations. This allows the equations to be solved in Cartesian coordinates, which is

more compatible with existing finite element software. As essentially any shape can

be efficiently embedded in a minimal volume ellipsoid, ellipsoidal PML provides an
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efficient domain truncation strategy that does not have the extra complications of

corners.

We present massively parallel implementations of both PML and infinite elements

on ellipsoidal domains, and compare their performance on representative exterior

acoustic problems. We also examine the conditioning of the linear systems generated

by the two techniques by examining the number of Krylov-iterations needed for

convergence to a fixed solver tolerance.

5.1 Introduction

Perfectly Matched Layers (PML) were originally developed in 1994 [20] for simulat-

ing electromagnetic waves on exterior domains. This method provides an elegant and

effective means of terminating a finite element acoustic mesh without reflections. A

layer of elements is added around the acoustic domain that, at least on the continuous

level, absorbs waves of all frequencies and of all angles of incidence.

Recent research efforts by Hohage et al [107] and Lassas et al [108, 109] have

proven the convergence of the exterior acoustic problem with PML boundaries as the

thickness of the PML layer tends to infinity. These references provide a theoretical

basis for convergence of the PML methods in general. However, in practice one would

like to use the smallest (most efficient) acoustic mesh, such as an ellipsoidal mesh, and

truncate with a finite-thickness PML.

Despite the versatility of PML, some gaps currently exist in the literature for

these methods. First, though infinite elements [110–118] and absorbing boundary

conditions [119] have been developed for ellipsoidal domains, existing PML formulations

have been developed for Cartesian, cylindrical, and spherical domains [21–23,120,121].

For many applications that involve long, slender structures, an ellipsoidal formulation

would allow for the PML to more naturally match the acoustic meshes of interest, and

would avoid the extra complications of corners and edges in the formulation. In time-

domain PML, corners are an extra complication that requires additional computation.
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Additionally, Cartesian PML can be viewed as a special case of curvilinear PML where

each flat face of the Cartesian PML is constructed from a curvilinear PML with a

very large radius of curvature. Thus the curvilinear approach is general and offers

significant versatility.

Parallel implementations of PML, and an understanding of the conditioning of

and solution of the resulting system of equations with parallel iterative solvers, are

additional gaps in the PML literature. Given that many structural acoustic systems

result in large linear systems, parallel implementations and preconditioners are highly

desirable for these problems.

This paper presents a parallel formulation and implementation of perfectly matched

layers in an ellipsoidal coordinate system. Given an interior, unstructured acoustic

mesh, perfectly matched layers are extruded into a structured mesh that surrounds

the acoustic domain of interest. This conformal meshing strategy allows for easy

manipulation of PML thickness, and could also be extended to non-conformal PML

layers, wherein the PML is embedded in meshes with different underlying geometry

[121]. In order to facilitate the implementation in a finite element code that is based

on Cartesian coordinates, we present a mapped PML in which the weak formulation

is mapped back to Cartesian coordinates. This follows recent work for spherical and

cylindrical PML [22, 121], and allows the PML parameters such as thickness and

number of elements to be changed without the need to remesh the entire domain,

which can be computationally intensive in large models. The PML is implemented

in parallel, and compared with the absorbing boundary condition and the infinite

element solution for both accuracy and linear solver performance.

5.2 Theory

Given a structure S surrounded by bounded interior domain Ωi, and an exterior

domain Ωe, the exterior acoustics problem consists of determining the acoustic pressure,

p, in domain Ωe ∪ Ωi. We refer to Figure 5.1 for a schematic of the geometry. In
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Figure 5.1.: Domains Ωi and Ωe and interface Γ for the exterior acoustic problem.

a domain truncation strategy, boundary conditions are applied to the outermost

boundary Γe of Ωi. Several strategies can be used for this purpose, including absorbing

boundary conditions, infinite elements, and PML. In this section we derive formulations

for ellipsoidal PML. To facilitate the development of the theory, we start by first

presenting formulations for Cartesian, rotated Cartesian, and spherical PML.

To illustrate the ideas, we assume an acoustic pressure wave propagating in the

x-direction, with wavenumber k = ω
c
, where ω is the circular frequency, and c is the

speed of sound. The wave takes the form

p(x) = p0e
ikx (5.1)

As written, this wave is undamped, and will propagate indefinitely with no change of

shape. However, if we allow the wave to propagate on a coordinate system that has

complex coordinates x̃ = a(x) + ib(x), where a(x) and b(x) are functions of x, then

the equation of the wave becomes [122]

p(x̃) = p0e
ikx̃ = p0e

i(−ka(x)+ikb(x)) = p0e
−kb(x)eika(x) (5.2)

We observe that this wave now corresponds to damped wave propagation, with decay

coefficient equal to kb(x). This wave will decay exponentially fast.
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In order for equation 5.2 to be a solution to a wave equation, that wave equation

must itself be written in a coordinate system that is complex, rather than real-valued.

On the other hand, the corresponding finite element implementation is most easily

derived on a real-valued coordinate system. Thus, though the governing partial

differential equations of the PML are written in a complex coordinate field, the

corresponding weak formulation is mapped to a real coordinate system, to facilitate

the finite element implementation.

In order to build up to the ellipsoidal PML formulation, the following sections

provide derivations of rectangular, rotated rectangular, and spherical PML. These

provide the building blocks for the ellipsoidal case. We will subsequently show that

the ellipsoidal formulation reduces to the spherical and rectangular cases under certain

conditions, and thus includes these formulations as special cases.

Cartesian PML

We define the PML domain as being a paralleliped of dimension (2a, 2b, 2c),

centered at the origin, with an interior paralleliped hole of dimension (2ā, 2b̄, 2c̄).

Practically, this would correspond to the case where the structure of interest, as

complex shape it may have, was surrounded by an acoustic mesh that terminated

at the boundary of the inner paralleliped. The PML would then occupy the region

between the inner and outer paralleliped boundaries. A simple shift can be applied if

the domain is not origin-centered.

Step 1. Analytic continuation. The PML equations can be written in either

first or second order form. Here we consider the implementation of second order form.

In the interior Ω = ΩI , the acoustic pressure must satisfy the acoustic Helmholtz

equation

−∆p− k2p = 0 (5.3)
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where k = ω
c
, and p is the acoustic pressure, a prescribed Neumann boundary condition

on ΓS
∂p

∂n
= g(x, ω) (5.4)

and the Sommerfeld radiation condition at infinity [22]

∂p

∂n
+ ikp ∈ L2(ΩE) (5.5)

where k = ω
c
We note that equation 5.3 involves constant coefficients, meaning that the

speed of sound and density in the fluid are assumed to be constant. More specifically,

equation 5.3 is undamped, meaning that the waves will not attenuate as they propagate

through the medium.

Equation 5.3 is written in terms of real coordinates. As illustrated earlier, in order

to have the waves decay in the PML, we need to have the waves propagate on a

complex grid rather than a real-valued grid. Thus, we use analytic continuation to

map the Helmholtz equation into the complex plane

− ∆̃p− k2p = 0 (5.6)

where the change of coordinates is defined as

x̃ = x− i

ω

∫ a

x
σ(ξ)dξ a < x < ā (5.7)

x̃ = x+ i

ω

∫ x

a
σ(ξ)dξ − ā < x < −a (5.8)

Step 2. Weak formulation over complex-valued domain. We note that the

weak formulation of equation 5.6 can be constructed using either a bilinear or sesquilin-

ear formulation [123, 124]. The difference is only whether complex conjugation is

applied to the test functions. In standard finite element methods for acoustics, these

formulations lead to the same discrete system of equations. However, with PML the

formulations yield different numerical methods. In this paper we take the bilinear
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approach, since it yields a complex-symmetric system of linear equations that can be

exploited in the linear solver. The bilinear weak form of equation 5.6 seeks p ∈ Vf (Ω̃I)

such that ∫
Ω̃I

〈∇̃p, ∇̃q〉 − k2pq dΩ̃I =
∫

Γ̃S

gqdΓ̃S (5.9)

where the tildes indicate quantities defined over the complex extension of the domain

ΩI .

Step 3: Apply the chain rule. From equations 5.8 and the Fundamental Theorem

of Calculus, we see that

∂x̃

∂x
= γx(x) = 1 +− i

ω
σ(x) (5.10)

Similar expressions hold for the y and z coordinates. This implies that the gradients

of acoustic pressure can be transformed between the real and complex domains using

a Jacobian

∇p = Jcart∇̃p (5.11)

where the Jacobian matrix for the Cartesian coordinate system Jcart is defined as

Jcart =


γx 0 0

0 γy 0

0 0 γz

 (5.12)

Conversely, we can map from the complex to the real derivatives using the inverse

of the Jacobian.

∇̃p = J−1
cart∇p (5.13)

where

J−1
cart =


1
γx

0 0

0 1
γy

0

0 0 1
γz

 (5.14)
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The scale factor that maps Ω̃I into ΩI is simply the determinant of the Jacobian,

Wcart = γxγyγz (5.15)

Step 4: Revert to real-valued weak formulation. Using the previous results

and the determinant relation from equation 5.15, the corresponding weak version of

the Helmholtz equation is given as follows. Find p ∈ Vf (ΩI) such that

∫
ΩI

[
(J−1

cart∇p) · (J−1
cart∇q)− k2pq

]
WcartdΩI =

∫
ΓS

gqdS. (5.16)

We note that we can turn this into a Helmholtz equation with variable coefficients as

follows ∫
ΩI

A〈∇p,∇q〉 − k2Wcartpq dΩI =
∫

ΓS

gqdΓS (5.17)

where A = WcartJ
−1
cartJ

−T
cart. We note that A is a symmetric matrix, which follows from

our choice to use a bilinear formulation rather than sesquilinear.

Note that equation 5.17 achieves all of the goals that were set from the beginning - a

symmetric weak formulation over the real-valued domain, but with built-in dissipative

properties stemming from the transformation to complex coordinates.

In the following sections, we will derive PML equations for rotated Cartesian,

spherical, and ellipsoidal coordinates. In all cases, the weak formulation will be

precisely the same as in equation 5.17, but with a different Jacobian matrix J and

corresponding determinate W . Thus, we will only derive expressions for J in each of

the coordinate systems.

Rotated Cartesian Coordinates

In this section we consider the case where the PML surface is extruded from a

flat plane that is oriented at an arbitrary angle in three-dimensional space. If we
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define x = xi, i = 1, 2, 3 as the unrotated coordinates and x′ = x
′
i, i = 1, 2, 3 as the

coordinates in the rotated coordinate system, we have

R =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (5.18)

where aij is the direction cosine between the xi and x
′
i axis. This defines the transfor-

mation as follows

x
′ = Rx (5.19)

The Jacobian matrix for this case can be computed from the chain rule [121]

Jrotcart = ∂(x̃, ỹ, z̃)
∂(x, y, z) = ∂(x̃, ỹ, z̃)

∂(x′y′ , z′)
∂(x′ , y′ , z′)
∂(x, y, z) =


γx 0 0

0 γy 0

0 0 γz

R = JcartR (5.20)

The inverse of this matrix is given as

J−1
rotcart = RTJ−1

cart
(5.21)

Thus, the coefficient matrix for this case is given by

A = WrotcartJ
−1
rotcartJ

−T
rotcart

= WrotcartR
TJ−1

cart(JcartR)−T

= WcartR
TJ−1

cartJ
−1
cartR

(5.22)

where we have used the fact that Wrotcart = Wcart. We see that this involves a simple

rotation tensor transformation applied to the diagonal Jacobian matrix given in the

unrotated case, equation 5.14. Thus, equation 5.17 applies, and can be used to

construct the weak formulation in the rotated Cartesian case, but with a modified

coefficient matrix A given in equation 5.22.
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Spherical Coordinates

In a similar manner, we can derive the Jacobian matrix for a spherical PML.

Though other researchers [120, 125] have chosen to solve the spherical PML equations

directly in spherical coordinates, we prefer to map the equations back to the Cartesian

system to facilitate the finite element implementation. Thus, in this case our Jacobian

needs to account for this additional transformation. The formulation for this case is

given in [121]. The mapping from spherical to Cartesian coordinates is given as

x = r sin(φ) cos(θ)

y = r sin(φ) sin(θ)

z = r cos(φ)

(5.23)

The corresponding analytically continued coordinates are given as

x̃ = r̃ sin(φ) cos(θ)

ỹ = r̃ sin(φ) sin(θ)

z̃ = r̃ cos(φ)

(5.24)

With these definitions the Jacobian matrix is given by the chain rule

Jspherical = ∂(x̃, ỹ, z̃)
∂(x, y, z) = ∂(x̃, ỹ, z̃)

∂(r, φ, θ)
∂(x, y, z)
∂(r, φ, θ)

−1

=


r̃
′ sin(φ) cos(θ) r̃ cos(φ) cos(θ) −r̃ sin(φ) sin(θ)

r̃
′ sin(φ) sin(θ) r̃ cos(φ) sin(θ) r̃ sin(φ) cos(θ)

r̃
′ cos(φ) −r̃ sin(φ) 0




sin(φ) cos(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

sin(φ) sin(θ) r cos(φ) sin(θ) r sin(φ) cos(θ)

cos(φ) −r sin(φ) 0


−1

(5.25)
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Once again, equation 5.17 applies, and can be used to construct the weak formu-

lation in the case of spherical coordinates, but with a modified coefficient matrix A

given in equation 5.25.

We note that an advantage of the curvilinear PML formulation is that it is one-

dimensional in the sense that the stretching only happens in one of the coordinate

directions, in this case the radial direction. Thus, we simply can define the stretching

as being in the radial direction only. This takes the form

r̃ = r + i
∫ r

R
σ(ε)dε (5.26)

which implies that

r̃
′ = ∂r̃

∂r
= γ(r) = 1 + iσ(r) (5.27)

Ellipsoidal Coordinates

In the case of ellipsoidal coordinates, we first must choose an appropriate coordinate

system for the complex stretching of the PML. Ellipsoidal coordinates can be expressed

in various ways, but we have found use of the coordinates developed by Burnett [114]

to be the most convenient for defining the PML. As in the spherical case, we prefer to

solve the final equations in Cartesian coordinates rather than ellipsoidal. Thus, we

will apply complex stretching to the ellipsoidal coordinate system, but will map the

resulting equations back to Cartesian coordinates for the finite element solution. Once

again, all of these transformations can be applied with the Jacobian.

We define an ellipsoidal radius [114] as

r = c1 + c2

2 (5.28)

where c1 and c2 are the distances of a given point on the ellipse to the two foci. We

note that on the ellipsoidal surface, r is a constant, and is essentially a generalization

of the notion of radial distance in the case of a sphere. Given the major and minor
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radii a and b of the ellipse, the distance to the focus along the major axis is given by

f =
√
a2 − b2.

In terms of PML, we choose the direction of complex stretching to be along the

direction defined in equation 5.28. We note that unlike the radial direction for a

sphere, equation 5.28 defines curvilinear lines, and thus the PML layer will produce

damping along those directions. This is necessary since if we were to define damping

along straight-line paths (say in the direction normal to the ellipsoid surface), then

the complex stretching would occur in all three directions r, φ, θ.

Given these parameters, the ellipsoidal coordinate system is defined as

x =
√
r2 − f 2 sin(φ) cos(θ)

y =
√
r2 − f 2 sin(φ) sin(θ)

z = r cos(φ)

(5.29)

Note that in the case of a sphere, a = b which implies that f = 0, and these coordinates

reduce to the spherical case. The stretched coordinates in the ellipsoidal case are

given by

x̃ =
√
r̃2 − f 2 sin(φ) cos(θ)

ỹ =
√
r̃2 − f 2 sin(φ) sin(θ)

z̃ = r̃ cos(φ)

(5.30)
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This implies that the transformation matrix is given as

Jellipsoidal = ∂(x̃, ỹ, z̃)
∂(x, y, z) = ∂(x̃, ỹ, z̃)

∂(r, φ, θ)
∂(x, y, z)
∂(r, φ, θ)

−1

=


r̃r̃
′

√
r̃2−f2

sin(φ) cos(θ)
√
r̃2 − f 2 cos(φ) cos(θ) −

√
r̃2 − f 2 sin(φ) sin(θ)

r̃r̃
′

√
r̃2−f2

sin(φ) sin(θ)
√
r̃2 − f 2 cos(φ) sin(θ)

√
r̃2 − f 2 sin(φ) cos(θ)

r̃
′ cos(φ) −r̃ sin(φ) 0




r√
r2−f2

sin(φ) cos(θ)
√
r2 − f 2 cos(φ) cos(θ) −

√
r2 − f 2 sin(φ) sin(θ)

r√
r2−f2

sin(φ) sin(θ)
√
r2 − f 2 cos(φ) sin(θ)

√
r2 − f 2 sin(φ) cos(θ)

cos(φ) −r sin(φ) 0



−1

(5.31)

Ellipsoidal Coordinates with X axis as Major axis

The previous section assumed that the major axis of the ellipse was oriented along

the z direction. For completeness, we show here how to adjust the formulation in

the case when the major axis is along the x direction. In this case the ellipsoidal

coordinate system is defined as

x = rcos(φ)

y =
√
r2 − f 2 sin(φ) sin(θ)

z =
√
r2 − f 2 sin(φ) cos(θ)

(5.32)

Note that in the case of a sphere, a = b which implies that f = 0, and these coordinates

reduce to the spherical case. The stretched coordinates in the ellipsoidal case are

given by

x̃ = r̃ cos(φ)

ỹ =
√
r̃2 − f 2 sin(φ) sin(θ)

z̃ =
√
r̃2 − f 2 sin(φ) cos(θ)

(5.33)
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This implies that the Jacobian matrix is given as

J = ∂(x̃, ỹ, z̃)
∂(x, y, z) = ∂(x̃, ỹ, z̃)

∂(r, φ, θ)
∂(x, y, z)
∂(r, φ, θ)

−1

=


r̃
′ cos(φ) −r̃ sin(φ) 0

r̃r̃
′

√
r̃2−f2

sin(φ) sin(θ)
√
r̃2 − f 2 cos(φ) sin(θ)

√
r̃2 − f 2 sin(φ) cos(θ)

r̃r̃
′

√
r̃2−f2

sin(φ) cos(θ)
√
r̃2 − f 2 cos(φ) cos(θ) −

√
r̃2 − f 2 sin(φ) sin(θ)




cos(φ) −r sin(φ) 0
r√
r2−f2

sin(φ) sin(θ)
√
r2 − f 2 cos(φ) sin(θ)

√
r2 − f 2 sin(φ) cos(θ)

r√
r2−f2

sin(φ) cos(θ)
√
r2 − f 2 cos(φ) cos(θ) −

√
r2 − f 2 sin(φ) sin(θ)



−1

(5.34)

5.2.1 Relations Between the PML Formulations

It is clear that as the minor and major axis become equal, a = b, and hence f = 0.

This implies that the Jacobian for ellipsoidal coordinates in equation 5.31 reduces to

the spherical Jacobian given in equation 5.25.

As an additional step, we consider that the spherical Jacobian reduces to that of

the Cartesian in the limiting case of a large radius of the inner sphere defining the

PML boundary. This can be seen by considering equations 5.26 and 5.27, which we

repeat here for convenience

r̃ = r + i
∫ r

R
σ(ε)dε (5.35)

which implies that

r̃
′ = ∂r̃

∂r
= γ(r) = 1 + iσ(r) (5.36)

As r →∞, we see from equation 5.26 that if r −R is constant, then r̃ → r, since the

imaginary term will become vanishingly small compared to r. However, from equation
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5.27 we see no limiting change in r̃′ as r becomes large. Thus, going back to equation

5.25, we have

Jspherical = ∂(x̃, ỹ, z̃)
∂(x, y, z) = ∂(x̃, ỹ, z̃)

∂(r, φ, θ)
∂(x, y, z)
∂(r, φ, θ)

−1

=


r̃
′ sin(φ) cos(θ) r̃ cos(φ) cos(θ) −r̃ sin(φ) sin(θ)

r̃
′ sin(φ) sin(θ) r̃ cos(φ) sin(θ) r̃ sin(φ) cos(θ)

r̃
′ cos(φ) −r̃ sin(φ) 0




sin(φ) cos(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

sin(φ) sin(θ) r cos(φ) sin(θ) r sin(φ) cos(θ)

cos(φ) −r sin(φ) 0


−1

→


r̃
′ sin(φ) cos(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

r̃
′ sin(φ) sin(θ) r cos(φ) sin(θ) r sin(φ) cos(θ)

r̃
′ cos(φ) −r sin(φ) 0




sin(φ) cos(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

sin(φ) sin(θ) r cos(φ) sin(θ) r sin(φ) cos(θ)

cos(φ) −r sin(φ) 0


−1

=


γr 0 0

0 1 0

0 0 1




sin(φ) cos(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

sin(φ) sin(θ) r cos(φ) sin(θ) r sin(φ) cos(θ)

cos(φ) −r sin(φ) 0




sin(φ) cos(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

sin(φ) sin(θ) r cos(φ) sin(θ) r sin(φ) cos(θ)

cos(φ) −r sin(φ) 0


−1

=


γ(r) 0 0

0 1 0

0 0 1



(5.37)

Thus, the limiting case of a large radius for the PML surface reduces to a one-

dimensional PML layer. Constructing a tensor product with PML layers in the other

two directions produces a diagonal Jacobian matrix as given for the Cartesian case

in equation 5.12. Thus, one could use ellipsoidal PML to construct Cartesian PML

simply be artificially defining the radius of the PML layer to be very large.
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We have shown that the ellipsoidal PML reduces to spherical when the major and

minor axis coincide, and that the spherical reduces to Cartesian in the limiting case of

a large inner radius of the PML boundary. Thus, one could simply have an ellipsoidal

formulation in an existing finite element code and use it to construct spherical and/or

Cartesian PML layers as desired. This generality makes the ellipsoidal formulation a

convenient choice.

5.3 LossFunction

One parameter of the PML formulation is the choice of σ (ξ) from Equation

5.8. The choice of σ defines how rapidly the complex transformation occurs in

the boundary layers. While the choice of the loss function σ(d) is discussed in

the literature [21, 22, 126], papers in the literature use a range of formulations and

implementations, and it is still unclear what the best choice is for any given problem.

Bermudez [21] recommends singular loss functions (Equation 5.38), which is unbounded

at the outer boundary.

σ (ξ) = c1

t− ξ
(5.38)

Michler et al. [22] uses fifth and sixth order polynomials. The consensus in the

literature is that the loss function should start at a low value (often zero) on the inner

boundary to minimize numerical reflections, but should increase at an increasing rate

to maximize the loss terms near the outer boundary.

Rather than present another analysis of possible loss functions for this formulation,

a simple loss function is selected, that includes only the constant, linear, quadratic,

and cubic terms.

For the polynomial loss function, four parameters define the loss function

σ (ξ) = c1 + c2
ξ

t
+ c3

ξ2

t2
+ c4

ξ3

t3
(5.39)
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Where c1, c2, c3, and c4 are specific to the problem, ξ is the distance along the

normal from the Gauss point to the inner ellipsoid boundary, and t is the total

thickness of the PML layer. The loss function is normalized such that changing the

thickness of the PML layer does not change the maximum value of σ. The calculation

for σ̄ is performed analytically, and is shown to be

σ̄ (ξ) = c1ξ + c2
ξ2

2t + c3
ξ3

3t2 + c4
ξ4

4t3 (5.40)

To further simplify the search for the best loss parameter, c1 was set equal to 0,

and the other constants were set equal to each other (c2 = c3 = c4). This simplifies

the search for an optimal loss function, as there is only one parameter that needs to

be “tuned”. It is hypothesized that widening this search space may further improve

the results presented in Section 5.7.

In most structural-acoustic applications the frequencies of interest, acoustic material

properties, and acoustic element size are often the same between runs, with the

structural model primarily changing.

The loss functions can be selected for a purely acoustic mesh with a known solution,

and then those same parameters can be used for a coupled structural acoustics problem.

5.4 Implementation

The PML boundary condition was set up such that six noded wedge (WEDGE6)

elements are extruded from the exterior of the acoustic domain of interest, where

the exterior acoustic surface is disretized with linear triangles. For the Cartesian

formulation, the WEDGE6 elements are extruded normal to the surface. For the

spherical formulation, the WEDGE6 elements are extruded on radial lines originating

from the center of the sphere. For the ellipsoidal formulation, the WEDGE6 elements

to increasing larger confocal ellipsoids, along radii that are not necessarily straight

lines. Figure 5.2 shows the ellipsoidal confocal meshing. The elements have a relatively

thin thickness near the ends of the ellipse, and a relatively thick thickness along the
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sides. Note that these elements are of equal thickness in ellipsoidal coordinates, due

to the ellipsoidal transformation, the PML loss function reaches the same maximum

across the surface of the exterior boundary.

Figure 5.2.: 2D Slice of a 3D Acoustic Mesh with PML Ellipsoidal Boundary

5.5 Verification

In the majority of existing structural acoustic meshes, the ellipsoidal acoustic

domain is meshed with four noded tetrahedral (TET4) elements. Each mesh that

is currently solved with Infinite Elements needs to be solvable with PML without

needing to re-mesh or decompose. Thus, TET4 acoustic elements were selected for

this analysis.

The PML formulation was verified using three problems. The first problem is a 3D

representation of a 1D Waveguide, which was not oriented along any of the coordinate

axes. The second problem is an “Offset Sphere", where an acoustic source is placed

asymmetrically in a spherical domain. The third problem is a prolate ellipsoid with

a major axis of 10 meters in the x direction, and minor axis of 1 meter the y and z

directions. Each model was run in parallel on 16 processors.
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5.5.1 Oriented Waveguide

Figure 5.3.: Numerical Solution for Oriented Waveguide (150 Hz)

Figure 5.3 shows the numerical solution to the oriented Waveguide Problem. The

mesh has dimensions 20x1x1 meters. It is composed of 271,000 TET4 elements, and

51,000 nodes. The boundary where PML is applied has 1548 nodes, and 516 element

faces. The material modeled was water, where ρ = 1000 kg
m3 is the density of the fluid,

and c0 = 1500m
s
is the speed of sound.

The exact solution is given as

P (D) = ρc0V0e
ikD (5.41)

where the applied velocity V0 = 1, and D(x) is the distance from the acoustic source

to the a point in the acoustic mesh. The wavelength k = Ω/c0.

5.5.2 Offset Sphere

Figure 5.4 shows the numerical solution for the offset sphere problem. The radius

of the outer sphere is 5 meters, and the radius of the inner sphere is 1 meter. There

sphere is composed of 850,000 TET4 elements, and 145,000 nodes. The material

modeled is air, where ρ = 1.293 kg
m3 , c0 = 332.0m

s
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Figure 5.4.: Numerical Solution for Offset Sphere (50 Hz)

A 2D representation of the spherical result cut along the plane y=0 is shown.

Note that the solution is spherically symmetric about the acoustic source. The exact

solution is given as

P (r) = iV0Ωρa2

r(1 + ika)e
ik(r−a) (5.42)

where r is the distance from the center of the inner sphere to a point in the mesh, and

a is the radius of the inner sphere.

5.5.3 Ellipse

Figure 5.5.: Numerical Solution for Ellipsoid (100 Hz)

Figure 5.5 shows the numerical solution for a ten to one aspect ratio ellipsoid. The

major axis has a radius of 10 meters, and each minor axis has a radius of 1 meter.

The inner sphere has a radius of 0.25 meters. The mesh is composed of 2,800,000
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TET4 elements, and 500,000 nodes. The face of the inner sphere, where the acoustic

velocity is applied, contains 125,000 elements faces and 373,000 nodes. The outer

face of the ellipsoid, contains 18,500 elements and 56,000 nodes. The material is air,

with the same material properties as the offset sphere. A 2D representation of the

ellipsoidal result along the plane y=0 is shown. Note that the solution is once again

spherically symmetric about the acoustic source. The exact solution is the same as

that of the sphere, given in Equation 5.42. The only difference is the shape of the

acoustic domain, and the size of the inner sphere.

5.6 Solver

The linear equations in this study were solved to a relative residual tolerance of

10−11 using a right-preconditioned GMRES algorithm [127]. Specifically, for each

linear system of the form Ax = b, the calculated approximate solution xa satisfies

‖b − Axa‖/‖b‖ ≤ 10−11. Although the presence of energy dissipation (damping) in

the form of absorbing boundaries can be helpful, the solution of acoustic Helmholtz

problems on exterior domains can still be a challenge. As is often the case, the success

of iterative Krylov solvers such as GMRES depends strongly on the availability of a

good preconditioner.

5.6.1 Preconditioner

The preconditioner used in this study is based on a classic two-level overlapping

Schwarz approach [128,129]. The coarse space for the preconditioner is constructed

from solutions of problems local to each subdomain [130]. Further, the coarse part of

the preconditioner is applied in a multiplicative form [128].

For subdomains consisting entirely of acoustic elements without any damping, the

restriction of the coefficient matrix A to an overlapping subdomain may be singular

depending on the excitation frequency ω. This is true because these overlap matrices

are indefinite for large enough values of ω. In order to deal with this potential
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complication, a preconditioner is constructed for a perturbed matrix Ã := A + Ad,

where the matrix Ad introduces additional energy dissipation into the problem. We

note that although Ã is used in the construction of the preconditioner, the original

linear system Ax = b remains the one that is solved.

A fairly recent approach for selecting Ad is given by

Ad = iγω2M

and goes by the name shifted Laplacian [131,132]. Here, i is the imaginary unit, γ is

a dimensionless parameter, and M is the mass matrix for the acoustic domain (not

including the effects of infinite elements or PML).

Another approach investigated here is to choose

Ad = iγK,

where K is the stiffness matrix for the acoustic domain that does not include any

infinite element or PML contributions. This choice of Ad is motivated by the idea

of using structural damping [133] to model energy dissipation in structures. Indeed,

both forms of Ad shown above provide additional damping for the preconditioner. We

found in our numerical studies that either of the two choices for Ad resulted in similar

numbers of iterations and solution times for the same value of γ; in this study we

used γ = 0.12.

5.7 Results

In this section, the relationship between the thickness of the PML boundary, the

discretization of the elements within the PML boundary, and the selection of loss

parameters is investigated. For each of the problems, the numerical problem is solved

with varying thickness, number of elements, and loss parameters. The discrete L2
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error norm of the solution is compared between the PML formulations, the absorbing

boundary conditions, and infinite elements of various orders.

5.7.1 Oriented Waveguide

Figure 5.6 shows the results for the Oriented Waveguide at a frequency of 100Hz.

Both the absorbing boundary conditions and any infinite element solution perfectly

absorb outgoing waves, and give theoretically exact results. The difference between

the numerical solutions and the exact solution is due to discretization error of the

interior acoustic mesh. Figure 5.6 shows that with the correct PML parameters, the

PML solution also converges to the discretization error of the interior mesh. For the

waveguide problem, where outgoing waves are always orthogonal to the boundary con-

dition, it is clear that the computationally inexpensive absorbing boundary condition

is likely the best choice. The optimal parameters for all three PML formulation are

shown to be loss parameters of 2500, with a thickness of 2 meters and 20 elements in

the boundary.

5.7.2 Offset Sphere

Figure 5.7 shows the results for the Offset Sphere at a frequency of 50Hz. For

this case, the outgoing waves are not perpendicular to the boundary surface, and the

absorbing boundary condition fails to absorb the waves. Increasing the infinite element

order beyond 4 does not improve the solution, and the error norm of the fourth order

infinite elements represents the discretization error for the mesh. While the ellipsoidal

and spherical PML formulations converge to the discretization error of the mesh, the

Cartesian PML fails to absorb the outgoing waves. The discretization error is achieved

with 12 elements, a loss parameter of 600, and a thickness of 2 meters. Fourth order

infinite elements are the most computationally efficient method to solve this problem.
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Figure 5.6.: Parameter Studies for Oriented Waveguide (100 Hz)

5.7.3 Ellipsoid

Figure 5.8 shows the results for the 10:1 aspect ratio ellipse, at a frequency of 100

Hz. The absorbing boundary condition, Cartesian PML, and spherical PML all fail

to absorb the outgoing waves. 14th Order infinite elements are needed to reach the

discretization error of the mesh. PML can reach the same discretization error with

only 10 elements, a loss parameter of 2500, and a thickness of 0.15 meters. Here the

ellipsoidal PML is the most computationally efficient solution for this problem.

Each comparison was done at a single frequency primarily because the discretization

error of a mesh is frequency dependent. A comparison of error norms across frequencies

would place higher weight on higher frequencies, where mesh discretization can drive

up error. Thus, the error norm at the highest frequency would govern the total

error norm, and the norms at lower frequencies would have little impact. Note that
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Figure 5.7.: Parameter Studies for OffsetSphere (50 Hz)

as discretization error of the mesh increases, the benefit of PML decreases. When

discretization error of the mesh decreases, the benefit of PML increases.

5.7.4 Comparison of Infinite Elements to PML

Figure 5.9 shows directly how infinite element order and the PML number of

elements affects the error norm, solve time, and number of iterations for the precon-

ditioned GMRES solver. Each order of infinite elements or PML elements adds one

additional node for each node on the acoustic domain boundary. Thus, 6th Order

Infinite Elements represents the same number of degrees of freedom and linear system

size as a PML formulation with 6 elements. Figure 5.9(a) shows that for the same

problem size, PML results in a lower error norm than Infinite Elements. Figure 5.9(b)

shows the number of iterations required for convergence of the linear solver. It is
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Figure 5.8.: Parameter Studies for Ellipsoid (100 Hz)

shown that Infinite elements at higher orders require significantly more iterations than

PML to solve the same size problem. Figure 5.10(a) shows that Infinite elements

require longer solve times than PML. The longer solve times are primarily due to the

increase in iteration count, but each iteration also takes longer.

Figure 5.9.: Comparison Between IE and PML (100 Hz)
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Figure 5.10.: Comparison Between IE and PML (100 Hz)

Figure 5.11.: Comparison Between IE and PML (100 Hz)

The results for a 10:1 aspect ratio ellipse consisting of only acoustic elements is

presented here, the broader impact of these methods can be seen when even larger

problems are run. Meshes with large interior structural components will suffer more

from poor matrix conditioning caused by infinite elements, as the increased solver

time due to conditioning is compounded by higher numbers of processors and degrees

of freedom in the mesh.

5.8 Conclusions

The primary motivation for this work was to explore an alternative to higher order

infinite elements on ellipsoidal meshes. The high iteration count caused by these
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infinite elements has a large impact on solve time and scalability of structural-acoustic

meshes. In this paper, we have presented the existing derivations for Cartesian

and spherical PML, and presented two novel derivations for rotated Cartesian and

ellipsoidal PML. For each method, we have presented a way to map the formulation

back to Cartesian space, allowing for novel implementations of spherical and ellipsoidal

PML formulations in meshes defined in Cartesian coordinates. For the ellipsoidal

method, we have presented a method to extrude the boundary to confocal ellipsoids

of increasing radii, ensuring the same maximum loss function across the surface of the

outermost ellipsoid.

The formulation has been verified for three specific cases. A 10-1 aspect ratio

ellipse was used to verify the ellipsoidal formulation. An asymmetric spherical mesh

with non-orthogonal outgoing waves was used to verify the spherical and ellipsoidal

formulations. A 1D Waveguide in 3D space was used to verify the rotated Cartesian,

spherical, and ellipsoidal formulations.

The first parallel implementation of PML available in the literature has been

presented, and the effect on the parallel linear solver has been studied. The linear

solver iteration counts and solve times of the PML formulation have been compared

with equivalent infinite elements, and it has been demonstrated that PML outperforms

higher order infinite elements for large meshes. Further, it has been demonstrated that

this benefit scales with mesh size. The greater impact of this work is the reduction in

solution times for existing structural-acoustic problems on ellipsoidal meshes.
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6. SUMMARY AND CONCLUSIONS

In this work, different numerical techniques are used to advance state of the art

RTHS, allowing for higher fidelity models in real-time. Aspects of the multi-time-step

integration method are investigated, and a thorough cost vs. error analysis for the

MTS method with two subdomains is conducted. Next, the MTS method is used in a

virtual Real-Time Hybrid Simulation (RTHS). The algorithm is adapted to account for

the limitations in RTHS, specifically the inability to apply updates back in time when

a physical substructure is involved. Using the computational time made available

by the MTS method, higher fidelity numerical models are used in a MTS+RTHS

method. Nonlinear models that utilize beam-continuum coupling are used to obtain

better results than the purely linear beam models that are typically used in RTHS.

Additional work developing an ellipsoidal PML formulation lays the groundwork for

soil structure interaction in future RTHS.

In Chapter 2, the details of the MTS method are studied, and careful breakdown

of computational cost vs. computed error is conducted for a series of decompositions.

A system is developed to find an optimal decomposition. While the system proposed

in Chapter 2 is prohibitively expensive for large problems, it is possible to use this

system to pick a decomposition for RTHS problems. Additionally, further research

can be conducted to use error estimators to circumvent the need for an exact solution,

and to pick a decomposition on the fly under changing loading conditions.

In Chapter 3, an implementation of the MTS method for RTHS is presented.

The benefits, particularly in regards to computational cost, are outlined, and the

algorithmic changes necessary to implement MTS+RTHS are presented. A predictor

is used on the linear subdomain coupling updates, allowing for a consistent MTS

integration scheme coupled with the physical experiment. A vRTHS on a nine-story
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benchmark structure is used to demonstrate that MTS+RTHS is a much better option

than using simple shear models.

In Chapter 4, the additional time gained by MTS+RTHS is used to allow bigger

models in RTHS, with more degrees of freedom, more complicated geometry, and

nonlinear material models. Beam-Continuum coupling is used to transition regions

of the model between coarsely meshed beam elements and finely meshed linear and

nonlinear continuum elements. The results from the simple linear model, beam-

continuum linear model, and beam-continuum non-linear model are compared to

experimental results obtained from a full physical test. Once again, it is demonstrated

that these numerical techniques allow for high fidelity RTHS.

In Chapter 5, an ellipsoidal PML formulation is presented, as well as a detailed

comparison to infinite elements when used in a massively parallel environment for

the Helmholtz problem. It is noted that the benefits of PML scale with problem size,

particularly due to the limitations of solving the poorly conditioned infinite element

system matrices in a massively parallel environment. Future work may extend this

formulation to the time domain, to be yet another tool for large scale high fidelity

RTHS.

Each of these chapters works towards a common goal of better, faster, numerical

and RTHS modeling. This research is a step in the direction of developing high-fidelity

multi-scale models for full scale RTHS when existing modeling techniques are not

sufficient to capture the behavior of a structure.



LIST OF REFERENCES



141

LIST OF REFERENCES

[1] Japan National Committee on Earthquake Engineering. Niigata earthquake,
1964. In Proceedings of the 3rd World Conference in Earthquake Engineering,
volume III, pages 78–105, 1965.

[2] B. Phillips, Z. Jiang, J.M. Ricles, S.J. Dyke, Y. Chae, B.F. Spencer, R.E.
Christenson, and A. Agrawal. Real-time hybrid simulation benchmark study
with a large-scale MR damper. Proc. of the 5th World Conference on Structural
Control and Monitoring, pages 12–14, 2010.

[3] Victor Saouma, Dae-Hung Kang, and Gary Haussmann. A computational finite-
element program for hybrid simulation. Earthquake Engineering and Structural
Dynamics, 41:375–289, May 2011.

[4] A. Maghareh, S.J. Dyke, A. Prakash, G. Bunting, and P. Lindsay. Evaluating
modeling choices in the implementation of real-time hybrid simulation. In 2012
Joint Conference of the Engineering Mechanics Institute and the 11th ASCE
Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability,
2012.

[5] Y. Chae, S. Tong, T. Marullo, and J.M. Ricles. Real-time hybrid simulation
studies of complex large-scale systems using multi-grid processing. In 20th
Analysis and Computation Specialty Conference, pages 359–370. ASCE, 2012.

[6] A.M. Reinhorn, M.V. Sivaselvan, Z. Liang, X. Shao, M. Pitman, and S. Weinreber.
Large scale real time dynamic hybrid testing technique–shake tables substructure
testing. In The First International Conference on Advances in Experimental
Structural Engineering, volume 1, pages 457–464, 2005.

[7] Victor Saouma, Gary Haussmann, Dae-Hung Kang, and Wassim Ghannoum.
Real time hybrid simulation of a non ductile reinforced concrete frame. Journal
of Structural Engineering, 140(2):04013059, 2013.

[8] Nestor Castaneda, Xiuyu Gao, and Shirley J Dyke. Computational tool for
real-time hybrid simulation of seismically excited steel frame structures. Journal
of Computing in Civil Engineering, 29(3):04014049, 2013.

[9] David Ferry, Gregory Bunting, Amin Maghareh, Arun Prakash, Shirley Dyke,
Kunal Agrawal, Chris Gill, and Chenyang Lu. Real-time system support for
hybrid structural simulation. In Proceedings of the 14th International Conference
on Embedded Software. ACM, 2014.

[10] David Ferry, Amin Maghareh, Gregory Bunting, Arun Prakash, Kunal Agrawal,
Chris Gill, Chenyang Lu, and Shirley Dyke. On the performance of a highly
parallelizable concurrency platform for real-time hybrid simulation. In The Sixth
World Conference on Structural Control and Monitoring, 2014.



142

[11] T. Belytschko, H.-J. Yen, and R. Mullen. Mixed methods for time integration.
Computer Methods in Applied Mechanics and Engineering, 17/18:259–275, 1979.

[12] P. Smolinski, S. Sleith, and T. Belytschko. Stability of an explicit multi-time step
integration algorithm for linear structural dynamics equations. Computational
Mechanics, 18:236–244, 1996.

[13] W. J. T. Daniel. The subcycled Newmark algorithm. Computational Mechanics,
20:272–281, 1997.

[14] A. Gravouil and A. Combescure. Multi-time-step explicit-implicit method for
non-linear structural dynamics. International Journal for Numerical Methods in
Engineering, 50:199–225, 2001.

[15] A. Combescure and A. Gravouil. A numerical scheme to couple subdomains
with different time-steps for predominantly linear transient analysis. Computer
Methods in Applied Mechanics and Engineering, 191:1129–1157, 2002.

[16] A. Prakash and K. D. Hjelmstad. A FETI based multi-time-step coupling
method for Newmark schemes in structural dynamics. International Journal for
Numerical Methods in Engineering, 61:2183–2204, 2004.

[17] Arun Prakash, Ertugrul Taciroglu, and Keith D. Hjelmstad. Computation-
ally efficient multi-time-step method for partitioned time integration of highly
nonlinear structural dynamics. Computers & Structures, 133:51–63, 2014.

[18] Hansen Pitandi. Geometrically consistent coupling of beam and continuum
models for studying collapse of structures, 2011.

[19] George Mylonakis and George Gazetas. Seismic soil-structure interaction: bene-
ficial or detrimental? Journal of Earthquake Engineering, 4(3):277–301, 2000.

[20] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electro-
magnetic waves. Journal of computational physics, 114(2):185–200, 1994.

[21] A Bermúdez, L. Hervella-Nieto, A. Prieto, et al. An optimal perfectly matched
layer with unbounded absorbing function for time-harmonic acoustic scattering
problems. Journal of Computational Physics, 223(2):469–488, 2007.

[22] Ch Michler, Leszek Demkowicz, J. Kurtz, and D. Pardo. Improving the per-
formance of perfectly matched layers by means of hp-adaptivity. Numerical
Methods for Partial Differential Equations, 23(4):832–858, 2007.

[23] Joseph J. Shirron and Thomas E. Giddings. A finite element model for acoustic
scattering from objects near a fluid–fluid interface. Computer Methods in Applied
Mechanics and Engineering, 196(1):279–288, 2006.

[24] David S. Burnett and Richard L. Holford. An ellipsoidal acoustic infinite element.
Computer Methods in Applied Mechanics and Engineering, 164(1):49–76, 1998.

[25] Fang Q Hu. Absorbing boundary conditions. International Journal of Computa-
tional Fluid Dynamics, 18(6):513–522, 2004.

[26] Garth M Reese, Manoj Kumar Bhardwaj, Daniel Joseph Segalman, Ken-
neth Fredrick Alvin, Brian James Driessen, Kendall Pierson, and Timothy
Walsh. Salinas-user’s notes. SAND report, 2801, 1999.



143

[27] Garth Reese, Manoj K Bhardwaj, and Timothy Walsh. Salinas–theory manual.
2004.

[28] Leszek Demkowicz. Computing with hp-adaptive finite elements, vol. 1: One
and two dimensional elliptic and Maxwell problems. Applied Mathematics and
Nonlinear Science Series. Book, 2006.

[29] Anil K. Chopra. Dynamics of Structures, Theory and Applications to Earthquake
Engineering, 4th ed. Prentice-Hall, 2012.

[30] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and
Theory. Springer, 2005.

[31] Y. Fragakis and M. Papadrakakis. The mosaic of high performance domain
decomposition methods for structural mechanics: Formulation, interrelation and
numerical efficiency of primal and dual methods. Computer Methods in Applied
Mechanics and Engineering, 192:3799–3830, 2003.

[32] Y. Fragakis and M. Papadrakakis. The mosaic of high-performance domain
decomposition methods for structural mechanics - Part II: Formulation enhance-
ments, multiple right-hand sides and implicit dynamics. Computer Methods in
Applied Mechanics and Engineering, 193:4611–4662, 2004.

[33] N. M. Newmark. A method of computation for structural dynamics. Journal of
Engineering Mechanics, ASCE, 85:67–94, 1959.

[34] E.L. Wilson, I. Farhoomand, and K.J. Bathe. Nonlinear dynamic analysis of
complex structures. Earthquake Engineering & Structural Dynamics, 1(3):241–
252, 1972.

[35] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numerical dissipation
for time integration algorithms in structural dynamics. Earthquake Engineering
& Structural Dynamics, 5:283–292, 1977.

[36] W.L. Wood, M. Bossak, and O.C. Zienkiewicz. An alpha modification of
Newmark’s method. International Journal for Numerical Methods in Engineering,
15:1562–1566, 1981.

[37] D. Levy and E. Tadmor. From semidiscrete to fully discrete: Stability of
Runge-Kutta schemes by the energy method. SIAM Review, 40:40–73, 1998.

[38] Pål G Bergan and Egil Mollestad. An automatic time-stepping algorithm for
dynamic problems. Computer Methods in Applied Mechanics and Engineering,
49(3):299–318, 1985.

[39] K.C. Park and P.G. Underwood. A variable-step central difference method for
structural dynamics analysis—Part 1. theoretical aspects. Computer Methods in
Applied Mechanics and Engineering, 22(2):241–258, 1980.

[40] J.J. Sanchez-Gasca, R. D’Aquila, W.W. Price, and J.J. Paserba. Variable
time step, implicit integration for extended-term power system dynamic simula-
tion. In Power Industry Computer Application Conference, 1995. Conference
Proceedings., 1995 IEEE, pages 183–189. IEEE, 1995.



144

[41] Fernando J Barros. Comparing synchronous and asynchronous variable step size
explicit ODE solvers: A simulation study. In Proceedings of the 21st International
Workshop on Principles of Advanced and Distributed Simulation, pages 32–37.
IEEE Computer Society, 2007.

[42] William Fong, Eric Darve, and Adrian Lew. Stability of asynchronous variational
integrators. Journal of Computational Physics, 227(18):8367–8394, 2008.

[43] K. G. Kale and A. J. Lew. Parallel asynchronous variational integrators. Inter-
national Journal for Numerical Methods in Engineering, 70:291–321, 2007.

[44] T. Belytschko and R. Mullen. Stability of explicit-implicit mesh partitions in
time integration. International Journal for Numerical Methods in Engineering,
12:1575–1586, 1978.

[45] P. Smolinski, T. Belytschko, and W. K. Liu. Stability of multi-time-step
partitioned integrators for first-order systems of equations. Computer Methods
in Applied Mechanics and Engineering, 65:115–125, 1987.

[46] C. Farhat and F. X. Roux. A method for finite element tearing and intercon-
necting and its parallel solution algorithm. International Journal for Numerical
Methods in Engineering, 32:1205–1227, 1991.

[47] M. O. Neal and T. Belytschko. Explicit-explicit subcycling with non-integer
time step ratios for structural dynamic systems. Computers and Structures,
31:871–880, 1989.

[48] P. Smolinski. Subcycling integration with non-integer time steps for structural
dynamics problems. Computers and Structures, 59:273–281, 1996.

[49] C.A. Felippa, K.C. Park, and C. Farhat. Partitioned analysis of coupled me-
chanical systems. Computer Methods in Applied Mechanics and Engineering,
190(24):3247–3270, 2001.

[50] Alain Combescure, Najib Mahjoubi, Anthony Gravouil, and Nicolas Greffet.
A time variational method to couple heterogeneous time integrators. Euro-
pean Journal of Computational Mechanics/Revue Européenne de Mécanique
Numérique, 19(1-3):11–24, 2010.

[51] Najib Mahjoubi, Anthony Gravouil, Alain Combescure, and N Greffet. A
monolithic energy conserving method to couple heterogeneous time integrators
with incompatible time steps in structural dynamics. Computer Methods in
Applied Mechanics and Engineering, 200(9):1069–1086, 2011.

[52] A Gravouil, A Combescure, and M Brun. Heterogeneous asynchronous time
integrators for computational structural dynamics. International Journal for
Numerical Methods in Engineering, 2014.

[53] Chenyang Liu, Muhammad Hasan Jamal, Milind Kulkarni, Arun Prakash, and
Vijay Pai. Exploiting domain knowledge to optimize parallel computational
mechanics codes. In Proceedings of the 27th international ACM conference on
International conference on supercomputing, ICS ’13, pages 25–36, New York,
NY, USA, 2013. ACM.



145

[54] K. C. Park and C. A. Felippa. Partitioned transient analysis procedures for
coupled-field problems: Accuracy analysis. Journal of Applied Mechanics, ASME,
47:919–926, 1980. Transactions of the ASME.

[55] Ignacio Romero and Luis M. Lacoma. Analysis of error estimators for the
semidiscrete equations of linear solid and structural dynamics. Computer Methods
in Applied Mechanics and Engineering, 195:2674–2696, 2006.

[56] O.C. Zienkiewicz and Y.M. Xie. A simple error estimator and adaptive time
stepping procedure for dynamic analysis. Earthquake Engineering & Structural
Dynamics, 20(9):871–887, 1991.

[57] N.E. Wiberg and X.D. Li. A post-processing technique and an a posteriori error
estimate for the newmark method in dynamic analysis. Earthquake Engineering
& Structural Dynamics, 22(6):465–489, 1993.

[58] Chang-Koon Choi and Heung-Jin Chung. Error estimates and adaptive time
stepping for various direct time integration methods. Computers & structures,
60(6):923–944, 1996.

[59] Y. Ohtori, R.E. Christenson, BF Spencer Jr, and S.J. Dyke. Benchmark control
problems for seismically excited nonlinear buildings. Journal of Engineering
Mechanics, 130(4):366–385, 2004.

[60] Horace Lamb. On the propagation of tremors over the surface of an elastic solid.
Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, pages 1–42, 1904.

[61] M.J. Kuhn. A numerical study of lamb’s problem. Geophysical prospecting,
33(8):1103–1137, 1985.

[62] Dimitri Komatitsch and Jean-Pierre Vilotte. The spectral element method: an
efficient tool to simulate the seismic response of 2D and 3D geological structures.
Bulletin of the Seismological Society of America, 88(2):368–392, 1998.

[63] Dimitri Komatitsch, Jean-Pierre Vilotte, Rossana Vai, Jose M Castillo-
Covarrubias, and Francisco J Sanchez-Sesma. The spectral element method for
elastic wave equations-application to 2-d and 3-d seismic problems. International
Journal for numerical methods in engineering, 45(9):1139–1164, 1999.

[64] P.S.B. Shing and S.A. Mahin. Computational aspects of a seismic performance
test method using on-line computer control. Earthquake Engineering & Structural
Dynamics, 13(4):507–526, 1985.

[65] Naru Nakata, SJ Dyke, Jian Zhang, Gilberto Mosqueda, Xiaoyun Shao, Hussam
Mahmoud, Monique Hite Head, Michael Bletzinger, Gemez A Marshall, Gaby
Ou, and Cheng Song. Hybrid simulation primer and dictionary. Network for
Earthquake Engineering Simulation, NEES, 2014.

[66] A. Gravouil and A. Combescure. Multi-time-step explicit–implicit method for
non-linear structural dynamics. International Journal for Numerical Methods in
Engineering, 50(1):199–225, 2001.



146

[67] A Bonelli, OS Bursi, L He, G Magonette, and P Pegon. Convergence analysis
of a parallel interfield method for heterogeneous simulations with dynamic
substructuring. International Journal for Numerical Methods in Engineering,
75(7):800–825, 2008.

[68] OS Bursi, A Gonzalez-Buelga, L Vulcan, SA Neild, and DJ Wagg. Novel
coupling rosenbrock-based algorithms for real-time dynamic substructure testing.
Earthquake Engineering & Structural Dynamics, 37(3):339–360, 2008.

[69] Xiuyu Gao, Nestor Castaneda, and Shirley J. Dyke. Experimental validation
of a generalized procedure for mdof real-time hybrid simulation. Journal of
Engineering Mechanics, 140(4):04013006, 2013.

[70] Anthony Friedman, Shirley J. Dyke, Brian Phillips, Ryan Ahn, Baiping Dong,
Yunbyeong Chae, Nestor Castaneda, Zhaoshuo Jiang, Jianqiu Zhang, Youngjin
Cha, Ali Ozdagli, B. F. Spencer, James Ricles, Richard Christenson, Anil
Agrawal, and Richard Sause. Large-scale real-time hybrid simulation for evalua-
tion of advanced damping system performance. Journal of Structural Engineering,
141(6):04014150, 2014.

[71] Amin Maghareh, Shirley Dyke, Arun Prakash, and Gregory Bunting. Establish-
ing a preditive performance indicator for real-time hybrid simulation. Earthquake
Engineering and Structural Dynamics, 43(15):2299–2318, 2014.

[72] P.B. Shing and S.A. Mahin. Experimental error propagation in pseudodynamic
testing. Rep. No. UCB/EERC-83, 12, 1983.

[73] Xiaoyun Shao, Andrei M. Reinhorn, and Mettupalayam V. Sivaselvan. Real-
time hybrid simulation using shake tables and dynamic actuators. Journal of
Structural Engineering, 137(748), 2011.

[74] Cheng Chen and James M. Ricles. Improving the inverse compensation method
for real-time hybrid simulation through a dual compensation scheme. Earthquake
Engineering and Structural Dynamics, 38:1237–1255, February 2009.

[75] Amin Maghareh, Jacob P. Waldbjørn, Shirley J. Dyke, Arun Prakash, and
Ali I. Ozdagli. Adaptive multi-rate interface: development and experimental
verification for real-time hybrid simulation. Earthquake Engineering & Structural
Dynamics, 2016.

[76] Amin Maghareh, Shirley Dyke, Siamak Rabieniaharatbar, and Arun Prakash.
Predictive stability indicator: a novel approach to configuring a real-time hybrid
simulation. Earthquake Engineering & Structural Dynamics, 2016.

[77] A.P. Darby, M.S. Williams, and A Blakeborough. Stability and delay compen-
sation for real-time substructure testing. Journal of Engineering Mechanics,
128(12):1276–1284, 2002.

[78] C. Thewalt and M. Roman. Performance parameters for pseudodynamic tests.
Journal of Structural Engineering, 120(9):2768–2781, 1994.

[79] C. Chen and J.M. Ricles. Analysis of actuator delay compensation methods for
real-time testing. Engineering Structures, 31(11):2643–2655, 2009.



147

[80] A. Blakeborough, M.S. Williams, A.P. Darby, and D.M. Williams. The develop-
ment of real–time substructure testing. Philosophical Transactions of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences,
359(1786):1869–1891, 2001.

[81] M. Ahmadizadeh, G. Mosqueda, and AM Reinhorn. Compensation of actuator
delay and dynamics for real-time hybrid structural simulation. Earthquake
Engineering & Structural Dynamics, 37(1):21–42, 2008.

[82] C. Chen, J.M. Ricles, T.M. Marullo, and O. Mercan. Real-time hybrid testing
using the unconditionally stable explicit cr integration algorithm. Earthquake
Engineering & Structural Dynamics, 38(1):23–44, 2008.

[83] G. Mosqueda and M. Ahmadizadeh. Combined implicit or explicit integration
steps for hybrid simulation. Earthquake Engineering & Structural Dynamics,
36(15):2325–2343, 2007.

[84] C.R. Thewalt and S.A. Mahin. Hybrid solution techniques for generalized
pseudodynamic testing, volume 87. Earthquake Engineering Research Center,
College of Engineering, University of California; Springfield, Va.: available from
the National Technical Information Service, 1987.

[85] C.P. Lamarche, A. Bonelli, O.S. Bursi, and R. Tremblay. A Rosenbrock-w method
for real-time dynamic substructuring and pseudo-dynamic testing. Earthquake
Engineering & Structural Dynamics, 38(9):1071–1092, 2009.

[86] C. Chen and J.M. Ricles. Development of direct integration algorithms for
structural dynamics using discrete control theory. Journal of Engineering
Mechanics, 134(8):676–683, 2008.

[87] Masayoshi Nakashima and Nobuaki Masaoka. Real-time on-line test for MDOF
systems. Earthquake engineering & structural dynamics, 28(4):393–420, 1999.

[88] P. Pegon and A.V. Pinto. Pseudo-dynamic testing with substructuring at the
ELSA laboratory. Earthquake engineering & structural dynamics, 29(7):905–925,
2000.

[89] O.S. Bursi and P.S.B. Shing. Evaluation of some implicit time-stepping algo-
rithms for pseudodynamic tests. Earthquake engineering & structural dynamics,
25(4):333–355, 1996.

[90] O. S. Bursi, G. Abbiati, B. Wu, and G. Xu. Partitioned time integration methods
for hybrid simulators. In Proceedings of 15th World Conference on Earthquake
Engineering, 2012.

[91] Inc MathWorks. MATLAB: the language of technical computing. Desktop tools
and development environment, version 7, volume 9. MathWorks, 2005.

[92] Gregory Bunting, Arun Prakash, Shirley Dyke, and Amin Maghareh. Char-
acterizing errors and evaluating performance of transient simulations using
multi-time-step integration. ASCE Journal of Computing in Civil Engineering,
2016.

[93] S.J. Dyke, B.F. Spencer Jr, P. Quast, and M.K. Sain. Role of control-structure
interaction in protective system design. Journal of Engineering Mechanics,
121(2):322–338, 1995.



148

[94] Ge Ou, Ali Irmak Ozdagli, Shirley J. Dyke, and Bin Wu. Robust integrated
actuator control: experimental verification and real-time hybrid-simulation
implementation. Earthquake Engineering & Structural Dynamics, 44(3):441–460,
2015.

[95] Anthony Friedman and Zhaoshuo Jiang. Phenomenological Bouc-Wen
Model for 200 kN Large-Scale Magneto-Rheological Fluid (MR) Damper.
https://nees.org/resources/4122, 2012.

[96] B.F. Spencer Jr, J. Suhardjo, and M.K. Sain. Frequency domain optimal
control strategies for aseismic protection. Journal of Engineering Mechanics,
120(1):135–158, 1994.

[97] J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, Berlin,
1998.

[98] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed
Saifullah. Analysis of federated and global scheduling for parallel real-time tasks.
In 2014 26th Euromicro Conference on Real-Time Systems, pages 85–96. IEEE,
2014.

[99] Zhang Xianyi, Wang Qian, and Zaheer Chothia. OpenBLAS: An optimized
BLAS library. http://www.openblas.net/.

[100] Speedgoat. Speedgoat real-time simulation and testing. Liebefeld Switzerland,
2016.

[101] dSPACE Inc. dSPACE Real-Time Systems. Wixom, MI, 2016.

[102] Gregory Bunting, Payton Lindsay, Amin Maghareh, Arun Prakash, and Shirley
Dyke. Using multi-timestepping in finite element models to meet real time
constraints. In 2012 Joint Conference of the Engineering Mechanics Institute
and the 11th ASCE Joint Specialty Conference on Probabilistic Mechanics and
Structural Reliability, 2012.

[103] P. Lindsay, M. Parks, and A. Prakash. Enabling fast, stable and accurate
peridynamic computations using multi-time-step integration. Computer Methods
in Applied Mechanics and Engineering, 2016.

[104] J. Chakrabarty. Theory of plasticity. McGraw-Hill, New York, 1987.

[105] Wei Song and Shirley Dyke. Real-time dynamic model updating of a hysteretic
structural system. Journal of Structural Engineering, 140(3):04013082, 2013.

[106] Wei Song. Dynamic model updating with applications in structural and damping
systems: From linear to nonlinear, from off-line to real-time. PhD thesis, Purdue
University, 2011.

[107] T. Hohage, F. Schmidt, and L. Zschiedrich. Solving time-harmonic scattering
problems based on the pole condition, II. convergence of the PML method.
SIAM J. Math. Anal., 35:547–560, 2003.

[108] M. Lassas and E. Somersalo. On the existence and convergence of the solution
of the PML equations. Computing, 60:229–241, 1998.



149

[109] M. Lassas and E. Somersalo. Analysis of the PML equations in general convex
geometry. Proceedings of the Royal Society of Edinburgh, pages 1183–1207, 2001.

[110] J.L. Cippola and M.J. Butler. Infinite elements in the time domain using a
prolate spheroidal multipole expansion. International Journal for Numerical
Methods in Engineering, 43:889–908, 1998.

[111] R.J. Astley. Mapped spheroidal wave-envelope elements for unbounded
wave problems. International Journal for Numerical Methods in Engineering,
41(7):1235–1254, 1998.

[112] R.J. Astley and J.P. Coyote. The performance of spheroidal infinite elements.
International Journal for Numerical Methods in Engineering, 52(12):1379–1396,
2001.

[113] RJ Astley. Infinite elements for wave problems: a review of current formulations
and an assessment of accuracy. International Journal for Numerical Methods in
Engineering, 49(7):951–976, 2000.

[114] D. S. Burnett and R. L. Holford. An ellipsoidal acoustic infinite element.
Computer Methods in Applied Mechanics and Engineering, 164(1-2):49–76, 1998.

[115] D. S. Burnett. A three-dimensional acoustic infinite element based on a prolate
spheroidal multipole expansion. JASA, 96:2798–2816, 1994.

[116] Y. Rui-Liang and W. Hong-zhen. A novel ellipsoidal acoustic infinite element.
Appl. Math. Mech., 26(2):261–268, 2005.

[117] L. Demkowicz and J. Shen. A few new facts about infinite elements. Computer
Methods in Applied Mechanics and Engineering, 195(29):3572–3590, 2006.

[118] T.F. Walsh, A. Jones, M. Bhardwaj, C. Dohrmann, G. Reese, and R. Wilson.
A comparison of transient infinite elements and transient kirchhoff integral
methods for far field acoustic analysis. Journal of Computational Acoustics,
21(2), 2013.

[119] D.S. Burnett. Radiation boundary conditions for the Helmholtz equation for el-
lipsoidal, prolate spheroidal, oblate spheroidal, and spherical domain boundaries.
Journal of Computational Acoustics, 20(4), 2012.

[120] F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates.
SIAM Journal on Scientific Computing, 19(6):2061–2090, 1998.

[121] P.J. Matuszyk and L. Demkowicz. Parametric finite elements, exact sequences,
and perfectly matched layers. Computational Mechanics, 51(1):35–45, 2013.

[122] Steven G Johnson. Notes on perfectly matched layers (pmls). Lecture notes,
Massachusetts Institute of Technology, Massachusetts, 2008.

[123] L. Demkowicz. Computing with hp-Adaptive Finite Elements, Volume 1: One
and Two Dimensional Elliptic and Maxwell Problems. Chapman and Hall, CRC,
2007.



150

[124] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek.
Computing with hp-Adaptive Finite Elements, Volume 2: Frontiers, Three Di-
mensional Elliptic and Maxwell Problems with Applications. Chapman and Hall,
CRC, 2008.

[125] J.L. Shirron and T.E. Giddings. A finite element model for acoustic scattering
from objects near a fluid-fluid interface. Computer Methods in Applied Mechanics
and Engineering, 196:279–288, 2006.

[126] J-P Berenger. Perfectly matched layer for the fdtd solution of wave-structure in-
teraction problems. Antennas and Propagation, IEEE Transactions on, 44(1):110–
117, 1996.

[127] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[128] Barry F. Smith, Petter Bjørstad, and William Gropp. Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge
University Press, New York, 1996.

[129] Andrea Toselli and Olof B. Widlund. Domain Decomposition Methods - Algo-
rithms and Theory, volume 34 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin Heidelberg New York, 2005.

[130] Clark R. Dohrmann and Olof B. Widlund. An overlapping Schwarz algorithm
for almost incompressible elasticity. SIAM J. Numer. Anal., 47(4):2897–2923,
2009.

[131] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for
solving the Helmholtz equation. Appl. Numer. Math., 50(3-4):409–425, 2004.

[132] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multgrid based pre-
conditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput.,
27(4):1471–1492, 2006.

[133] Jr. Roy R. Craig. Structural Dynamics: An Introduction to Computer Methods.
John Wiley and Sons, New York, 1981.



VITA



151

VITA

Gregory Bunting is a doctoral candidate in Civil Engineering. He obtained his

BS (2010) and MS (2011) in Civil Engineering from Clemson University. While at

Purdue, he has served as vice president of the Civil Engineering Graduate Student

Advisory Council, and currently serves on the Intramural Student Advisory Board.

He works primarily in Dr. Arun Prakash’s Computational Solid and Structural

Mechanics Laboratory, and also works in Dr. Shirley Dyke’s Intelligent Infrastructure

System Lab at the Bowen Laboratory for large-scale civil engineering research. He has

interned with the Structural Dynamics and Solid Mechanics group at Sandia National

Laboratories since May 2013. His areas of interest include computational mechanics

and structural dynamics.


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 Introduction
	1.1 Objectives
	1.1.1 Characterize MTS Error and Performance
	1.1.2 Temporal multi-scale models in RTHS
	1.1.3 Parallel nonlinear spatial multi-scale models in RTHS
	1.1.4 Perfectly Matched Layers with an Ellipsoidal Boundary


	2 Characterizing errors and evaluating performance of transient simulations using multi-time-step integration
	2.1 Introduction
	2.2 Overview of time integration methods
	2.3 Multi-time-step methods
	2.3.1 Governing equations for the multi-time-step method
	2.3.2 Solution procedure
	2.3.3 Computational cost of the multi-time-step method
	2.3.4 Exact and reference solutions for computing errors
	2.3.5 Error measures

	2.4 Characterization of Errors
	2.4.1 MTS decomposition for a truss problem
	2.4.2 MTS decomposition for a frame problem
	2.4.3 MTS decomposition for wave propagation in a solid domain

	2.5 Space of Possible MTS Decompositions
	2.5.1 Optimal MTS decomposition

	2.6 Numerical Examples
	2.6.1 Frame Problem
	2.6.2 Lamb Problem
	2.6.3 Discussion and insights

	2.7 Conclusions

	3 Asynchronous multi-time-step coupling of numerical and physical models for high-fidelity real-time hybrid simulation
	3.1 Introduction
	3.2 Real Time Hybrid Simulation (RTHS)
	3.3 Asynchronous multi-time-step (MTS) coupling of numerical and physical models
	3.3.1 Conventional RTHS
	3.3.2 MTS method for numerical substructure
	3.3.3 Asynchronous predictor for MTS coupling of numerical and physical models
	3.3.4 Computational cost of MTS+RTHS

	3.4 Implementation of asynchronous MTS coupling on CyberMech - a novel RTHS platform
	3.4.1 Taskset
	3.4.2 Shared Memory Model

	3.5 Results
	3.5.1 Virtual Real-time hybrid simulation of a nine-story frame
	3.5.2 Error Distribution with Shear Model
	3.5.3 Error Distribution with No Predictor
	3.5.4 Analysis of selected predictor schemes

	3.6 Discussion
	3.7 Conclusions

	4 Hierarhical Multi-Scale Models for Parallel Real-Time Hybrid Simulation
	4.1 Introduction
	4.2 Cybermech Computational Platform
	4.3 Formulation of Multi-Scale Models for RTHS
	4.3.1 Nonlinear Explicit MTS
	4.3.2 Equations of Motion
	4.3.3 Coupling Matrices
	4.3.4 Beam-Continuum Coupling
	4.3.5 J2 Plasticity

	4.4 Verification
	4.4.1 Nonlinear Verification

	4.5 Experimental and Numerical Models
	4.5.1 Physical Structure
	4.5.2 Shear Model
	4.5.3 Simple Beam Model
	4.5.4 Detailed Beam Model
	4.5.5 Linear Continuum Model
	4.5.6 Linear Beam-Continuum Model
	4.5.7 Nonlinear Beam-Continuum Model
	4.5.8 Hybrid Models

	4.6 Experimental Validation
	4.6.1 Impact Hammer Test
	4.6.2 Nonlinear Cyclic Static Test
	4.6.3 Five Story Shake Table Tests
	4.6.4 Real Time Hybrid Experiment

	4.7 Results
	4.7.1 Pure Numerical Results
	4.7.2 RTHS Results
	4.7.3 Nonlinear Behavior

	4.8 Discussion
	4.9 Conclusions

	5 Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains
	5.1 Introduction
	5.2 Theory
	5.2.1 Relations Between the PML Formulations

	5.3 LossFunction
	5.4 Implementation
	5.5 Verification
	5.5.1 Oriented Waveguide
	5.5.2 Offset Sphere
	5.5.3 Ellipse

	5.6 Solver
	5.6.1 Preconditioner

	5.7 Results
	5.7.1 Oriented Waveguide
	5.7.2 Offset Sphere
	5.7.3 Ellipsoid
	5.7.4 Comparison of Infinite Elements to PML

	5.8 Conclusions

	6 Summary and Conclusions
	LIST OF REFERENCES
	VITA
	Blank Page

